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Adaptive Period Embedding for Representing
Oriented Objects in Aerial Images

Yixing Zhu , Jun Du , and Xueqing Wu

Abstract— We propose a novel method for representing
oriented objects in aerial images named adaptive period embed-
ding (APE). Although traditional object detection methods rep-
resent objects using horizontal bounding boxes, the objects in
aerial images are oriented. Calculating the angle of the object
is a yet challenging task. Almost all previous object detectors
for aerial images directly regress the angle of objects, they use
complex rules to calculate the angle, and their performance is
limited by the rule design. In contrast, our method is based on the
angular periodicity of oriented objects. The angle is represented
by two 2-D periodic vectors the periods of which are different,
so the vector is continuous as the shape changes. The label
generation rule is simpler and more reasonable compared with
previous methods. The proposed method is general and can be
applied to other oriented detector. Besides, we propose a novel
intersection over union (IoU) calculation method for long objects
named length-independent IoU (LIIoU). We intercept part of the
long side of the target box to get the maximum IoU between
the proposed box and intercepted target box. Thereby, some
long boxes will have corresponding positive samples. Our method
reaches the first place of DOAI2019 competition task1 (oriented
object) held in a workshop on detecting objects in aerial images
in conjunction with IEEE CVPR 2019.

Index Terms— Aerial images, convolutional neural networks
(CNN), deep learning, intersection over union (IoU), oriented
object detection.

I. INTRODUCTION

TRADITIONAL object detection methods mainly detect
objects with horizontal bounding boxes. However, objects

in aerial images are oriented and cannot be effectively repre-
sented by horizontal bounding boxes. As shown in Fig. 1,
detecting oriented objects with horizontal bounding boxes
will contain more background and cannot accurately locate
the objects. Besides, overlap calculation based on horizontal
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Fig. 1. (Left) Horizonal bounding boxes. (Right) Oriented bounding boxes.

bounding box is not accurate for oriented objects, as the over-
lap between horizontal bounding boxes of two oriented objects
may be too large; thus, nonmaximum suppression (NMS)
based on horizontal bounding boxes is not suitable for ori-
ented objects. Therefore, representing oriented objects with
an oriented bounding box is necessary for object detection in
aerial images. However, a regressing oriented bounding box is
more challenging than regressing a horizontal bounding box.
Four variables can represent a horizontal bounding box, such
as x, y coordinates of top left corner and bottom right corner.
However, oriented bounding box representation needs an extra
variable θ to represent its angle. It is hard to directly regress
θ because the angle is periodic.

Most of the previous oriented detectors [1]–[5] directly
regress θ or the four vertices of the oriented bounding
box, and the label is calculated by complicated rules,
which is hard for the network to learn. Some meth-
ods try to design a simple label calculation rule for ori-
ented objects. For example, Dai et al. [6] adopts mask
region-convolutional neural networks (CNN) (R-CNN) [7] for
detecting oriented text lines. Zhu et al. [8] regressed the
outline of the objects with multiple points on sliding lines. But
these methods introduced additional parameters and cannot be
adopted by the region proposal networks (RPNs).

In this article, we propose a novel method for representing
oriented objects. The oriented bounding box can be repre-
sented by (x , y, w, h, and θ ), where x and y are the coordinates
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of the center of the bounding box, and w and h are the
lengths of the sizes of long and short sides, respectively.
We do not directly regress θ . Angle is different from other
variables, it has periodicity, and the period of square is 90◦,
whereas the period of rectangle is 180◦. Directly regressing the
orientation parameter (θ ) will lead to ambiguity. For example,
a rectangle whose angle is 359◦, another one’s angle is 0◦.
Their vision is quite similar, but the labels are completely
different, which is unreasonable. Considering this, θ is rep-
resented by two 2-D periodic vectors. The proposed method
is different from [9], as in our method, the periods of two
vectors are 90◦ and 180◦, respectively. Finally, we calculate the
angle with these vectors. Our method is versatile and can be
applied to other detectors. Besides, we design a novel cascade
R-CNN method for long objects such as harbors. Generally,
a two-stage model proposes bounding boxes with RPN in the
first stage, and the output bounding boxes of the second stage
(R-CNN) are limited by RPN results. Due to the limited size
of the receptive field, some long objects cannot be covered
by RPN. With this in mind, we adopt a two-stage cascade
R-CNN model with length-independent intersection over union
(IoU) (LIIoU) to detect long objects. In the first stage, some
bounding boxes which only cover part of the objects are also
set to positive samples. In this way, the first R-CNN can
propose longer bounding boxes. The main contributions of
our article are summarized as follows.

1) We present a novel method for representing oriented
bounding boxes in aerial images. We do not directly
regress θ of oriented bounding boxes, but instead embed
θ with vectors whose periods are different. In this way,
we do not need complex rules to label the angle which
avoids ambiguity.

2) We present a novel IoU calculation method named
LIIoU, which is designed for long objects. The presented
method makes the detector more robust to long objects.

3) The presented method achieves state of the art on DOTA
and wins the first place of Challenge-2019 on Object
Detection in Aerial Images task1 (oriented task) in
conjunction with IEEE CVPR 2019.

II. RELATED WORK

A. Horizontal Objects Detection

Labels of traditional object detection tasks are horizontal
bounding boxes. Ren et al. [10] presented a real-time object
detection method based on RPN that shares feature maps
of RPN and R-CNN and uses anchors with different sizes
and aspect ratios in the RPN stage. Though Faster R-CNN
shares feature maps, it still requires much computation in the
fully connected (FC) layer of R-CNN. Region-based fully con-
volutional networks (R-FCNs) [11] present position-sensitive
score maps and position-sensitive RoI pooling for saving
computation in the R-CNN stage. Scale variation is always
a very challenging issue in object detection; to help solve this
problem, Lin et al. [12] presented feature pyramid networks
(FPNs). The FPN generates feature maps of different scales
on different layers and detects large objects on higher layers
but detects small objects on lower layers; the parameters

of an RPN is shared over layers. Based on the FPN, mask
R-CNN [7] presents RoIAlign which calculates values in RoI
features via bilinear interpolation instead of maximum pooling
to avoid quantization errors and adds several convolution
layers on the mask-head to generate instant segmentation
maps. Liu et al. [13] improved the mask R-CNN by adding
bottom-up path augmentation and feature fusion.

Two-stage methods require more computation than
one-stage methods, so one-stage methods are more suitable
for real-time object detection tasks. Single shot multibox
detector (SSD) [14] generates multiple layers and then
detects objects with different sizes on different layers.
Deconvolutional single shot detector (DSSD) [15] upsamples
feature maps and detects small objects on lower layers which
improves SSD performance for small objects. Lin et al. [16]
presents focal loss to handle the imbalance between positive
and negative samples. Although anchors are widely used in
object detection, many models adopt the anchor-free method.
Huang et al. [17] did not use anchors in RPN, but used a
shrunk segmentation map as the label. Redmon et al. [18] also
used segmentation maps as ground truth. The GA-RPN [19]
combines anchor-free and anchor-based ideas: the label for
the first step is generated by a shrunk segmentation map, and
the label for the second step is calculated based on the output
anchor of the first step.

Traditional object detection in aerial images only focuses
on the horizontal bounding box. Yang et al. [20] focused
on detecting small urban elements in mobile mapping sys-
tem (MMS) images. Leng et al. [21] tried to detect ship
in single-channel synthetic aperture radar (SAR) imagery
with complex signal kurtosis. Li et al. [22] presented
local-contextual feature fusion network which is designed
for remote sensing images. Its RPN includes multiangle,
multiscale, and multiaspect-ratio anchors which can deal with
oriented objects, but the final output bounding boxes are
still horizontal. Wang et al. [23] presented a rotation-invariant
matrix (RIM) which can get both the angular spatial informa-
tion and radial spatial information. Long et al. [24] presented
an automatic and accurate localization method for detecting
objects in high-resolution remote sensing images based on
Faster R-CNN. Salberg [25] presented a method to detect
seals in aerial remote sensing images based on a convolutional
network. Chen et al. [26] presented a hybrid DNN (HDNN),
the last convolutional and max-pooling layers of DNN of
which are divided into multiple blocks, so HDNN can generate
multiscale features that improve the detector performance for
small objects. Unlike the images used for general object
detection, aerial images have higher resolutions. However,
large models cannot be implemented due to memory limi-
tations. Therefore, Pang et al. [27] proposed a self-reinforced
network named remote sensing region-based CNN (R2-CNN)
including Tiny-Net and intermediate global attention blocks.
It adopts a lightweight residual structure, so the network can
feedforward high-resolution sensing images at high speeds.
Deng et al. [28] proposed a novel method for ship detection
in SAR images. It redesigns the network structure, does not
pretrain on ImageNet, and specifically designs the system for
small objects such as ships.
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B. Oriented Objects Detection

Oriented object detection is first presented in the field of
text detection. Liao et al. [29] presented a novel SSD-based
text detection method, which adapts the size and aspect
ratio of the anchor and uses 1 × 5 convolutional filters for
long text lines. Textboxes++ [2] are based on textboxes but
directly regress the eight vertices of the oriented bounding box.
Liu and Jin [30] designed rules for calculating the order of the
vertices of the oriented bounding box and proposed parallel
IoU computation to save time. Ma et al. [3] presented rotation
RPNs (RRPNs) that proposed oriented bounding boxes in
the RPN stage and used rotation region-of-interest (RRoI)
pooling layer in the R-CNN stage. The aspect ratio of text
lines varies greatly, and limited anchors cannot cover the size
or aspect ratio of all objects; thus, many methods are anchor-
free. Both [1] and [4] generate labels with shrunk segmentation
maps and regress the vertices or angles of the bounding box
on positive pixels. Lyu et al. [31] generated a corner map
and a position-sensitive segmentation map, calculated oriented
bounding boxes based on the corner map, and computed
the score for each bounding box using the position-sensitive
segmentation map. Zhong et al. [32] presented anchor-free
RPN (AF-RPN) based on Faster R-CNN with the same design
as the FPN [12] and the label is calculated from the shrunk
segmentation map instead of the anchors. Zhang et al. [33]
proposed an arbitrary-oriented ship detection method for ship
detection from remote sensing images. Yang et al. [34], [35]
proposed arbitrarily oriented ship detection methods based on
CNN.

Horizontal bounding boxes cannot closely surround the
objects in aerial images, so the academic community begins
to pay attention to oriented bounding box detection in aerial
images. Xia et al. [36] labeled a large-scale data set which
contains 15 categories and 188 282 instances, each labeled
with an arbitrary quadrilateral (eight vertices). A novel detec-
tor which directly regresses eight vertices based on Faster
R-CNN is also presented. ICPR ODAI [37] and CVPR
DOTA [38] competitions are organized based on this data
set. Ding et al. [5] presented a two-stage R-CNN method with
RoI transformer, which, in the first step, proposed horizontal
bounding boxes. The first R-CNN outputs oriented bounding
boxes, and the inputs of the second R-CNN are oriented
bounding boxes. Li et al. [39] proposed a novel method named
rotatable region-based residual network (R3-Net) which can
detect multioriented vehicles in aerial images and videos.
The rotatable RPN (R-RPN) is adopted to generate rotatable
regions of interest (R-RoIs) which crops rotated rectangle
areas from feature maps.

III. METHOD

A. Deep Learning-Based Object Detection

In recent years, deep learning-based object detection meth-
ods are widely used. In this article, our method is based on
Faster R-CNN [10] including RPN and R-CNN. Its process is
as follows.

1) Using a CNN such as VGG [40] or ResNet [41] to
extract features of the picture. Then each pixel of

features predicts whether there is a target near the current
point and coordinates of the target. Finally, the network
gets N candidate boxes. This process is called RPN.
In the RPN stage, traditional method directly predicts
θ , but our adaptive period embedding (APE) replaces
θ with (u1 and u2). In this way, the label is more
reasonable and there is no ambiguity in APE. The APE
can be used in regressing methods such as RPN, YOLO,
and SSD.

2) The N candidate boxes in the RPN stage are not
accurate. Therefore, the network will classify and regress
these boxes again with more powerful features. R-CNN
is used in this stage to extract the features of the
entire object. In the R-CNN stage, we use LIIoU for
long objects, LIIoU is useful in these data sets which
have many long objects. LIIoU can be used in cascade
R-CNN, it can set more bounding boxes to positive ones
in the R-CNN stage for long objects by replacing the IoU
calculation method with LIIoU. In this way, the bound-
ing boxes of long objects will be more accurate.

B. Overview

The overall pipeline of our proposed method is shown
in Fig. 2. Recently, anchor-free methods [17]–[19], [32] are
widely used in object detection. In this article, we also use
AF-RPN. In particular, the label of RPN is not calculated
based on the overlap between the anchor and ground truth;
instead, the label is generated from the shrunk segmentation
map of the oriented bounding box. Unlike traditional object
detection tasks, the output bounding box of RPN is oriented,
so a novel angle embedding method is adopted to better
represent oriented bounding boxes. Segmentation maps with
eight channels (x , y, w, h, angle embedding) are generated in
the RPN stage. Then our model proposes oriented bounding
boxes with rotated RoIAlign in the R-CNN stage, where a
cascade R-CNN is used. In the first R-CNN, a novel IoU
calculation method named LIIoU is adopted. To make IoU
independent of the length of the target box, we intercept part
of the long side of the target box to obtain the maximum IoU
between the proposed box and intercepted target box. In this
way, some long boxes will also have corresponding positive
samples. In the second R-CNN, the traditional IoU calculation
method is used. The backbone of our network is based on the
FPN [12], and we augment the network in the same way as
path aggregation network (PANet) [13] by adopting bottom-up
path augmentation and feature fusion. Next, we will introduce
each component in detail.

C. Network Design

Inspired by recent object detection works [7], [12], [13],
we use FPNs as our backbone. FPN generates multiple feature
maps of different sizes and detects objects of different sizes
on different layers. The FPN is robust to scale variation,
especially for small objects, which is suitable for this task.
Besides scale variation, aspect ratio variation is another chal-
lenging problem. Most traditional object detection methods
use anchors of different sizes and aspect ratios to calculate
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Fig. 2. Illustration of our proposed architecture. (From left to right) AF-RPN, cascade R-CNN. Yellow bounding box is ground truth, red bounding box is
proposed box.

labels in the RPN stage. Thus, we have to manually set the
hyperparameters of the anchors which is quite troublesome;
moreover, when the aspect ratio of objects varies greatly, lim-
ited anchors cannot cover all the objects. The performance of
these detectors highly relies on anchor design. Recently, many
methods [1], [4], [17]–[19], [32] adopt the anchor-free strategy.
In this article, we also adopt the anchor-free method and
generate the label of RPN from the shrunk segmentation map.
Different layers extract different features, and the detector can
achieve better performance by combining these features [13].
In the R-CNN stage, we fuse features of different layers after
the first FC layer with max pooling.

D. Anchor-Free Label Generation

The RPN is adopted to propose candidate bounding boxes.
Most of the previous methods are based on anchors in this
stage. Considering the huge difference in aspect ratio of
objects, we use AF-RPN. The shrunk segmentation label
is shown in Fig. 3. The shrinking method is the same as
EAST [4]. In particular, r1 is set to 0.1 and r2 is set to 0.25.
We shrink the oriented bounding box with r2 ratio and set the
pixels in the shrunk bounding box to positive samples (blue
area). Next, we shrink the oriented bounding box with r1 ratio,
set the pixels in this shrunk bounding box but not in blue area
to “do not care” (purple area), and set the loss weight of these
pixels to 0. The FPN outputs multiscale feature maps, and we
detect objects of different scales on different layers. We assign
a target object the shorter side of which is h to the level pk,
and k is calculated as follows:

k = �k0 + log2 (h/128)� (1)

where k is the layer that objects should be assigned to; k0 is
the target layer when the height h of the object is greater than
128 and less than 256, which we set to 4. The height and width
are among [0,+∞], log scale transformations can turn this
interval into [−∞,+∞]. The outputting of network without

Fig. 3. Shrunk segmentation label of anchor-free method. Purple area is
the ignored area which is shrunk with r1 ratio, blue area is the positive area
which is shrunk with r2 ratio.

activation is among [−∞,+∞]. Objects of different scales
share the regression and classification parameters of RPN,
so the regression targets should be normalized. An oriented
bounding box is labeled as

(xc, yc, w, h, θ) (2)

where (xc, yc) are the coordinates of the center point, w and
h are the lengths of the long side and short side, respectively,
and θ is the angle of the long side. The pixel on the kth layer
is labeled as xk, yk . First, we normalize the target bounding
box with the stride of the kth layer

x ′
c = xc

sk
, y ′

c = yc

sk
, w′ = w

sk
, h′ = h

sk
, θ ′ = θ (3)
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Fig. 4. Period of oriented bounding box. (Top) Rectangle the period of which
is 180◦ . (Bottom) Square the period of which is 90◦. (The four sides of each
bounding box are in different colors for better visualization.)

where sk is the stride of the kth layer calculated as

sk = 2 × 2k . (4)

The regression targets are calculated as follows:

txc = x ′
c − xk

N
, tyc = y ′

c − yk

N

tw = log
w′

N
, th = log

h′

N
(5)

where N is a constant and is set to 6 as default.

E. Adaptive Period Embedding

A horizontal bounding box can be easily represented by
four variables (x, y, w, h). But we need an extra variable θ
to represent an oriented bounding box. The primary challenge
of oriented bounding box detection is to regress the angle of
objects. The property of θ is different from other variables,
such as (x, y, w, h), as θ is a periodic variable. As shown
in Fig. 4, if the length and width of the rectangle are equal,
the rectangle is a square, and the period of θ is 90◦. Otherwise,
the period of θ is 180◦. In neural networks, the periodicity
cannot be represented by one variable. Though [9], [42], [43]
all use 2-D periodic vector (cos θ, sin θ) for representing the
angle, they do not adapt the period of vector. The proposed
APE uses two 2-D vectors to represent the angle. The first
vector has a period of 90◦ and can be formulated as

u1 = (cos 4θ, sin 4θ) (6)

where θ is the angle of long side of the rectangle. The period
of the second vector is 180◦. It is calculated as follows:

v = (cos 2θ, sin 2θ) (7)

u2 = v × min

(
(w − h)

ιh
, 1

)
(8)

where ι is set to 0.5, w is the long side of the rectangle,
and h is the short side. Each component of u1, u2 is in
[−1, 1], so we use sigmoid as activation, and then multiply

them by 2 and subtract 1. Smooth L1 loss [44] is used in all
regression tasks of this article which can be formulated as

smoothL1

(
z, z∗) =

{
0.5 (z − z∗)2 , if |z − z∗| < 1

|z − z∗| − 0.5, otherwise.
(9)

The final outputs of the neural network are (x, y, w, h, u1, u2).
Next, we calculate the angle of long side of the rectangle based
on (u1, u2). First, θ90◦ the period of which is 90◦ and can be
calculated as

θ90◦ = atan2 (u1)

4
(10)

where atan2 function calculates one unique arctangent value
from a 2-D vector. The θ of rectangle’s long side may be θ90◦

or θ90◦ + 90◦. The θ180◦ the period of which is 180◦ can be
calculated as

θ180◦ = atan2 (u2)

2
. (11)

Then we calculate the distance between θ90◦ and θ180◦

dis = | (2θ90◦ − 2θ180◦ + 180◦) mod 360◦ − 180◦|. (12)

Therefore, the final θ is calculated as

θ =
{

θ90◦ , dis < 90◦

θ90◦ + 90◦, otherwise.
(13)

If they are all squares (the gap between long and short sides
is zero), only using u1 can represent its angle. If they are all
rectangles (the gap between long and short sides is large), only
using u2 can represent its angle. But in DOTA, the gap between
long and short sides may be large or zero. So, both of them are
needed. θ90◦ encodes angles into vectors with a 90◦ period and
θ180◦ encodes angles into vectors with a 180◦ period. The angle
calculated by θ90◦ may be the angle of the long or short side.
When the sizes of long and short sides are equal, there is no
additional information required. But if long and short sides are
not equal, other information to represent the angle of the long
side is needed. u2 = v × min((w − h)/ιh, 1) which means
the angle of long side. We do not directly regress v because
there is ambiguity for v. For example, when height and width
are equal, the angle of the long side is ambiguous, the v will
produce mutation. But u2 continuously changes as long or
short sides change. When the sizes of long and short sides
are equal, u2 is zero, the changing is also continuous. We use
sigmoid as activation, accordingly, we set the maximum of u2

to 1. The distance between θ90◦ and θ180◦ is dis = |(2θ90◦ −
2θ180◦ +180◦) mod 360◦ −180◦|. θ90◦ maybe the angle of the
long or short side, the final angle of the long side may be θ90◦

or θ90◦ + 90◦. We find the closer angle among θ90◦ , θ90◦ + 90◦,
and θ180◦ . The distance between θ90◦ and θ180◦ is the distance
of two periodic vectors which is the closer rotated angle from
θ90◦ to θ180◦ clockwise or counterclockwise.

F. Length-Independent IoU

IoU is the evaluation protocol of object detection; the more
accurate the regression, the better the performance. But the
receptive field of a neural network is limited and thus cannot
cover some long objects. The detector proposes candidate
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Fig. 5. Details of LIIoU calculation, green bounding box is proposed bounding box, orange bounding box is target box.

bounding boxes in the RPN stage and then classifies and
regresses these boxes again. The result of R-CNN highly relies
on the output bounding boxes of the RPN. In the R-CNN
stage, only the proposed bounding boxes whose IoU is higher
than 0.5 is set to positive samples. Some target objects that
are not well regressed in the RPN cannot be detected in the
R-CNN. One idea is multiple regression [45] in the R-CNN
stage, but if there are no positive proposed bounding boxes
in the first R-CNN, the improvement is limited. Considering
this, we propose a novel IoU calculation method named LIIoU.
We intercept part of the target box along its long side and make
the length of the intercepted box the same as the proposed
box. The presented method is inspired by Seglink [46], but
in our method, the aspect ratio of the proposed bounding box
is arbitrary. As shown in Fig. 2, the traditional IoU is about
0.3, but our proposed LIIoU is nearly 1. The details of the
LIIoU calculation are illustrated in Fig. 5, where AB is the
centerline of the target box, and point C is the center of the
proposed box. First, we find the perpendicular of AB through
point C and label the intersection of the perpendicular and
AB as point D. Next, we intercept a rectangle from the target
bounding box as follows: if the length of the target box is
smaller than the proposed box, we do not intercept; otherwise,
the center of the intercepted rectangle is point D and the
length is the same with the proposed box (green box). Finally,
we calculate IoU between the intercepted target box and the
proposed box. The procedure is summarized in Algorithm 1.
In this way, more bounding boxes will be utilized to regress
targets in R-CNN which can improve the overall quality of the
bounding boxes.

In the first stage, we set more bounding boxes to the positive
ones for long targets. In this way, the network can better
regress long samples. But in the last R-CNN, the network will
predict the final score of each bounding box, we need to lower
the score of the box with poor quality and the evaluation is
IoU. Accordingly, we use IoU in the last R-CNN.

G. Cascade R-CNN

As shown in Fig. 2, two R-CNNs are used after RPN. In the
first R-CNN, we only refine the center, height, and width
of the oriented bounding box without regressing the vertices of
the target box. This is because the output of the first R-CNN is
the input of the second R-CNN, and rotated RoIAlign can only
handle oriented rectangle but not quadrangle. In the second
R-CNN, we regress the vertices of the target box. Our method
is different from rotated cascade R-CNN [8], we directly
regress oriented bounding boxes in the RPN. The two R-CNNs

Algorithm 1 LIIoU Calculation
Input: pbbox(x p, y p, w p, h p, θ p), gbbox(xg, yg, wg, hg, θg)
pbbox - proposed bounding box
gbbox - ground truth bounding box

Output: LIIoU

1: if w p >= wg then
2: x ′g = xg; y ′g = yg; w′g = wg; h′g = hg; θ ′g = θg

3: else
4: Ax = xg − cos(θg) × wg

2
5: Ay = yg − sin(θg) × wg

2
6: Bx = xg + cos(θg) × wg

2
7: By = yg + sin(θg) × wg

2
8: Cx = x p; Cy = y p

9: z = (C−A)·(B−A)
||(B−A)||

10: w1 = z − w p

2 ; w2 = z + w p

2
11: if w1 <= 0 then
12: w1 = 0; w2 = w p

13: else if w2 >= wg then
14: w2 = wg; w1 = wg − w p

15: end if
16: x ′g = Ax + cos(θ) × w2+w1

2 ; y ′g = Ay + sin(θ) × w2+w1
2

17: w′g = w2 − w1; h′g = hg; θ ′g = θg

18: end if
19: calulate overlaps between (x p, y p, w p, h p, θ p) and

(x ′g, y ′g, w′g, h′g, θ ′g)

are both rotated, cascade R-CNN is adopted for improving the
model’s performance on long objects.

Rotated RoIAlign is adopted, so the ground truth is cal-
culated in a rotated coordinate system. Following [8], if the
center of a rotated RoIAlign is (x p

c , y p
c ) and the angle is θ p,

the affine transformation can be represented by an affine matrix

MMM =
⎡
⎣1 0 x p

c
0 1 y p

c
0 0 1

⎤
⎦ ∗

⎡
⎣ cos θ p sin θ p 0
−sin θ p cos θ p 0

0 0 1

⎤
⎦ ∗

⎡
⎣1 0 −x p

c
0 1 −y p

c
0 0 1

⎤
⎦

=
⎡
⎣ cos θ p sin θ p (1−cos θ p) x p

c − y p
c ∗ sin θ p

− sin θ p cos θ p (1−cos θ p) y p
c + x p

c ∗ sin θ p

0 0 1

⎤
⎦

(14)⎛
⎝x

y
1

⎞
⎠ = MMM

⎛
⎝x ′

y ′
1

⎞
⎠ . (15)
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We set the coordinate system to rotated coordinate system
with (14) and (15). The final ground truth in the rotated
coordinate system is (x, y), and (x ′, y ′) is the coordinates
in the original coordinate system. In the first R-CNN,
the regression targets are (t rcnn1

xc
, t rcnn1

yc
, t rcnn1

w , t rcnn1
h ) which can

be formulated as

t rcnn1
xc

= xc − x p
c

w p
; t rcnn1

yc
= yc − y p

c

h p
(16)

t rcnn1
w = log

( w

w p

)
; t rcnn1

h = log

(
h

h p

)
. (17)

In the second R-CNN, the regression targets are (t rcnn2
xi

,
t rcnn2
yi

), i = 1, 2, 3, 4 which can be formulated as

t rcnn2
xi

= xi − x p
c

w p
; t rcnn2

yi
= yi − y p

c

h p
, i = 1, 2, 3, 4 (18)

where (xc, yc, w, h) are the center, width, and height of the
ground truth, (xi , yi) is the vertex of the ground truth bounding
box, and (x p

c , y p
c , w p, h p) are the center, width, and height of

the proposed bounding box.

IV. EXPERIMENT

A. Data Sets

DOTA [36] is a large data set that contains 2806 aerial
images from different sensors and platforms. The size of the
image varies greatly, ranging from about 800 × 800 to 4000 ×
4000 pixels, so it is necessary to crop the images and detect
the objects in the cropped images. As the instances in aerial
images, such as cars, ships, and bridges, are oriented, each
instance is labeled by an arbitrary (eight d.o.f.) quadrilateral.
For the oriented object detection task, the output bounding
boxes are quadrilateral to evaluate the performance of our
detector on the quadrilateral, we use the evaluation system
provided along with this data set. There are two versions
of the DOTA data set, DOTA-v1.0 and DOTA-v1.5; DOTA-
v1.5 fixes some errors and is provided for DOAI2019 com-
petition [38]. We use DOTA-v1.5 for this competition, but
in the following experiments, we use DOTA-v1.0 for a
fair comparison.

B. Implementation Details

The backbone of our detector is ResNet-50 [41] pretrained
on ImageNet [47]. The number of FPN channels is set to 256.
In the R-CNN stage, two FC layers are used, the channel of
which is set to 1024. Feature fusion is applied after the first
FC layer along with maxpooling. Batchnorm is not used in this
article. Our network is trained with SGD, where the batch size
of images is 1 and the initial learning rate is set to 0.00125,
model is trained with about 161 790 iterations, learning rate is
then divided by 10 at 2/3 and 8/9 of the entire training. Weight
decay is set to 0.0001. Due to the limited memory, we crop
images to 1024 × 1024 with the stride of 256 for training and
testing. We merge all predicted bounding boxes with DOTA’s
code1 in testing. The model is trained and tested on a single

1https://github.com/CAPTAIN-WHU/DOTA_devkit

TABLE I

EXPERIMENT OF APE ON DOTA VALIDATION SET IN RPN STAGE (IN %)

TABLE II

ABLATION EXPERIMENTS OF LIIOU AND IOU ON

DOTA VALIDATION SET (IN %)

scale. Data augmentation is used for better performance; in
particular, we randomly rotate images with angle among 0,
π/2, π , and 3π/2, and class balance resampling is adopted to
solve class imbalance problem. In default, we train our model
with the training set and evaluate it on the validation set and
testing set.

C. Ablation Study

In order to evaluate the effect of each component, we con-
duct ablation experiments on the validation set of DOTA. The
model is not modified except for the component being tested.

1) Effect of APE: We need to propose oriented bounding
boxes in the RPN stage, but it is challenging to effectively
represent an oriented bounding box. Most of the previous
methods [3]–[5] that directly regress the angle do not notice
the periodicity of the angle. When the angle is too diverse,
the performance of the system will drop significantly. To eval-
uate whether the proposed APE can well handle the diversity
of the angles, we conduct ablation experiments: one model
directly regresses the angle of the long side of the target box,
whereas the other regresses APE vectors. We evaluate the
quality of the proposed oriented bounding box in the RPN
stage. The network only classifies objects into two classes
(positive sample and negative sample) in the RPN stage.
We use average precision (AP) as our evaluation protocol. AP
is average precision which calculates the AP at different recall
rates, it is widely used in object detection evaluation. And
mAP is the mean of AP on all classes. As shown in Table I,
RPN achieves much better performance with APE. We show
the comparison in Fig. 6, where we can see that RPN outputs
a more accurate angle with APE compared with directly
regressing the angle.

2) LIIoU Versus IoU: To evaluate the efficiency of LIIoU,
we conduct a control experiment. Faster R-CNN means there
is only one R-CNN. When Cascade R-CNN is adopted, two
R-CNNs are used. In the first model, we calculate the overlap
between oriented bounding boxes with traditional IoU in both
two R-CNNs. In the second model, the overlap between
oriented bounding boxes is calculated with LIIoU in the first
R-CNN and with traditional IoU in the last R-CNN, and the
threshold is set to 0.5. Results are shown in Table II, where we
can see that cascade R-CNN gains much better performance
with LIIoU. We show their comparison in Fig. 7, where we
can find that LIIoU can improve the quality of the proposed
bounding boxes and the recall rate. Regardless of the aspect
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Fig. 6. Comparison of RPN with APE and without APE. (Top) Without APE. (Bottom) With APE.

TABLE III

RESULTS ON DOTA TESTING SET (IN %). * INDICATES VALIDATION SET IS ALSO USED FOR TRAINING,
OTHERWISE ONLY TRAINING SET IS USED FOR TRAINING

ratio and size, nearly every object has positive samples with
LIIoU, so the detector can handle objects with large aspect
ratios and lengths well.

D. Comparing With Other State-of-the-Art Methods

We compare our method with other state-of-the-art meth-
ods. The results are shown in Table III, results of RRPN,
R2CNN, R-DFPN, and Yang et al. [34] are from [5]. Our
model is trained and tested with the single-scale setting.
When our model is only trained with the training set ex
validation set, our method significantly outperforms other
methods, and if the validation set is also used for train-
ing, our model achieves better performance. The detection

results are shown in Fig. 8. The angle, size, aspect ratio of
objects in aerial images vary greatly, but our proposed method
can well handle these challenging conditions. Our model is
also efficient that can handle four images whose resolution
is 1024/sec.

E. Limitations

We show some failure cases of our method in Fig. 9. When
the boundary line of the court is not obvious, our method
cannot predict accurate bounding boxes. When the scale of the
object is too small, the detector misses these objects. When
the shape of the objects is quite special and the shape does not
exist in the training set, our method will produce the wrong
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TABLE IV

TASK1—ORIENTED LEADERBOARD ON DOAI2019 (IN %)

Fig. 7. Comparison of LIIoU and IoU. (From left to right) Calculate overlaps
with IoU in the first R-CNN, calculate overlaps with LIIoU in the first R-CNN
(overlaps are both calculated with IoU in the last R-CNN).

results. In the future, we will explore a solution for these hard
cases.

F. DOAI2019 Competition

DOAI2019 competition [38] is held in the workshop on
detecting objects in aerial images in conjunction with IEEE
CVPR 2019. The competition is more difficult and requires
detecting all objects including samples labeled as difficult.
Based on our proposed methods including APE and LIIoU,
we adopt class balance resampling, image rotation, multi-
scale training and testing and model assembling for better
performance. Three models are used whose backbone is
ResNeXt-101(32 × 4) [49]. Finally, we combine the training
set with the validation set for training. The results of the
competition are shown in Table IV. Our method wins the first
place on the oriented task, with a gain of about 1.7% over the
most competing competitor.

V. CONCLUSION AND FUTURE WORK

Detecting oriented objects in aerial images is a challenging
task. In this article, we make full use of the periodicity of
the angle. A novel method named APE is proposed which
can well-regress oriented bounding boxes in aerial images.
The vector with the adaptive period can learn the periodicity

Fig. 8. Some results of our method on DOTA. The image’s size is
1024 × 1024.

of the angle, which cannot be implemented with the 1-D
vector. The proposed method can be applied to both one-stage
methods such as RPN and two-stage methods, and we believe
other detectors can also directly adopt the APE module.
Besides, we propose a novel LIIoU. LIIoU sets more proposed
bounding boxes to positive samples especially for long objects
which can improve the quality of R-CNN regression. Our
ablation study proves that each proposed module is effective.
Based on our method, we won the first place on the oriented
task of DOAI2019. In the future, we will explore a more
efficient and accurate detector for detecting oriented objects
in aerial images.
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Fig. 9. Some failure cases of our method on DOTA. The size of the image is 1024 × 1024.
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