
IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 23, 2021 2471

SRD: A Tree Structure Based Decoder for Online
Handwritten Mathematical Expression Recognition

Jianshu Zhang , Jun Du , Yongxin Yang, Yi-Zhe Song , and Lirong Dai

Abstract—Recently, recognition of online handwritten mathe-
matical expression has been greatly improved by employing
encoder-decoder based methods. Existing encoder-decoder models
use string decoders to generate LaTeX strings for mathematical
expression recognition. However, in this paper, we importantly
argue that string representations might not be the most natural
for mathematical expressions – mathematical expressions are
inherently tree structures other than flat strings. For this
purpose, we propose a novel sequential relation decoder (SRD)
that aims to decode expressions into tree structures for online
handwritten mathematical expression recognition. At each step
of tree construction, a sub-tree structure composed of a relation
node and two symbol nodes is computed based on previous sub-
tree structures. This is the first work that builds a tree structure
based decoder for encoder-decoder based mathematical expression
recognition. Compared with string decoders, a decoder that better
understands tree structures is crucial for mathematical expression
recognition as it brings a more reasonable learning objective
and improves overall generalization ability. We demonstrate how
the proposed SRD outperforms state-of-the-art string decoders
through a set of experiments on CROHME database, which
is currently the largest benchmark for online handwritten
mathematical expression recognition.

Index Terms—Handwritten mathematical expression recogni-
tion, tree structure, decoder, attention.

I. INTRODUCTION

HANDWRITTEN mathematical expressions are common
in our daily life as they are indispensable for describing

problems or theories in math, physics and many other fields. Un-
like English or other languages which usually writes in one di-
rection without further internal structures, mathematical expres-
sion is a more complicated two-dimensional language with in-
ternal tree structures (see in Fig. 1(a)). Therefore, mathematical

Manuscript received July 10, 2019; revised January 11, 2020 and June 2,
2020; accepted July 14, 2020. Date of publication July 24, 2020; date of current
version July 30, 2021. This work was supported in part by the National Key
R&D Program of China under Grant 2017YFB1002202, in part by the National
Natural Science Foundation of China under Grants 61671422 and U1613211,
in part by the Fundamental Research Funds for the Central Universities, in part
by the MOE-Microsoft Key Laboratory of USTC, and in part by the iFLYTEK-
Surrey Joint Research Centre on Artificial Intelligence. The associate editor
coordinating the review of this manuscript and approving it for publication was
Dr. Marco Carli. (Corresponding author: Jun Du.)

Jianshu Zhang, Jun Du, and Lirong Dai are with the National Engineer-
ing Laboratory for Speech and Language Information Processing, Univer-
sity of Science and Technology of China, Hefei 230052, China (e-mail:
xysszjs@mail.ustc.edu.cn; jundu@ustc.edu.cn; lrdai@ustc.edu.cn).

Yongxin Yang and Yi-Zhe Song are with the University of Surrey, Guildford
GU2 7XH, U.K. (e-mail: yongxin.yang@surrey.ac.uk; y.song@surrey.ac.uk).

Color versions of one or more of the figures in this article are available online
at https://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TMM.2020.3011316

Fig. 1. (a) An example of handwritten mathematical expression; (b) Math tree
structure of the expression; (c) Sub-tree structures of the expression; and (d)
LaTeX string of the expression.

expression recognition becomes a challenging problem as com-
plexity of the internal tree structures can often be enormous [1],
[2]. Achieving success in this problem could, in turn, accel-
erate progress in machine recognition of other tree-structured
languages, like chemical formula and flow chart.

Mathematical expression recognition comprises two major
problems [3]: symbol recognition and structural analysis. Tradi-
tional methods usually first segment an expression into several
math symbols and recognize them. These recognized math sym-
bols together with the possible relations among them construct
a math forest. Then structural analysis searches for the most
likely math tree (see in Fig. 1(b)) directly from the math forest.
During structural analysis, using a pre-defined math grammar
helps improve the searching accuracy as it can make sure the
output tree structure is always consistent with the grammar of
math language.

Recently, some researches propose to convert the mathemat-
ical expression recognition problem from tree generation into
string generation because (i) a mathematical expression can be
considered as correctly recognized when its corresponding La-
TeX string (see in Fig. 1(d)) has been generated and (ii) basically,
string generation is easier to be implemented than tree genera-
tion. Following the success in sequence to sequence learning [4],
[5] and image to sequence learning [6], [7], researchers started
to use the attention based encoder-decoder model to generate
LaTeX string for mathematical expression recognition [8]–[10].
Compared with traditional methods, the encoder-decoder based

1520-9210 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on August 16,2021 at 08:53:38 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-2713-2535
https://orcid.org/0000-0002-2387-0389
https://orcid.org/0000-0001-5908-3275
mailto:xysszjs@mail.ustc.edu.cn
mailto:jundu@ustc.edu.cn
mailto:lrdai@ustc.edu.cn
mailto:yongxin.yang@surrey.ac.uk
mailto:y.song@surrey.ac.uk
https://ieeexplore.ieee.org

2472 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 23, 2021

LaTeX string generators have substantially improved the ex-
pression recognition performance because they are end-to-end
trainable and can be free of symbol segmentation.

In this study, unlike previous works that employ LaTeX
string decoders, we introduce a novel sequential relation decoder
(SRD) which is a tree-structured decoder for mathematical ex-
pression recognition. The SRD is a more natural decoder for
mathematical expression recognition as mathematical expres-
sions are inherently represented as tree structures other than flat
strings. As shown in Fig. 1(c), the tree structure of mathematical
expression can be decomposed into several sub-tree structures.
The proposed SRD generates these sub-tree structures step by
step. At each step, each sub-tree structure composed of a rela-
tion node and two symbol nodes is computed based on previous
sub-tree structures. More specifically, the two symbol nodes are
named as primary symbol node and related symbol node respec-
tively. The primary symbol node represents the symbol leading
the decoding procedure and the related symbol node represents
the symbol that has a relation with the primary symbol node.
Note that, the one-dimensional language recognition can be
seen as a special case of tree-structured language recognition
for SRD, because in one-dimensional language recognition the
current related symbol node will always be the previous primary
symbol node. We employ two spatial attention models that learn
to locate the two math symbols and then recognize them. After
determining the two symbol nodes, the relation node describing
the relation between two symbols can be classified by feeding the
spatial information of two symbols into a fully-connected layer.
The final complete mathematical tree structure is constructed by
organizing the output sub-tree structures.

Compared with LaTeX string decoders, the SRD has three
distinctive advantages: (i) it brings a more reasonable learning
objective to train the whole encoder-decoder model for math-
ematical expression recognition; (ii) it improves overall gener-
alization ability of the recognition model as it understands the
sub-structures of a mathematical expression rather than remem-
bers an entire LaTeX string; (iii) string decoders are data-driven,
they do not employ a math grammar, therefore in bad situations,
string decoders will output some strings that totally disobey the
math grammar, while SRD ensures that the output will always
follow the tree-based structures, which helps alleviate the bad
situations. Besides, following the superiority of string decoders,
the proposed SRD can also be jointly trained with the whole
encoder-decoder framework.

We summarize the main contributions of this study as:
� We introduce a novel tree structure based decoder for math-

ematical expression recognition, which can be applied for
other tree-structured languages.

� The novel SRD significantly outperforms the string de-
coder, indicating the effectiveness of a tree structure based
decoder for mathematical expression recognition.

� We show how the proposed SRD decodes the tree structure
step by step and demonstrate its advantages by experimen-
tal analysis.

The source codes of SRD are publicly available.1

1[Online]. Available: https://github.com/JianshuZhang/SRD

The rest of this paper is organized as follows: Section II in-
troduces the related works. Section III describes the proposed
framework of the whole recognition system. Section IV intro-
duces the implementation of the training and testing proce-
dures. Section V reports the experimental results, and Section VI
presents concluding remarks.

II. RELATED WORKS

In this section, we describe the previous work on handwritten
mathematical expression recognition, including both traditional
grammar based approaches and recent encoder-decoder based
approaches. We also describe the recent work on neural network
based tree structure modeling.

A. Traditional Methods for Mathematical Expression
Recognition

Mathematical expression recognition consists of two major
problems: symbol recognition and structural analysis. The two
problems can be solved sequentially or globally.

1) Sequential Approaches: Sequential approaches [11] im-
plemented symbol recognition and structural analysis separately.
They first segmented the whole mathematical expression into
several instances and then recognized the segmented instances
into math symbols. Based on the best symbol segmentation
and symbol recognition results, the analysis of two-dimensional
structures was performed to find the most likely math tree. In se-
quential approaches, symbol recognition can not use contextual
information of the whole expression, while the contextual in-
formation could be helpful for recognizing ambiguous isolated
symbols, especially for handwritten symbols. Besides, the sym-
bol segmentation and recognition errors will be subsequently
inherited by structural analysis.

2) Global Approaches: Global approaches [12], [13] opti-
mized symbol recognition and structural analysis simultane-
ously, which seem to be more appropriate than sequential ap-
proaches as symbol recognition and structural analysis can both
utilized global contextual information. The recent LaTeX string
decoder based methods and the proposed SRD all belong to
global approaches because the encoder and the decoder are op-
timized in a joint way. However, traditional global approaches
are computationally more expensive because the probabilities
for symbol segmentation are exponentially expanded. There-
fore, effective search strategies must be executed [14].

3) Structural Analysis Methods: As for symbol recognition,
traditional methods usually employed convolutional neural net-
work (CNN) [15] and recurrent neural network (RNN) [16] as
symbol classifier. While for analysis of math tree structures,
many approaches have been investigated, like maximum span-
ning tree [17], two-dimensional HMM [18], matching based ap-
proaches [19] and grammar based approaches [11], [13], [20],
[21]. Among these, the grammar based methods seem to be
more dependable. For example, the stochastic two-dimensional
context-free grammars have performed well in the two sys-
tems [11], [13], while [11] and [13] both achieved the first place
on CROHME competition, which is the largest competition of
online handwritten mathematical expression recognition.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on August 16,2021 at 08:53:38 UTC from IEEE Xplore. Restrictions apply.

https://github.com/JianshuZhang/SRD

ZHANG et al.: SRD: A TREE STRUCTURE BASED DECODER FOR ONLINE HANDWRITTEN MATHEMATICAL EXPRESSION RECOGNITION 2473

B. LaTeX String Decoder for Mathematical Expression
Recognition

Recently, attention based encoder-decoder models have been
extensively applied to many applications including machine
translation [22], speech recognition [5], [23], image cap-
tioning [24], [25] and video processing [26], which implies
researchers that LaTeX string decoder based mathematical
expression recognition can also be a good application. Current
LaTeX string decoder based approaches can be divided into of-
fline recognition approaches and online recognition approaches.

1) Offline Recognition: For offline recognition, the input
mathematical expressions are stored in images. In [8], a model
named WAP was introduced, which first proposed to use La-
TeX string decoder for offline handwritten mathematical ex-
pression recognition. Compared with traditional methods, WAP
achieved significant improvements both on recognition rate
and efficiency, indicating the advantage of end-to-end trainable
model. Then, in [27], a DenseNet encoder and multi-scale atten-
tion mechanism were proposed for further improving the WAP
model. Besides, [10] proposed a model named WYGIWYS with
a coarse-to-fine attention for mathematical expression recogni-
tion and proved that the string decoder can be applied to other
two-dimensional markup languages. Also, [28] proposed an ad-
versarial learning strategy and introduced a PAL model, which
achieved currently the best published results for offline mathe-
matical expression recognition.

2) Online Recognition: In the data acquisition of online
handwriting, the pen-tip movements (xy-coordinates) are au-
tomatically stored as sequential data. Clearly, the pen-tip move-
ments can be transformed into image-like representations, then
researchers can employ the previous offline approaches for on-
line handwritten mathematical expression recognition. While [9]
proposed a TAP model that utilized RNN to replace CNN to be
the encoder so that the model can better use the dynamic infor-
mation of handwriting traces, the extension of TAP [29] made
use of the complementarity between dynamic traces and static
images and achieved currently the best published results for on-
line handwritten mathematical expression recognition. In this
paper, we implement the proposed SRD for online handwritten
mathematical expression recognition, which means the input is
sequential traces.

C. Researches on Tree Structure Modeling

In [30], the first tree-structured RNN was proposed, named
Tree-LSTM. The Tree-LSTM aimed to append the tree-structure
into LSTM nodes to improve the semantic representations of
LSTM features, especially for those tree-structured modeling
tasks, like syntactic parsing and many other natural language
processing tasks. Then, in [31], the researchers employed the
Tree-LSTM to improve the encoding of online handwriting
mathematical expression since mathematical expression is a typ-
ical tree-structured language.

Although prior works have recognized the importance of mod-
eling the tree structure of an object, they mainly focused on the
problem of encoding the tree structure, but rarely focused on the

more important problem of decoding the tree structure. Tree de-
coder is harder to be implemented than tree encoder because it is
difficult to perform recursive modeling during step-by-step de-
coding. Although some tree decoders have been proposed, they
usually utilized task-specific structure and constrained defini-
tion to decrease the difficulty of tree-structured modeling, there-
fore can not be extented for other tasks. For example, in [32], a
well-performed tree decoder for tree-structured program trans-
lation was proposed. But it was constructed based on program
knowledge and can only deal with binary tree structure, there-
fore can not be applied on mathematical expression recognition.
In this paper, we utilize the properties of handwriting recogni-
tion problem (stroke information) to overcome the difficulties
of tree generation and for the first time, we build a tree structure
based decoder for mathematical expression recognition.

III. PROPOSED METHOD

In this section, we first illustrate the main architecture of the
proposed SRD and compare it to the LaTeX string decoder. Then,
we elaborate the overall system for online handwritten mathe-
matical expression recognition, including both the encoder and
the proposed SRD. In Section III-A, we introduce the RNN en-
coder which extracts high-level features from raw handwriting
input. In Section III-B, we introduce the SRD which is devised
to address symbol recognition and structural analysis simulta-
neously, the training loss of symbol recognition and structural
analysis are both given in detail.

Unlike LaTeX string decoders, SRD aims to generate a com-
plete mathematical expression tree. As shown in the top-left box
in Fig. 2, the math tree can be decomposed into a sequence of
math symbols and a sequence of sub-tree structures, called label
graph style [33]. Generating the two sequences turns into the
problem of symbol recognition and structural analysis respec-
tively, as illustrated in the top-right two boxes in Fig. 2. Here,
each sub-tree structure is composed of a primary symbol node, a
related symbol node and a relation node, denoted as (ps, rs, r).
The primary symbol node and the related symbol node describe
the absolute spatial positions of primary math symbol and re-
lated math symbol respectively, and the relation node describes
the spatial relationship between the two math symbols. Note that,
we propose to use absolute spatial positions of math symbols to
be symbol nodes because one math symbol (e.g., the symbol
“2” in Fig. 1) might appear multiple times in one mathemati-
cal expression tree which brings confusion, but their absolute
spatial positions can distinguish them. For online recognition,
the absolute spatial positions are stroke indices of input traces
(e.g. “0:” denotes the first stroke of handwriting input, “1:” de-
notes the second stroke), which is also the distinctive property
of handwriting recognition problems.

A. Encoder

In this work, we aim to deal with the online recognition prob-
lem, which means the input is sequential handwriting traces.
Therefore, we employ a RNN encoder to encode the sequential
input. To alleviate the vanishing and exploding gradient prob-
lems of simple RNN [34], we employ Gated Recurrent Units

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on August 16,2021 at 08:53:38 UTC from IEEE Xplore. Restrictions apply.

2474 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 23, 2021

Fig. 2. Comparison between the decoding procedure of SRD and the decoding procedure of LaTeX string decoder. In the top-left box, below “Symbols” we
show each math symbol and its alignment to strokes, below “Sub-trees” we show each sub-tree structure composed of primary symbol, related symbol and relation
(ps, rs, r). In the top-right box, SRD generates the sequential sub-tree structures step by step with parent node denoting spatial relationship, left child node
denoting primary symbol and right child node denoting related symbol. In the box below the top-right box, SRD generates the sequential math symbols step by
step.

(GRU) [35] to be the encoder, which is an improved version of
simple RNN.

According to [36], we first normalize the raw input traces to
address the issue of non-uniform sampling by different writing
speed and size variations of the coordinates on different portable
devices. We then extract an 8-dimensional feature vector for each
point:

[xi, yi,Δxi,Δyi,Δ
′xi,Δ

′yi, strokeF lag1, strokeF lag2]
(1)

where xi and yi are xy-coordinates of the pen move-
ments,Δxi = xi+1 − xi,Δyi = yi+1 − yi,Δ′xi = xi+2 − xi,
Δ′yi = yi+2 − yi and the last two terms are flags indicating the
status of the pen, i.e., [1, 0]means pen-down while [0, 1]means
pen-up. After the processing, a sequence of 8-dimensional fea-
ture vectors is then considered as the input to be fed into the
encoder. To both utilize the history and future context infor-
mation, we employ bidirectional GRU other than unidirectional
GRU. We implement the bidirectional GRU by passing the input
vectors through two GRU layers that run in opposite directions
and concatenating their hidden states.

In this paper, to let the proposed SRD fairly comparable with
the LaTeX string decoder based encoder-decoder models, we
employ the same bidirectional GRU encoder architecture as in-
troduced in TAP model [9]. The implementation details of the
encoder can be seen in Section IV-A.

B. Sequential Relation Decoder

Assuming the encoder output is an annotation sequence A
with length L: A = {a1, . . . ,aL},ai ∈ RD, the SRD begins to
generate a math tree structure using A to be the context input.
Fig. 3 illustrates the schematic representation of SRD.

1) Symbol Recognition Loss: We employ a primary GRU
(PrimGRU), a primary attention model (PrimAtt) and a predic-
tion GRU (PredGRU) to deal with the symbol recognition. The
symbol sequence is denoted asY = {y1, . . . ,yT },yt ∈ RK ,K
is the number of math symbols in the symbol vocabulary. Note
that, the order of the sub-tree sequence is determined based on

Fig. 3. We denote the output of SRD in color red, where yt computes the
symbol recognition loss, pst, rst and rt computes the structural analysis loss.
As for the input of SRD, ht−1 denotes the previous prediction GRU state, yt−1

denotes the output symbol of previous step, A denotes the features extracted
by encoder. ĥt denotes primary GRU state, h̃t denotes the relation GRU state,
cPrim
t denotes the context vector computed by primary attention, cRe

t denotes the
context vector computed by relation attention.

the order of primary symbols, while the order of primary sym-
bols is determined by traversing MathML (math markup lan-
guage) structure of the expression following a depth-first order.
Therefore, we utilize GRUs to be the basic components of SRD
as we expect the recurrent units can learn this implicit order.
Given input xt and previous state ht−1, the GRU state ht is
computed by:

ht = GRU (xt,ht−1) (2)

To recognize the current output primary symbol yt, not the
entire input handwriting traces is necessary to provide the use-
ful information. Only a subset of input traces should mainly
contribute to the computation of current output primary sym-
bol. Therefore, we employ a primary attention model to attempt
to find the alignment between output symbols and input hand-
writing traces. However, to learn the alignment between current
output yt and input handwriting traces, we only have the previ-
ous output symbol yt−1 and previous decoder hidden stateht−1.
To alleviate the mismatch issue, we employ a primary GRU to

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on August 16,2021 at 08:53:38 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: SRD: A TREE STRUCTURE BASED DECODER FOR ONLINE HANDWRITTEN MATHEMATICAL EXPRESSION RECOGNITION 2475

compute the prediction of current primary hidden state ĥt given
by the previous output symbol yt−1 and previous decoder state
ht−1:

ĥt = PrimGRU (yt−1,ht−1) . (3)

Here, ĥt represents the information of current output primary
symbol and A represents the high-level features of input hand-
writing traces, we then compute the alignment for primary sym-
bols by employing a primary attention model to generate atten-
tion probabilities based on ĥt and A. The attention probabilities
can be seen as the alignment because the annotation sequence
A with higher attention probabilities will contribute more for
current output primary symbol. We first compute the energy be-
tween ĥt and A as follows:

F̂ = QPrimAtt ∗
t−1∑
l=1

αPrim
l (4)

ePrim
ti = νT

PrimAtt tanh(WPrimAttĥt +UPrimAttai + Ûf f̂i) (5)

where ∗ denotes a convolution operation,
∑t−1

l=1 α
Prim
l denotes

the sum of past primary attention probabilities, ePrim
ti denotes

the output energy, f̂i denotes the elements of F̂. The F̂ is called
coverage vector, we compute it by feeding the past primary atten-
tion into a convolution layer QPrimAtt so that F̂ can help alleviate
the problem of standard attention mechanism, namely, lack of
history information [37]. Let q denotes the number of output
channels of convolution layer QPrimAtt, n denotes the dimension
of primary GRU and n′ denotes the dimension of primary atten-
tion, νT

PrimAtt ∈ Rn′
, WPrimAtt ∈ Rn′×n, UPrimAtt ∈ Rn′×D and

Ûf ∈ Rn′×q.
We then obtain the primary attention probabilities αPrim

ti by
feeding ePrim

ti into a softmax function. A primary context vec-
tor cPrim

t which includes the information of only useful parts
of handwriting input to describe the primary math symbol is
computed by weighted summation of all annotation vectors:

αPrim
ti =

exp(ePrim
ti)∑L

k=1 exp(e
Prim
tk)

cPrim
t =

L∑
i=1

αPrim
ti ai (6)

The probability of each predicted symbol is computed by the
primary context vector cPrim

t , current decoder state ht and one-
hot vector of previous output symbol yt−1 using the following
equation:

P Prim(yt) = g
(
Woh

(
Eyt−1 +Whht +Wcc

Prim
t

))
(7)

where g denotes a softmax activation function over all the math
symbols in the symbol vocabulary, h denotes a maxout activa-
tion function and E denotes the embedding matrix. The current
decoder state ht is computed by PredGRU and the computa-
tion details will be explained in the next section. Let m denotes
the dimension of embedding, Wo ∈ RK×m

2 , Wh ∈ Rm×n and
Wc ∈ Rm×D.

The training loss of symbol recognition (the highlighted yt in
Fig. 3) is computed as:

LRec = −
T∑

t=1

logP Prim(wt) (8)

where wt represents the ground-truth symbol at time step t.
2) Structural Analysis Loss: We employ a relation GRU (Re-

GRU), a relation attention model (ReAtt) and the primary atten-
tion model (PrimAtt) to deal with the structural analysis. We
parse the mathematical expression tree by generating the se-
quential sub-tree structures (shown in Fig. 2). Each sub-tree
structure comprises a primary symbol node, a related symbol
node and a relation node, where symbol nodes are denoted by
the absolute spatial positions of the corresponding symbols and
the relation node is denoted by the spatial relationship between
the two symbol nodes.

We propose to use the output of primary attention model to
compute the spatial position of primary symbol and use the out-
put of relation attention model to compute the spatial position of
related symbol. Similar to the computation of primary attention
model, we compute the relation attention model as:

h̃t = ReGRU
(
cPrim
t , ĥt

)
(9)

F̃ = QReAtt ∗
t∑

l=1

αPrim
l (10)

eRe
ti = νT

ReAtt tanh(WReAtth̃t +UReAttai + Ũf f̃i) (11)

αRe
ti =

exp(eRe
ti)∑L

k=1 exp(e
Re
tk)

cRe
t =

L∑
i=1

αRe
ti ai (12)

Here, h̃t is the output hidden state of relation GRU, it is com-
puted by using the primary context vector cPrim

t and the output
state of PrimGRU ĥt as we believe the semantic information
of related symbol should be extracted from the knowledge of
primary symbol. We compute F̃ by feeding the summation of
primary attention probabilities

∑t
l=1 α

Prim
l into a convolution

layer QReAtt. We use F̃ to tell the relation attention model that
the related symbol must have been seen in the primary atten-
tion model. αRe

ti is the attention probabilities of the related math
symbol and cRe

t is a related context vector which includes the
information of only useful parts of handwriting traces to de-
scribe the related math symbol. The number of output channels
ofQReAtt is set to q, the dimension of relation GRU is set ton and
the dimension of relation attention is also set to n′, νT

ReAtt ∈ Rn′
,

WReAtt ∈ Rn′×n, UReAtt ∈ Rn′×D and Ûf ∈ Rn′×q.
After having the primary context vector cPrim

t and the related
context vector cRe

t , we can recognize the relation node by feed-
ing cPrim

t and cRe
t into a fully-connected layer as context vectors

contain the spatial information of the two symbol nodes. We de-
note relation sequence as R = {r1, . . . , rT }, rt ∈ RV , V is the
number of relations in the relation vocabulary. The probability
of each rt is then computed as follows:

PRe(rt) = g
(
Wrc1c

Prim
t +Wrc2c

Re
t

)
(13)

where g denotes a softmax activation function over all the math
relations in the relation vocabulary.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on August 16,2021 at 08:53:38 UTC from IEEE Xplore. Restrictions apply.

2476 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 23, 2021

The training loss of relation node (the highlighted rt in Fig. 3)
is computed as:

LRe = −
T∑

t=1

logPRe(vt) (14)

where vt represents the ground-truth relation at time step t.
As for the training loss of primary symbol node, we can get an

alignment distance vector dPrim
ti which denotes distance between

primary symbol t and input point i (xy-coordinate of handwriting
traces) by using the input of computing primary attention energy:

dPrim
ti = tanh(WPrimAttĥt +UPrimAttai + Ûf f̂i) (15)

GPrim
ti = σ(uT

PrimAlid
Prim
ti) (16)

Note that, WPrimAtt, UPrimAtt and Ûf are the same parameters
used in Eq. (5), uT

PrimAtt ∈ Rn′
. The alignment distance vector

dPrim
ti is then subject to a binary classification loss (cross-entropy)

to obtain the alignment prediction GPrim
ti .

The training loss of primary symbol node (the highlightedpst
in Fig. 3) is computed as:

LPrimAli = −
T∑

t=1

L∑
i=1

[ḠPrim
ti log(GPrim

ti)

+ (1− ḠPrim
ti) log(1−GPrim

ti)] (17)

where ḠPrim
ti denotes the ground-truth of primary symbol node.

ḠPrim
ti is 1 if point i belongs to the primary symbol node t, oth-

erwise 0.
As for the training loss of related symbol node, we can also get

the alignment prediction GRe
ti by using the input of computing

relation attention energy:

dRe
ti = tanh(WReAtth̃t +UReAttai + Ũf f̃i) (18)

GRe
ti = σ(uT

ReAlid
Re
ti) (19)

where WReAtt, UReAtt and Ũf are the same parameters used
in Eq. (11), uT

ReAtt ∈ Rn′
. and we compute the training loss of

related symbol node (the highlighted rst in Fig. 3) as:

LReAli = −
T∑

t=1

L∑
i=1

[ḠRe
ti log(G

Re
ti) + (1− ḠRe

ti) log(1−GRe
ti)]

(20)
where ḠRe

ti denotes the ground-truth of related symbol node. ḠRe
ti

is 1 if point i belongs to the related symbol node t, otherwise 0.
The final training loss of structural analysis is the summation

of training loss of relation node, primary symbol node and re-
lated symbol node because the whole tree structure is composed
of these three parts:

LStruc = LRe + LPrimAli + LReAli (21)

We finally utilize the prediction GRU (shown in Fig. 3) to
compute the current decoder output state ht for symbol recog-
nition (Eq. (7)) and for next decoding step:

ct = Concat(cPrim
t , cRe

t) (22)

ht = PredGRU
(
ct, h̃t

)
(23)

where ct is the concatenation of the two context vectors cPrim
t

and cRe
t .

IV. IMPLEMENTATION DETAILS

A. Training

The training objective of SRD is to minimize the symbol
recognition loss (Eq. (8)) and structural analysis loss (Eq. (21))
simultaneously. The objective function is shown as follows:

O = λ1LRec + λ2LStruc (24)

In our experiments, we set λ1 = λ2 = 1 as we believe symbol
recognition and structural analysis are equally important.

To be fairly comparable with state-of-the-art LaTeX string
decoder based methods, we use the same encoder architecture
employed in TAP model [9], [29]. The encoder consists of 4
bidirectional GRU layers. Each layer has 256 forward and 256
backward GRU units. The pooling over time is applied to the
top 2 bidirectional GRU layers.

As for the proposed SRD, PrimGRU, ReGRU and PredGRU
all employ unidirectional GRU layers with each layer containing
256 forward GRU units. The primary attention dimension and
the relation attention dimension are both set to 512. The kernel
size of convolution filter QPrimAtt is set to (121× 1) and the
number of output channels is 256. The kernel size of convolution
filterQReAtt is set to (121× 1) and the number of output channels
is 256. The embedding dimension is set to 256.

We utilize the adadelta algorithm [38] with ε = 10−8 for op-
timization. The experiments are all implemented with Theano
1.0 [39] and an NVIDIA Tesla M40 24G GPU.

B. Testing

In the testing stage, we aim to generate a sequence of math
symbols y for symbol recognition and a sequence of sub-tree
structures (ps, rs, r) for structural analysis.

Firstly, at each decoding step, the SRD outputs the most likely
math symbol y given the input handwriting traces:

ŷ = argmax
y

logP Prim (y|x) (25)

The decoding procedure ends when the symbol generator out-
puts the end-of-decoding token “</s>”.

Secondly, we get the absolute spatial positions of primary
symbol node ps by processing GPrim

ti , 1 ≤ i ≤ L at decoding
step t. For online handwritten mathematical expression recog-
nition, the absolute spatial positions of symbol node are the
stroke indices of input traces. To get the primary symbol node,
considering that one stroke can only be aligned to one primary
math symbol, we average GPrim

ti of all points for every stroke and
obtain ĜPrim

tn , 1 ≤ n ≤ Nstroke, where Nstroke is the total number
of strokes. The n-th stroke is aligned to t̂-th primary symbol
node, where t̂ = argmaxt Ĝ

Prim
tn .

Thirdly, to get the related symbol node rs, at each decoding
step, we compare GRe

ti with alignments of previous determined
primary symbol nodes GPrim

ti and choose the primary symbol
node which has the most likely alignments as GRe

ti to be the
current related symbol node.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on August 16,2021 at 08:53:38 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: SRD: A TREE STRUCTURE BASED DECODER FOR ONLINE HANDWRITTEN MATHEMATICAL EXPRESSION RECOGNITION 2477

Finally, after determining the primary symbol node and re-
lated symbol node, we feed the primary context vector and re-
lated context vector into the relation prediction fully-connected
layer to output the most likely math relation r:

r̂ = argmax
r

logPRe (r|x) (26)

C. Dataset

The experiments are conducted on CROHME competition
dataset [40], which is currently the most widely used public
dataset for online handwritten mathematical expression recog-
nition. The CROHME training set contains 8836 handwritten
mathematical expressions. There are totally 101 math symbol
classes and 6 math relations (above, below, right, inside, su-
perscript, subscript). Most researches evaluate their proposed
methods on CROHME 2014 [41] test set, which contains 986
handwritten mathematical expressions. We also test the gen-
eralization capability of SRD on CROHME 2016 [42] and
CROHME 2019 [43] test set, which are newly collected and
labeled by the competition organizers. There are totally 1147
expressions on CROHME 2016 set and 1199 expressions on
CROHME 2019 set with the symbol classes and relation classes
unchanged.

V. EXPERIMENTS

In this section, we will show the effectiveness of the proposed
SRD for online handwritten mathematical expression recogni-
tion by answering the three questions.

Q1 Compared with LaTeX string decoders, does SRD have
properties that are especially valuable for mathematical
expression recognition?

Q2 Can SRD outperform LaTeX string decoders and other
state-of-the-art methods?

Q3 How does the SRD generate the math tree structures step
by step?

A. Valuable Properties of SRD (Q1)

1) Robustness of Relation Prediction: Firstly, we show a
property of SRD that it can better distinguish the spatial re-
lationships between math symbols than LaTeX string decoders.
We believe so because in SRD, the spatial relationships are clas-
sified based on the spatial information of current output math
symbols, but in LaTeX string decoders the spatial relationships
are converted into LaTeX words that are computed based on the
embedding vectors of previous output words. For example, in
mathematical expressions, there are some special symbols like
“
∑

” and “
∫

” that will have upper limit and lower limit. As illus-
trated in Fig. 4, the upper limit of “

∑
” can be on the above direc-

tion or superscript direction. In LaTeX language, a word called
“nolimits” is used to help distinguish that the upper limit is on
the above direction or superscript direction of “

∑
”. But “no-

limits” is a rare word in CROHME training LaTeX texts, there-
fore, during testing the word “nolimits” can never be generated,
leading to many incorrectly recognized examples. Yet SRD can
successfully distinguish the above and the superscript relation

Fig. 4. (a) upper limit and lower limit are on the above and below of “
∑

”;
(b) upper limit and lower limit are on the superscript and subscript of “

∑
”; (c)

condition is on the below of “lim”.

Fig. 5. Comparison of TAP and SRD on real handwritten mathematical ex-
pressions with more complex math structures that have never been seen on
CROHME training set.

related with “
∑

” or “
∫

” as SRD depends on spatial information
to classify relation. For another example, in CROHME training
set, the relations between math symbol “lim” and its condition
are always below but are all inaccurately labelled as subscript.
However, during testing, the SRD can still recognize the below
relation as the below relation has been learned enough when
training mathematical expressions having fraction operations,
regardless of the errors coming from wrong labelled data.

2) Grammatical Output: Secondly, as for LaTeX string de-
coder, the decoder generates the output string without any re-
striction. In bad situations, the decoder will output strings that
disobey LaTeX grammar. For example, in LaTeX grammar,
strings must have a pair of “{” and “}” following math structures
like “x ∧ { 2 },” but string decoder will generate ungrammat-
ical strings like “x ∧ { 2” that omits one “}” and “x ∧ { 2
} }” that has one extra “}”. These ungrammatical strings can
not even be displayed by using a LaTeX tool, like the recogni-
tion string of the first mathematical expression in Fig. 5. How-
ever, as for SRD, the decoder generates the tree structures of

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on August 16,2021 at 08:53:38 UTC from IEEE Xplore. Restrictions apply.

2478 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 23, 2021

TABLE I
EVALUATION OF MATHEMATICAL EXPRESSION RECOGNITION SYSTEMS ON CROHME 2014 TEST SET (IN %). “SEGMENTS” DENOTES SYMBOL SEGMENTATION,

“SEG+CLASS” DENOTES DETECTION OF SYMBOLS WITH CORRECT CLASSIFICATION, “TREE RELS.” DENOTES TREE RELATIONS WHICH REQUIRES TWO RELATED

SYMBOLS WHICH ARE CORRECTLY SEGMENTED AND IN THE RIGHT RELATIONSHIP, “REC.” DENOTES RECALL, “PREC.” DENOTES PRECISION, “*” DENOTES THE

REPORTED RESULT IS OF AN ENSEMBLE SYSTEM COMBINING 5 MODELS TRAINED WITH DIFFERENT PARAMETERS INITIALIZATION

mathematical expressions, we then convert the tree structures
into LaTeX string under the restriction of LaTeX grammar. This
approach helps alleviate the problem of ungrammatical output
as we can ensure that a pair of “{” and “}” must appear after
math structures during converting.

3) Object-Level Metric: Thirdly, LaTeX string decoder
based approaches evaluate their models on expression level,
i.e., the percentage of predicted mathematical expression La-
TeX strings matching the ground truth. They do so because the
participating systems in all of the CROHME competitions are
ranked by expression recognition rates (ExpRate). But, intu-
itively, it is inappropriate to evaluate an expression recognition
system only at the expression level as the expression-level met-
ric varies seriously. The LaTeX string decoder based approaches
propose to use word error rate (WER) [44] as the object-level
metric. We argue that the WER metric (including substitutions,
deletions and insertions) only shows the distance between target
string and output string, it can not correctly show the distance be-
tween target tree structure and output tree structure. While SRD
aims to output the tree structure, and we can get more valuable
object-level metrics showing distance between two trees like
symbol recognition rate and structure recognition rate as shown
in Table I. These tree-structured object-level metrics are official
and now well-established metrics of the competition [43].

B. Performance Comparison (Q2)

In Table I, we compare the SRD based encoder-decoder sys-
tem with the state-of-the-arts. We list the best 3 systems in
CROHME 2014 competition [40] using only official dataset
and 4 LaTeX string decoder based encoder-decoder systems.
We compare systems not only by “ExpRate” but also those with
at most three object-level errors (≤ 1, ≤ 2, ≤ 3). Unlike tradi-
tional methods which can output a math tree structure, LaTeX
string decoder based systems only output a mathematical La-
TeX string. “LaTeX Match” shows the rate that output LaTeX
strings match the corresponding ground-truth LaTeX strings.
Note that, although both “ExpRate” and “LaTeX Match” are
expression-level metrics, the “ExpRate” is a stricter metric as it
considers the symbol segmentation errors while “LaTeX Match”

not. As we can see in Table I, previous string decoder based sys-
tems like WYGIWYS, PAL, WAP and TAP only publish the
“LaTeX Match” results, and they use “LaTeX Match” results
to compare with “ExpRate” results of traditional methods. The
comparison is unfair. We show through the results of SRD that
without considering segmentation errors, “LaTeX Match” re-
sults have about 2% improvement compared with “ExpRate”
results. Considering this gap between “ExpRate” and “LaTeX
Match,” the string decoder based encoder-decoder models like
WYGIWYS, PAL and WAP do not largely outperform tradi-
tional grammar tree methods (e.g., System I).

As shown in Table I, TAP is currently the best published string
decoder based model for online handwritten mathematical ex-
pression recognition. To prove the superiority of SRD compared
to string decoder, SRD uses the same encoder architecture and
optimization strategy as TAP. Therefore, by comparing TAP and
SRD we can clearly see the improvement of SRD. To be fairly
comparable with TAP, we also convert the output math tree struc-
ture into the LaTeX string, regardless of the segmentation error.
By comparing SRD with TAP, it is clear to see, a tree-structured
decoder can achieve a significant improvement (from 46.9% to
50.6%, nearly 4% absolutely on single model) for mathematical
expression recognition than a string decoder. Also, SRD has a
property that it can be evaluated on object level. The compari-
son between SRD and the best system in CROHME 2014 com-
petition (system I) shows that SRD significantly outperforms
traditional methods.

To test the generalization of the improvement of SRD com-
pared with string decoder and more recent grammar tree al-
gorithms, we compare SRD with TAP and competition teams
using only official training dataset on CROHME 2016 test set
as shown in Table II. We can see the improvement of SRD com-
pared with string decoder is larger (5.3%, from 41.3% to 46.6%)
on a harder test set. The team Wiris was awarded the first place
on CROHME 2016 competition, but it used a Wikipedia for-
mula corpus, consisting of more than 592,000 formulas, to train
a strong language model. While we directly use the SRD system
trained on CROHME 2014 training set (only 8,836 formulas)
without any further tuning or other language models and also
achieve a good performance.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on August 16,2021 at 08:53:38 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: SRD: A TREE STRUCTURE BASED DECODER FOR ONLINE HANDWRITTEN MATHEMATICAL EXPRESSION RECOGNITION 2479

TABLE II
EVALUATION OF MATHEMATICAL EXPRESSION RECOGNITION SYSTEMS ON

CROHME 2016 TEST SET (IN %). “EXP” DENOTES “EXPRATE,” “MATCH”
DENOTES “LATEX MATCH”. “*” DENOTES THE REPORTED RESULT IS OF AN

ENSEMBLE SYSTEM COMBINING 5 MODELS TRAINED WITH DIFFERENT

PARAMETERS INITIALIZATION

TABLE III
EVALUATION OF MATHEMATICAL EXPRESSION RECOGNITION SYSTEMS ON

CROHME 2019 TEST SET (IN %). “EXP” DENOTES “EXPRATE,” “MATCH”
DENOTES “LATEX MATCH”. “*” DENOTES THE REPORTED RESULT IS OF AN

ENSEMBLE SYSTEM COMBINING 5 MODELS TRAINED WITH DIFFERENT

PARAMETERS INITIALIZATION

We also evaluate SRD on CROHME 2019 [43] as listed in Ta-
ble III. We only compare SRD with TAP using official training
dataset to clearly see the improvement of SRD in comparison to
string decoder (4.2%, from 41.7% to 45.9%). We do not com-
pare SRD with the competition teams as they all use additional
training set or other synthetic data. The “ExpRate” is a little
lower on CROHME 2019 because there are many expressions
containing strokes which only have one point, increasing the dif-
ficulty of symbol segmentation. By watching “LaTeX Match,”
the proposed SRD still significantly outperforms string decoder.

Finally, by comparing SRD to SRD* (ensemble of 5 SRD
models) and traditional methods on all test sets in Tables I–III, it
is also interesting to find that the ensemble SRD* systems only
achieve slightly better performance at object-level metric than
SRD (usually less than 1%), but it achieves much better per-
formance at expression-level (usually near 5%). Therefore, we
believe that the ensemble method [45] can greatly help improve
the expression rate.

In Fig. 5, we compare the recognition results of TAP and
SRD on three math formulas with complex structures to further
show the generalization capability of SRD on tree structures. For
example, the superscript structure has appeared in CROHME
training set many times, like formula “x ∧ { 2 }”. During real
testing, we specifically draw a formula with nested superscript
structures, like “x∧ { 2∧ { 2∧ { 2 } } }”. The nested superscript
structure has never been seen during training, but the superscript
structure has been learned many times. From the recognition
results of TAP and SRD, we can infer that string decoder has
no understanding of math tree structure as it fails when dealing

Fig. 6. Two examples showing decoding procedure through stroke based align-
ment of primary symbol nodes and related symbol nodes.

with nested structures, it totally relies on the implicit language
model embedded in string decoder to generate LaTeX strings.
But SRD learns the math tree structures well, as it performs well
when dealing with nested fraction structures, nested superscript
structures and nested sqrt structures.

C. Visualization of Decoding Procedure (Q3)

Fig. 6 shows two examples to illustrate how SRD recognizes
the math tree structure. As we can see in the right part of the two
examples, SRD generates the sequential sub-tree structures step
by step with parent node denoting spatial relationship, left child
node denoting primary symbol and right child node denoting
related symbol. The left images show the alignment generated
by alignment prediction GPrim

ti and GRe
ti , with the red color rep-

resenting the alignment of primary math symbols and the green
color representing the alignment of related math symbols. The
processing method is introduced in Section IV-B.

The alignments of primary math node and related math node
and the analysis of math tree structure correspond well to human
intuition. More specifically, take the right mathematical expres-
sion as an example, when SRD outputs the primary math symbol
“y,” it successfully detects that the related symbol of “y” is “lim”
and generates the “right” spatial relationship. While for LaTeX
string decoders, when a string decoder outputs the primary math
symbol “y,” it mainly depends on the previous symbol in LaTeX
string, i.e. “∞,” which is less reasonable than SRD does.

VI. CONCLUSION AND FUTURE WORK

In this study we propose a novel sequential relation decoder
which is the first tree structure based decoder for mathemati-
cal expression recognition. Through detailed comparisons with
state-of-the-art string decoders and experimental analysis, we
clearly demonstrate the advantages of sequential relation de-
coder for tree-structured language researches. As for future

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on August 16,2021 at 08:53:38 UTC from IEEE Xplore. Restrictions apply.

2480 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 23, 2021

work, we will implement the sequential relation decoder for
offline mathematical expression recognition and investigate its
application on other tree-structured languages.

REFERENCES

[1] R. Zanibbi, D. Blostein, and J. R. Cordy, “Recognizing mathematical ex-
pressions using tree transformation,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 24, no. 11, pp. 1455–1467, Nov. 2002.

[2] A. Belaid and J.-P. Haton, “A syntactic approach for handwritten math-
ematical formula recognition,” IEEE Trans. Pattern Anal. Mach. Intell.,
no. 1, pp. 105–111, Jan. 1984.

[3] K.-F. Chan and D.-Y. Yeung, “Mathematical expression recognition: A
survey,” Int. J. Document Anal. Recognit., vol. 3, no. 1, pp. 3–15, 2000.

[4] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by
jointly learning to align and translate,” 2014, arXiv:1409.0473.

[5] D. Bahdanau, J. Chorowski, D. Serdyuk, P. Brakel, and Y. Bengio, “End-
to-end attention-based large vocabulary speech recognition,” in Proc. Int.
Conf. Acoust., Speech Signal Process., 2016, pp. 4945–4949.

[6] O. Vinyals, A. Toshev, S. Bengio, and D. Erhan, “Show and tell: A neu-
ral image caption generator,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., 2015, pp. 3156–3164.

[7] K. Xu et al., “Show, attend and tell: Neural image caption generation with
visual attention,” in Proc. Int. Conf. Mach. Learn., 2015, pp. 2048–2057.

[8] J. Zhang et al., “Watch, attend and parse: An end-to-end neural network
based approach to handwritten mathematical expression recognition,” Pat-
tern Recognit., vol. 71, pp. 196–206, 2017.

[9] J. Zhang, J. Du, and L. Dai, “A gru-based encoder-decoder approach with
attention for online handwritten mathematical expression recognition,” in
Proc. Int. Conf. Document Anal. Recognit., 2017, vol. 1, pp. 902–907.

[10] Y. Deng, A. Kanervisto, J. Ling, and A. M. Rush, “Image-to-markup gen-
eration with coarse-to-fine attention,” in Proc. Int. Conf. Mach. Learn.,
2017, pp. 980–989.

[11] F. Álvaro, J.-A. Sánchez, and J.-M. Benedí, “Recognition of on-line
handwritten mathematical expressions using 2D stochastic context-free
grammars and hidden Markov models,” Pattern Recognit. Lett., vol. 35,
pp. 58–67, 2014.

[12] A.-M. Awal, H. Mouchère, and C. Viard-Gaudin, “A global learning ap-
proach for an online handwritten mathematical expression recognition sys-
tem,” Pattern Recognit. Lett., vol. 35, pp. 68–77, 2014.

[13] F. Álvaro, J.-A. Sánchez, and J.-M. Benedí, “An integrated grammar-based
approach for mathematical expression recognition,” Pattern Recognit.,
vol. 51, pp. 135–147, 2016.

[14] T. H. Rhee and J. H. Kim, “Efficient search strategy in structural analysis
for handwritten mathematical expression recognition,” Pattern Recognit.,
vol. 42, no. 12, pp. 3192–3201, 2009.

[15] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Proc. Advances Neural Inf.
Process. Syst., 2012, pp. 1097–1105.

[16] A. Graves, A.-R. Mohamed, and G. Hinton, “Speech recognition with
deep recurrent neural networks,” in Proc. Int. Conf. Acoust., Speech Signal
Process., 2013, pp. 6645–6649.

[17] L. Hu and R. Zanibbi, “Mst-based visual parsing of online handwrit-
ten mathematical expressions,” in Proc. Int. Conf. Frontiers Handwriting
Recognit., 2016, pp. 337–342.

[18] A. Kosmala and G. Rigoll, “On-line handwritten formula recognition using
statistical methods,” in Proc. Int. Conf. Pattern Recognit., 1998, vol. 2, pp.
1306–1308.

[19] N. S. Hirata and F. D. Julca-Aguilar, “Matching based ground-truth annota-
tion for online handwritten mathematical expressions,” Pattern Recognit.,
vol. 48, no. 3, pp. 837–848, 2015.

[20] K.-F. Chan and D.-Y. Yeung, “Error detection, error correction and perfor-
mance evaluation in on-line mathematical expression recognition,” Pattern
Recognit., vol. 34, no. 8, pp. 1671–1684, 2001.

[21] S. MacLean and G. Labahn, “A new approach for recognizing handwritten
mathematics using relational grammars and fuzzy sets,” Int. J. Document
Anal. Recognit., vol. 16, no. 2, pp. 139–163, 2013.

[22] K. Cho et al., “Learning phrase representations using rnn encoder-decoder
for statistical machine translation,” in Proc. Conf. Empirical Methods Nat-
ural Lang. Process., 2014, pp. 1724–1734.

[23] W. Chan, N. Jaitly, Q. Le, and O. Vinyals, “Listen, attend and spell: A
neural network for large vocabulary conversational speech recognition,”
in Proc. Int. Conf. Acoust., Speech Signal Process., 2016, pp. 4960–4964.

[24] K. Cho, A. Courville, and Y. Bengio, “Describing multimedia content us-
ing attention-based encoder-decoder networks,” IEEE Trans. Multimedia,
vol. 17, no. 11, pp. 1875–1886, Nov. 2015.

[25] L. Li, S. Tang, Y. Zhang, L. Deng, and Q. Tian, “GLA: Global–local
attention for image description,” IEEE Trans. Multimedia, vol. 20, no. 3,
pp. 726–737, Mar. 2018.

[26] N. Zhao, H. Zhang, R. Hong, M. Wang, and T.-S. Chua, “Videowhisper:
Toward discriminative unsupervised video feature learning with attention-
based recurrent neural networks,” IEEE Trans. Multimedia, vol. 19, no. 9,
pp. 2080–2092, Sep. 2017.

[27] J. Zhang, J. Du, and L. Dai, “Multi-scale attention with dense encoder for
handwritten mathematical expression recognition,” in Int. Conf. Pattern
Recognit., 2018, pp. 2245–2250.

[28] J.-W. Wu, F. Yin, Y.-M. Zhang, X.-Y. Zhang, and C.-L. Liu, “Image-
to-markup generation via paried adversarial learning,” in Proc. Eur.
Conf. Mach. Learn. Princ. Pract. Knowl. Discovery Databases, 2018,
pp. 18–34.

[29] J. Zhang, J. Du, and L. Dai, “Track, attend and parse (TAP): An end-to-end
framework for online handwritten mathematical expression recognition,”
IEEE Trans. Multimedia, vol. 21, no. 1, pp. 221–233, Jan. 2019.

[30] K. S. Tai, R. Socher, and C. D. Manning, “Improved semantic represen-
tations from tree-structured long short-term memory networks,” in Proc.
53rd Annu. Meet. Assoc. Comput. Linguistics and 7th Int. Joint Conf. Nat-
ural Lang. Process., 2015, vol. 1, pp. 1556–1566.

[31] T. Zhang, H. Mouchère, and C. Viard-Gaudin, “Tree-based blstm for
mathematical expression recognition,” in Proc. Int. Conf. Document Anal.
Recognit., 2017, pp. 914–919.

[32] X. Chen, C. Liu, and D. Song, “Tree-to-tree neural networks for program
translation,” in Proc. Adv. Neural Inf. Process. Syst., 2018, pp. 2547–2557.

[33] R. Zanibbi, H. Mouchère, and C. Viard-Gaudin, “Evaluating structural
pattern recognition for handwritten math via primitive label graphs,”
in Proc. Document Recognit. Retrieval, Burlingame, United States. pp.
865817–865817-11, Feb. 2013.

[34] Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term dependen-
cies with gradient descent is difficult,” IEEE Trans. Neural Netw., vol. 5,
no. 2, pp. 157–166, Mar. 1994.

[35] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evalua-
tion of gated recurrent neural networks on sequence modeling,” 2014,
arXiv:1412.3555.

[36] X.-Y. Zhang, F. Yin, Y.-M. Zhang, C.-L. Liu, and Y. Bengio, “Drawing
and recognizing chinese characters with recurrent neural network,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 40, no. 4, pp. 849–862, Apr. 2018.

[37] Z. Tu, Z. Lu, Y. Liu, X. Liu, and H. Li, “Modeling coverage for neural
machine translation,” 2016, arXiv:1601.04811.

[38] M. D. Zeiler, “Adadelta: An adaptive learning rate method,” 2012,
arXiv:1212.5701.

[39] J. Bergstra et al., “Theano: A CPU and GPU math compiler in python,” in
Proc. 9th Python Sci. Conf, 2010, pp. 1–7.

[40] H. Mouchère, R. Zanibbi, U. Garain, and C. Viard-Gaudin, “Advancing the
state of the art for handwritten math recognition: The crohme competitions,
2011–2014,” Int. J. Document Anal. Recognit., vol. 19, no. 2, pp. 173–189,
2016.

[41] H. Mouchère, C. Viard-Gaudin, R. Zanibbi, and U. Garain, “ICFHR 2014
competition on recognition of on-line handwritten mathematical expres-
sions (CROHME 2014),” in Proc. Int. Conf. Frontiers Handwriting Recog-
nit., 2014, pp. 791–796.

[42] H. Mouchère, C. Viard-Gaudin, R. Zanibbi, and U. Garain, “ICFHR2016
CROHME: Competition on recognition of online handwritten mathemat-
ical expressions,” in Proc. Int. Conf. Frontiers Handwriting Recognit.,
2016, pp. 607–612.

[43] M. Mahdavi et al., “ICDAR 2019 CROHME + TFD: Competition
on recognition of handwritten mathematical expressions and typeset
formula detection,” in Int. Conf. Document Analysis Recognit., 2019,
pp. 1533–1538.

[44] D. Klakow and J. Peters, “Testing the correlation of word error rate and
perplexity,” Speech Commun., vol. 38, no. 1-2, pp. 19–28, 2002.

[45] T. G. Dietterich, “Ensemble methods in machine learning,” in Proc. Int.
Workshop Multiple Classifier Syst., 2000, pp. 1–15.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on August 16,2021 at 08:53:38 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

