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Track, Attend, and Parse (TAP): An End-to-End
Framework for Online Handwritten Mathematical

Expression Recognition
Jianshu Zhang , Jun Du , and Lirong Dai

Abstract—In this paper, we introduce Track, Attend, and Parse
(TAP), an end-to-end approach based on neural networks for online
handwritten mathematical expression recognition (OHMER). The
architecture of TAP consists of a tracker and a parser. The tracker
employs a stack of bidirectional recurrent neural networks with
gated recurrent units (GRU) to model the input handwritten
traces, which can fully utilize the dynamic trajectory information
in OHMER. Followed by the tracker, the parser adopts a GRU
equipped with guided hybrid attention (GHA) to generate
notations. The proposed GHA is composed of a coverage-based
spatial attention, a temporal attention, and an attention guider.
Moreover, we demonstrate the strong complementarity between
offline information with static-image input and online information
with ink-trajectory input by blending a fully convolutional
networks-based watcher into TAP. Inherently, unlike traditional
methods, this end-to-end framework does not require the explicit
symbol segmentation and a predefined expression grammar for
parsing. Validated on a benchmark published by the CROHME
competition, the proposed approach outperforms the state-of-
the-art methods and achieves the best reported results with an
expression recognition accuracy of 61.16% on CROHME 2014 and
57.02% on CROHME 2016, using only official training dataset.

Index Terms—Online handwritten mathematical expression
recognition (OHMER), end-to-end framework, gated recurrent
unit (GRU), guided hybrid attention (GHA), ensemble.

I. INTRODUCTION

MATHEMATICAL expressions play an important role in
scientific documents. They are indispensable for de-

scribing problems and theories in maths, physics and many
other fields. Meanwhile, people have begun to use handwritten
mathematical expressions (HMEs) as one natural input mode.
However, how to successfully recognize them remains a difficult
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problem as online handwritten mathematical expression recog-
nition (OHMER) exhibits three distinct challenges [1], [2], i.e.,
the complicated two-dimensional structures, enormous ambigu-
ities in handwriting input and strong dependency on contextual
information.

Technically, OHMER consists of two major problems [3],
namely symbol recognition and structural analysis, which can be
solved sequentially or globally. Sequential solutions [4], [5] first
segment input expression into math symbols and recognize them
separately. The analysis of two-dimensional structures is then
carried out based on the best symbol segmentation and symbol
recognition results. In sequential solutions, symbol recognition
does not make use of contextual information which could be
helpful to reduce the ambiguities of handwritten symbols. Be-
sides, the symbol segmentation and recognition errors will be
subsequently inherited by structural analysis. Conversely, global
solutions [6], [7] seem to be more appropriate as symbol recog-
nition and structural analysis are optimized using the global
information of expression simultaneously. However, global so-
lutions are computationally more expensive because the prob-
abilities for segmentation composed of strokes (a sequence of
points between a pen-down and a pen-up operation) are expo-
nentially expanded. Therefore effective search strategies must be
executed [8]. Specific to structural analysis, many approaches
[9]–[12] have been investigated. Among them, the grammar-
based approaches are widely used [13], [14]. Structural analysis
with a grammar is often termed as syntactic pattern recogni-
tion but these grammars are constructed using extensive prior
knowledge. Also, [15], [16] proposed more general and simpler
methods for structural analysis without using a math grammar,
termed as structural pattern recognition. They use spanning trees
to select parse tree directly from hypothesis graphs.

Inspired by recent work in neural networks [17]–[19], we
introduce a framework totally based on neural networks for
OHMER. The proposed approach is named as Track, Attend
and Parse (TAP), consisting of a tracker and a parser equipped
with guided hybrid attention (GHA). The proposed TAP
possesses three distinctive properties: 1) It is end-to-end train-
able; 2) It is data-driven, which means it does not require a
predefined math grammar; 3) Symbol segmentation can be au-
tomatically performed through attention mechanism. Unlike
conventional methods, which recognize HMEs as expression
trees, TAP learns to track the traces of HMEs and parse them
as [20] notations. We employ a stack of bidirectional
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recurrent neural networks with gated recurrent units (GRU)
[21] as the tracker which takes the two-dimensional handwritten
traces as input and maps the trajectory information to high-level
representations. The parser is implemented by a unidirectional
GRU with GHA which converts these high-level representations
into output strings, one symbol at a time. Here, GHA is
composed of a coverage based spatial attention, a temporal at-
tention and an attention guider. More specifically, for each pre-
dicted symbol, the spatial attention scans the entire input (traces
of HME) and teaches the parser where to attend for describing
a math symbol or an implicit spatial operator. Meanwhile, the
temporal attention tells the parser when to rely on the product
of spatial attention and when to just rely on the language model
built in the parser. Because in notations, some symbols
can often be predicted reliably just from the language model,
e.g., the symbol “{” in string “x ∧ { 2 } + 1” ( notation of
x2 + 1). During the training procedure, the learning of spatial
attention can also be guided by an attention guider performing
as a regularization term. Inherently different from traditional ap-
proaches, our model optimizes symbol segmentation automati-
cally through the attention mechanism, and structural analysis
does not rely on a predefined grammar as a data-driven language
model is built in the parser. Based on this end-to-end framework,
the two typical problems, namely symbol recognition and struc-
tural analysis, are jointly optimized. Moreover, we investigate on
two modalities to express the HMEs: the static images (offline
information) or the dynamic traces (online information). The
strong complementarity between offline and online information
is demonstrated by blending TAP with a fully convolutional
networks (FCN) [22], [23] based watcher to handle the static
HME images. Finally, we incorporate a stronger GRU based
language model trained on an additional text dataset provided
by CROHME competition to further improve the recognition
performance.

The main contributions of this study can be summarized as:
� A novel TAP framework is proposed for OHMER, which

is an end-to-end trainable model to alleviate the problems
caused by symbol segmentation and computational de-
mands of employing a math grammar in the conventional
approaches.

� A hybrid attention with an attention guider is incorporated
with TAP to show where and when to attend.

� TAP is blended with a FCN-based watcher and a stronger
GRU based language model to fully utilize the offline in-
formation of OHME and the contextual information.

� We experimentally demonstrate how TAP completes the
automatic symbol segmentation and structural analysis
through visualization of hybrid attention.

II. RELATED WORKS

In this section, we describe the previous work on OHMER,
including both traditional grammar based approaches and recent
neural network based approaches.

A. Grammar-Based Approaches for OHMER

Symbol recognition and structural analysis are two basic
components for OHMER. In the data acquisition of online

Fig. 1. An example of online handwritten mathematical expression, including
the sequential data, visualization of traces, and its transformed 2D static image.

handwriting, the pen-tip movements (xy-coordinates) and pen
states (pen-down or pen-up) are automatically stored as variable-
length sequential data. Meanwhile, the sequential data can also
be transformed into image-like representations as shown in
Fig. 1. Inspired by recent work in neural networks, convolu-
tional neural networks (CNN) [24] and recurrent neural net-
works (RNN) [25] have been widely used as powerful classi-
fiers for offline or online symbol recognition. However, regard-
ing to structural analysis, many researchers prefer approaches
based on predefined grammars as a natural way to solve the
problem. Different types of math grammars have been investi-
gated. For example, Chan and Yeung [26] used definite clause
grammars. Álvaro et al. [5], [7] showed the effectiveness of
stochastic context-free grammars on several systems as they
consistently performed best in the CROHME competitions. Ya-
mamoto et al. [27] also presented an OHMER system using
probabilistic context-free grammars, and MacLean [28] devel-
oped an approach using relational grammars and fuzzy sets.

B. Encoder-Decoder Framework

This study pays a special attention to neural network based
structural analysis. In [18], a novel neural network framework,
namely encoder-decoder, was exploited to address sequence to
sequence learning. Typically, both the encoder and the decoder
are implemented with RNNs, which are proved to be good pro-
cessor and generator for sequential signals. The encoder RNN
first learns to encode the sequential variable-length input into
high-level representations. A fixed-length context vector is then
generated via summing the variable-length representations or
just choosing the last representation. Finally, the decoder RNN
uses this context vector to generate variable-length output se-
quence, one word at a time. Due to the intermediate fixed-length
vector, the encoder-decoder model can well perform a mapping
between variable-length input and output. This framework has
been extensively applied to many applications including ma-
chine translation [29], [30], speech recognition [31], [32], char-
acter recognition [33], [34], image captioning [35], [36] and
video processing [37], [38].

C. Attention

In [39]–[41], attention was shown to be one of the most dis-
tinct aspects in human visual system. This mechanism could be
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incorporated into encoder-decoder framework for calculating
the fixed-length context vector, i.e., the variable-length repre-
sentations could be summed using the attention as the weight-
ing coefficients. After adopting an attention mechanism into
encoder-decoder, salient regions in the static representation can
dynamically rise to the forefront. The attention mechanism plays
an indispensable role in image captioning for obtaining a state-
of-the-art performance. For example, [42] proposed the “hard”
attention for image captioning system to know where to attend
and its effectiveness was shown through attention visualization.
[43] proposed the concept of “attention correctness” to strength
the alignment for image captioning. In [44], an adaptive atten-
tion was implemented via a visual sentinel so that the captioning
system could also know when to attend, and with a similar moti-
vation, [45] also proposed a global-local attention so that model
could selectively pay attention to spatial objects and context
information.

D. Neural Network-Based Approaches for OHMER

The generality of the attention based encoder-decoder frame-
work suggests that OHMER may also be one proper application.
Recently, [46], [47] used the attention based encoder-decoder
model for OHMER and significantly outperformed the best sys-
tem on CROHME 2014. In [46] the proposed model consisted of
a FCN encoder and a GRU decoder equipped with a coverage-
based attention model while [47] employed a CRNN as the
encoder and the decoder is equipped with a coarse-to-fine at-
tention model. However, both [46] and [47] treated the HMEs
input as static images which ignores the handwriting dynamics
(namely the temporal order and trajectory). As we can see in
Fig. 1, besides the symbol shape information, the writing order
is also preserved in the online sequential data, which is impor-
tant information and can not be recovered from the static image.
Therefore, to capture the dynamic information to reduce hand-
written ambiguities, [48] proposed to employ a GRU encoder
that directly takes the raw sequential data as input. Validated
on CROHME 2014, [48] showed a significant improvement of
recognition accuracy over [46], [47].

This study is an extension of the previous work in [48] with
the following new contributions. 1) We propose to employ a
temporal attention to teach the parser when to rely on the rep-
resentations extracted by tracker and when to just rely on the
built-in language model. 2) To compute the temporal attention,
the spatial attention is slightly adjusted. Meanwhile, we newly
introduce an attention guider to help improve the learning of
spatial attention. 3) We blend a FCN watcher into TAP by con-
sidering the strong complementarity between static-image based
input and dynamic-trace based input. By processing HMEs from
two different modalities, the strengths of [46] and [48] can be
fully utilized simultaneously. 4) We use an extra official text
dataset containing only notations to train an additional
language model for enhancing our parser. 5) More experiments
and analyses are included.

III. NETWORK ARCHITECTURE OF TAP

In this section, we elaborate the proposed TAP architecture
which parses a mathematical expression structure into a

Fig. 2. Overall architecture of Track, Attend, and Parse. X denotes the input
sequence in Section III-A, A denotes the annotation sequence in Section III-C,
Y denotes the output sequence in Section III-C.

string by tracking a sequence of online handwritten points. As
illustrated in Fig. 2, the raw data is a sequence of points contain-
ing xy-coordinates which can be visualized as the bottom-right
image by drawing the trajectory. A preprocessing is first ap-
plied to extract trajectory information from raw sequential data.
The tracker is a stack of bidirectional GRU while the parser
combines a GRU based language model and a hybrid attention
mechanism. As for the hybrid attention mechanism, spatial at-
tention can potentially well learn the alignment between input
traces and output string while temporal attention can well know
when to rely on the product of spatial attention and when to
just rely on the language model. For example, in Fig. 2, the
purple, blue and green rectangles denote three symbols with
the red color representing the spatial attention probabilities of
each handwritten symbol (lighter color denotes higher proba-
bility) and the probabilities linking to rectangles represent their
reliability produced by temporal attention. When predicting the
math symbol “\sum”, the spatial attention model aligns well to
the stroke of “

∑
” (in the purple spatial attention map) which

corresponds to the human intuition and the temporal attention
probability linking to the purple rectangle is extremely high as
the spatial attention map is accurate. Conversely, when predict-
ing the math symbol “{”, there is no object for spatial attention
model to attend to, leading to an inaccurate spatial attention
map. Therefore the temporal attention probability linking to the
green spatial attention map is small which tells the parser should
rely on the built-in language model at this time.
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A. Preprocessing

Suppose the input traces contain raw sequential data with a
variable-length N :

{[x1 , y1 , s1 ] , [x2 , y2 , s2 ] , . . . , [xN , yN , sN ]} (1)

where xi and yi are xy-coordinates of the pen-tip movements,
si is the stroke index of the ith point, and the sequence is stored
in the writing process.

To address the issue of non-uniform sampling by different
writing speed and the size variations of the coordinates on dif-
ferent potable devices, the interpolation and normalization to the
original sequential points are first operated according to [49].
Then we extract an 8-dimensional feature vector for each point:

[xi, yi ,Δxi,Δyi,Δ′xi,Δ′yi, δ(si = si+1), δ(si �= si+1)]
(2)

where Δxi = xi+1 − xi , Δyi = yi+1 − yi , Δ′xi = xi+2 − xi ,
Δ′yi = yi+2 − yi and δ(·) = 1 when the condition is true or
otherwise zero. The last two terms are flags indicating the sta-
tus of the pen, i.e., [1, 0] means pen-down while [0, 1] means
pen-up. Note that, an HME can also be considered as a se-
quence of several strokes. So fully utilizing the stroke status
information plays an important role in increasing recognition
accuracy. For convenience, in the following sections, we use
X = (x1 , x2 , . . . ,xN ) to denote the input sequence of tracker,
but note that each item xi here is actually the 8-dimensional
vector shown in Eq. (2).

B. Tracker

Given input sequence (x1 , x2 , . . . ,xN ), a simple RNN can
be adopted as the tracker to compute a sequence of hidden states
(h1 , h2 , . . . ,hN ):

ht = tanh (Wxhxt + Uhhht−1) (3)

where Wxh is the connection weight matrix of the network
between input layer and hidden layer, and Uhh is the weight
matrix of recurrent connections in the same hidden layer. In
principle, the recurrent connections let RNN map from the entire
history of previous inputs to each output. However, in practice, a
simple RNN is difficult to train properly due to the problems of
the vanishing gradient and the exploding gradient as described
in [50], [51].

Therefore, in this study, we employ GRU as an improved ver-
sion of simple RNN which can alleviate the vanishing and ex-
ploding gradient problems. The GRU hidden state ht in tracker
is computed by:

ht = GRU (xt ,ht−1) (4)

as illustrated in Fig. 3 the GRU function can be expanded as
follows:

zt = σ(Wxzxt + Uhzht−1) (5)

rt = σ(Wxrxt + Uhrht−1) (6)

h̃t = tanh(Wxhxt + Urh(rt ⊗ ht−1)) (7)

ht = (1 − zt) ⊗ ht−1 + zt ⊗ h̃t (8)

Fig. 3. Illustration of GRU function, z denotes update gate, r denotes reset
gate, h̃ denotes candidate activation, and h denotes the output activation.

where σ is the sigmoid function and ⊗ is an element-wise mul-
tiplication operator. zt , rt and h̃t are the update gate, reset gate
and candidate activation, respectively. Wxz , Wxr , Wxh denote
related forward weight matrices and Uhz , Uhr and Urh denote
related recurrent weight matrices.

Nevertheless, unidirectional GRU cannot utilize the future
context. Accordingly, we pass the input vectors through two
GRU layers running in opposite directions and concatenate their
hidden state vectors. This bidirectional GRU can use both past
and future information. To obtain a high-level representation,
the tracker stacks multiple layers of GRUs on top of each other.
However, with the increased depth, the high-level representation
is overly precise for the parser and contains much redundant in-
formation (difference of feature vectors between adjacent points
is slight). This leads us to add pooling over points in high-level
GRU layers as shown in Fig. 2. The pooling is a subsampling
operation. We drop the even outputs of lower layer and only send
the odd outputs to upper layer, therefore the upper layers run
twice faster than the lower ones. Besides accelerating the track-
ing process, the pooling operation also improves the recognition
performance as it is easier for the parser to implement spatial
attention with a fewer number of outputs of tracker.

C. Parser

In Fig. 2, the parser generates a corresponding notation
of the input traces. The output string Y is represented by a
sequence of one-hot encoded symbols.

Y = {y1 , . . . ,yC } , yi ∈ RK (9)

where K is the number of total symbols in the vocabulary and
C is the length of string.

Meanwhile, assuming that the tracker extracts high-level rep-
resentations denoted by an annotation sequence A with length
L. If there is no pooling in the stacked GRU, L = N (N is the
length of input sequential data); otherwise N will be several
multiples of L and each of these annotations represents a D-
dimensional vector corresponding to a local region of original
traces:

A = {a1 , . . . ,aL} , ai ∈ RD (10)

Note that, both the length of annotation sequence L and the
length of string C are not fixed. To address the learning
problem of variable-length annotation sequences and associate
them with variable-length output sequences, we attempt to com-
pute an intermediate fixed-size vector ct by employing guided
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Fig. 4. Schematic representation of hybrid attention, consisting of a coverage-
based spatial attention and a temporal attention.

hybrid attention which will be described in more details in
Section III-D. Given the context vector ct , we utilize unidi-
rectional GRU to produce strings symbol by symbol. The
probability of each predicted symbol is computed by the con-
text vector ct , current GRU hidden state st and previous target
symbol yt−1 using the following equation:

p(yt |yt−1 ,X) = g (Woh(Eyt−1 + Wsst + Wcct)) (11)

where g denotes a softmax activation function over all the sym-
bols in the vocabulary, h denotes a maxout activation function,
Wo ∈ RK×m

2 , Ws ∈ Rm×n , Wc ∈ Rm×D , and E denotes the
embedding matrix, m and n are the dimensions of embedding
and GRU parser.

The parser adopts two unidirectional GRU layers to calculate
the hidden state st :

ŝt = GRU (yt−1 , st−1) (12)

ct = fhatt (yt−1 , st−1 , ŝt ,A) (13)

st = GRU (ct , ŝt) (14)

where st−1 denotes the previous hidden state, fhatt denotes the
hybrid attention model, and ŝt is the prediction of current GRU
hidden state. The initial hidden state s0 of the first GRU is
predicted by an average of annotation vectors ai fed through a
fully-connection layer:

ā =
1
L

L∑

i=1

ai (15)

s0 = tanh (Winitā) (16)

where Winit ∈ Rn×D . By initializing GRU hidden state in this
way, the parser is easier to train properly compared with initial-
izing GRU hidden state as a zero-vector.

D. Guided Hybrid Attention

The proposed hybrid attention aims to teach the parser where
to attend and when to attend. It consists of a coverage based
spatial attention and a temporal attention. Fig. 4 shows the
schematic representation of spatial and temporal attention. An

attention guider that guides the learning of hybrid attention is
embedded during the learning procedure.

1) Spatial Attention: Intuitively, for each predicted symbol
from the parser, the entire input sequence is not necessary to
provide the useful information. Only a subset of adjacent trajec-
tory points will mainly contribute to the computation of context
vector ct at each time step t. For example, in Fig. 2, the symbol
“
∑

” in the output sequence corresponds only to the red part
in the purple rectangle: the other parts of the input expression
do not need to be attended. Therefore, the parser can adopt a
spatial attention mechanism to know where is the suitable place
to attend to generate the next predicted symbol and then assign
a higher weight to the corresponding local annotation vectors
ai . Here, we parameterize the attention model as a multi-layer
perceptron (MLP) which is jointly trained with the tracker and
the parser:

eti = νT
att tanh(Wattŝt + Uattai) (17)

αti =
exp(eti)

∑L
k=1 exp(etk )

(18)

where eti denotes the energy of annotation vector ai at time step
t conditioned on the current GRU hidden state prediction ŝt , αti

denotes the spatial attention coefficient of ai at time step t. Let n′

denote the attention dimension; then νatt ∈ Rn ′
, Watt ∈ Rn ′×n

and Uatt ∈ Rn ′×D . With the weights αti , we compute a context
vector candidate ĉt as:

ĉt =
L∑

i=1

αtiai (19)

We can understand the summation of all the annotations using
weight coefficients as computing an expected annotation, which
has a fixed-length 1 regardless of the variable-length of input
traces.

2) Coverage Model: There is one problem for the classic
spatial attention mechanism in Eq. (17), namely lack of coverage
[46], [52]. Coverage means the overall alignment information
indicating whether a local region of the input traces has been
parsed. The overall alignment information is especially impor-
tant when recognizing HMEs because in principle, each part of
input traces should be parsed only once. Lacking coverage will
lead to misalignment resulting in over-parsing or under-parsing.
Over-parsing implies that some parts of the input traces have
been parsed twice or more, while under-parsing denotes that
some parts have never been parsed. To address this problem, we
append a coverage vector to the computation of attention in Eq.
(17). The coverage vector aims at tracking the past alignment
information. Different from [32], we compute the coverage vec-
tor based on the summation of all past attention probabilities,
which can describe the alignment history:

F = Q ∗
t−1∑

l=1

αl (20)

eti = νT
att tanh(Wattŝt + Uattai + Uf fi) (21)
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where αl denotes the attention probability vector at time step l,
Q denotes a 1D convolution filter with q output channels and fi
denotes the ith coverage vector of F initialized as a zero vector.
The coverage vector is produced through a convolutional layer
because we believe the coverage vector of annotation ai should
also be associated with its adjacent attention probabilities.

The coverage vector is expected to help adjust the future
attention. More specifically, points in the input traces already
significantly contributed to the generation of target symbols
should be assigned with lower spatial attention probabilities in
the following parsing phases. On the contrary, points with less
contributions should be assigned with higher spatial attention
probabilities. Consequently, the parsing process is finished only
when the entire input traces have contributed and the problems
of over-parsing or under-parsing can be alleviated.

3) Temporal Attention: The coverage based spatial attention
seems to be effective for generating the alignment between the
target symbol and a local region of input traces. However, re-
garding to the criterion of generating notations, there
is one type of symbols, named as v-symbols (virtual symbols
in syntax for disambiguation without correspondences
in math expressions), e.g., the symbol “{” in caption of
Fig. 2, which can be predicted reliably just based on the language
model. The spatial attention often produces incorrect alignment
when encountering these v-symbols. Furthermore, due to the
ambiguities of handwriting input, the high-level representations
extracted from trajectory information are sometimes unreliable.
Therefore, we present a temporal attention to help the parser
determine when to rely on the trajectory information and when
to only rely on the language model.

By considering that the temporal attention should establish
an adaptive gate to determine whether to attend to traces or
strengthen the language model, we first design a supplementary
vector as:

gt = σ(Wygyt−1 + Usgst−1) (22)

mt = gt ⊗ tanh(Wŝ ŝt) (23)

where ŝt performs like a memory cell which stores both long
and short term linguistic information as described in Eq. (12). So
we reuse the memory cell to generate the supplementary vector
mt to strengthen the language model, mt ∈ RD . gt denotes an
update gate, yt−1 denotes the previous target symbol and st−1
denotes the previous hidden state as in Eq. (12). Wyg , Usg and
Wŝ are related weight matrices.

Suppose the temporal attention should indicate how much
attention the parser is placing on the language model (as opposed
to the input traces), we compute it as follows:

ēt =
1
L

L∑

i=1

eti (24)

zt = [ēt ;νT
att2 tanh(Wattŝt + Ummt)] (25)

βt =
exp(zt [1])

exp(zt [0]) + exp(zt [1])
(26)

Fig. 5. Examples of attention maps with and without attention guider.

where eti is defined in Eq. (17), ēt is the average energy at time
t, νatt2 ∈ Rn ′

, Um ∈ Rn ′×D , Watt is the same as in Eq. (17),
and the temporal attention βt is a scalar in the range [0, 1].

As shown in Fig. 4, the context vector ct is modeled as a
mixture of the spatially attended annotation vector ĉt and the
supplementary vector mt , which is calculated as:

ct = βtmt + (1 − βt)ĉt (27)

This formulation encourages the parser to adaptively attend
to the annotations vs. the supplementary vector when generating
the next symbol. The temporal attention scalar is updated at each
time step.

4) Attention Guider: Although the attention mechanism
achieves impressive results in machine translation, image cap-
tioning, speech recognition and even in OHMER, how to train it
properly remains a challenging problem. While most previous
studies train the attention model with random initialization, we
believe the spatial attention should be tuned under a guider, as it
plays such an important role in aligning the output strings with
the input traces and controlling the flow of forward information
and backward gradients.

Specific to OHMER, it is possible to extract the oracle align-
ment information from training data (e.g., in CROHME). Take
expression “x2 − 1” as an example, a writer may write down
five strokes to represent it: the first two strokes for “x”, the third
stroke for “2”, the fourth stroke for “−” and the last stroke for
“1”. So, if we want to generate the minus symbols “−”, the
oracle spatial alignment will attend to the fourth stroke and the
spatial attention probability should be equally distributed only
on the fourth stroke.

Concretely, we first consider the case when the ground truth
spatial attention map γt = {γti}i=1,...,L is provided for the
symbol wt , with γti = 1

L for each i. Note that
∑L

i=1 γti =
∑L

i=1 αti = 1, therefore they can be considered as two proba-
bility distributions of spatial attention and it is natural to employ
the cross entropy function as the guider:

Gt = −
L∑

i=1

γti log αti (28)

We add this spatial attention guider as a regularization term
to the final objective function during training in Section V-A.
As for symbols without explicit spatial alignment to input traces
(e.g. “∧”, “{”), we simply remove the guider. Fig. 5 shows the
comparison between spatial attention with and without guider.
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Fig. 6. An incorrectly recognized example due to the delayed stroke.

Fig. 7. An incorrectly recognized example due to the inserted stroke.

For each predicted symbol, the traces highlighted by red color
are the alignments introduced by spatial attention. It is clear that
the spatial alignment learning with a guider is more reasonable.

IV. ILLUSTRATION OF ADDITIONAL MODELS

A. Dynamic Traces vs. Static Images

For OHMER, we observe that there is a strong complemen-
tarity between the dynamic-trace and static-image based rep-
resentations. First, dynamic traces can provide additional rich
dynamic information (i.e., the writing order information) over
the static images, which can significantly improve the recog-
nition accuracy. For example, handwritten math symbol pairs
“a” and “α”, “b” and “6” are hard to distinguish in the form of
static images due to the ambiguities of handwriting input and
the similar character shape. However, the writing orders of each
pair are totally different, which is one important discriminative
feature.

Second, static-image based representation also possess its
distinct advantage compared with dynamic traces as it can al-
leviate the under-parsing and over-parsing problems caused by
delayed and inserted strokes. When using handwriting as in-
put, the delayed and inserted strokes can be observed quite
frequently. Delayed strokes occur as an extension of a frac-
tion bar or a square root or transforming a symbol in another
one by adding an additional stroke (e.g., “-” transformed into
“+”). Fig. 6 shows an example of under-parsing problem, where
the first symbol of string (namely the minus sign “−”
corresponding to the last handwritten stroke) is missing after
OHMER using TAP. Normally we write the minus sign as the
first stroke. Consequently, this delayed stroke leads to the under-
parsing problem. Inserted strokes occur as splitting a successive
stroke into several broken strokes by anomalous handwriting or
extra meaningless strokes. In Fig. 7, the second stroke, which is
actually the end of symbol “g” but split into another meaning-
less stroke by the writer, is an inserted stroke which causes the
over-parsing problem. Consequently, our model over-translates
the input expression and recognizes the second stroke as a minus
sign “−”. Meanwhile, as the inserted stroke is on the up-right

direction of basic symbol “g”, the subscript structure is inaccu-
rately recognized as the superscript structure.

However, since the static images only focus on the character
shape of handwritten symbols, both under-parsing and over-
parsing problems can be well addressed.

B. Watch, Attend and Parse (WAP)

To fully utilize the advantages of dynamic traces and static
images simultaneously, we propose to blend WAP approach in
[46] with TAP. We first draw the trajectory, remove the writing
order information and transform the dynamic traces into static
images as described in Fig. 1. Then, we employ a FCN based
watcher to map HME images to high-level features. Finally, a
GRU based parser converts these high-level features into output

strings, symbol by symbol. More implementation details
about WAP can be found in our previous work [46]. The in-
tegration of WAP and TAP models in the recognition stage is
elaborated in Section V-B.

C. Language Model (LM)

Statistical language models are crucial to many applications,
such as automatic speech recognition and statistical machine
translation. Compared with conventional methods (e.g. the pop-
ular N-grams [53]), language models based on recurrent neural
networks achieve better performance [54]. In this study, we pro-
pose the GRU-based language model for OHMER to predict
the next symbol in textual data given context. By feeding the
officially provided text data containing 173500 notations
of mathematical expressions into a single unidirectional GRU
with cross-entropy as optimization function, we train a new
GRU-based language model, which is supposed to be stronger
than the implicit language model built in the parser of TAP
trained with 8836 HMEs. In Section V-B, the integration with
GRU-based language model in the decoding process is intro-
duced.

V. TRAINING AND DECODING PROCEDURE

A. Training

The training objective of our model is to maximize the pre-
dicted symbol probability as shown in Eq. (11) and we use
cross-entropy (CE) function as the cost. The objective function
for optimization, which consists of the CE cost and the attention
guider, is shown as follows:

O = −
C∑

t=1

log p(wt |yt−1 ,X) + λ

C∑

t=1

Gt (29)

where wt represents the ground truth word at time step t, C is
the length of output string, Gt is the attention guider, and λ is
set to 0.1.

The tracker consists of 4 bidirectional GRU layers. Each layer
has 250 forward and 250 backward GRU units. The pooling is
applied to the top 2 GRU layers over time. Accordingly, the
tracker reduces the input sequence length by the factor of 4.
The parser adopts 2 unidirectional GRU layers and each layer
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has 256 forward GRU units. The embedding dimension m and
GRU decoder dimension n are set to 256. The attention dimen-
sion n′ and annotation dimension D are set to 500. The kernel
size of convolution filter Q for computing coverage vector is set
to (121 × 1) and the number of output channels q is 256. We
utilize the adadelta algorithm [55] with gradient clipping for op-
timization. The adadelta hyperparameters are set as ρ = 0.95,
ε = 10−6 . The early-stopping of training procedure is deter-
mined by word error rate (WER) of validation set. We use the
weight noise [56] as the regularization. The first-pass training is
conducted without weight noise. Then we anneal the best model
in terms of WER by restarting the training with weight noise.

B. Decoding

In the decoding stage, we aim to generate a most likely
string given the input HME traces.

ŷ = arg max
y

log P (y|x) (30)

Different from the training procedure, we do not have the ground
truth of previous predicted symbol. Consequently, a simple left-
to-right beam search algorithm [57] is employed to implement
the decoding procedure. Here, we maintain a set of 10 partial
hypotheses, beginning with the start-of-sentence token <sos>.
At each time step, each partial hypothesis in the beam is ex-
panded with every generated symbol and only the hypotheses
with 10 minimal scores are retained:

St = St−1 − log p(yt |yt−1 ,x) (31)

where St represents the score at time step t, p(yt |yt−1 ,x) repre-
sents the probability of all generated symbols in the dictionary.
This procedure is repeated until the output symbol becomes the
end-of-sentence token < eos >.

During the beam search procedure, it is intuitive to adopt
the ensemble method [58] for improving the performance. We
first train N1 TAP models on the same training set but with
different initialized parameters. Then we can average their pre-
diction probabilities pi

1(yt |yt−1 ,x) to predict the current output
symbol:

St = St−1 − log

(
1

N1

N1∑

i=1

pi
1(yt |yt−1 ,x)

)

(32)

As mentioned in Section IV, we also generate the prediction
probability pi

2(yt |yt−1 ,x) based on WAP model and the predic-
tion probability pi

3(yt |yt−1 ,x) based on a stronger GRU-based
language model. We blend TAP with WAP and the additional
GRU-based language model in the beam search procedure as:

St = St−1 − log

(

ξ1 × 1
N1

N1∑

i=1

pi
1(yt |yt−1 ,x)

+ ξ2 × 1
N2

N2∑

i=1

pi
2(yt |yt−1 ,x)

+ ξ3 × 1
N3

N3∑

i=1

pi
3(yt |yt−1 ,x)

)

(33)

where ξ1 , ξ2 and ξ3 denote the ratio of contribution, ξ1 + ξ2 +
ξ3 = 1, N1 , N2 and N3 denote the number of their respective
ensemble models, we set N1 = N2 = N3 = 3.

VI. EXPERIMENTS

We design a set of experiments to validate the effectiveness of
the proposed method for OHMER by answering the following
questions:

Q1 Is the proposed guided hybrid attention effective?
Q2 How does TAP analyze the 2D structure of HME?
Q3 Can WAP and GRU-LM yield additional gains?
Q4 Does the proposed approach outperform others?
The experiments are all implemented with Theano 0.10.0 [59]

and an NVIDIA Tesla M40 12G GPU. And our source code is
publicly available.1

A. Dataset and Metric

The experiments are conducted on CROHME competition
dataset [60]–[62], which is currently the most widely used public
dataset for OHMER. The CROHME 2014 dataset has a training
set of 8836 HMEs (86K symbols) and a test set of 986 HMEs
(6K symbols). There are 101 math symbol classes. None of
the handwritten expressions or notations in the test set
appears in the training set. To be fairly comparable, we use the
CROHME 2013 test set as a validation set for estimating models
during the training, just like other participants of CROHME
2014 competition. As for the CROHME 2016 competition, the
training set is the same as CROHME 2014. But the test set is
newly collected and labeled by the organizers at the University
of Nantes. There are totally 1147 expressions and the symbol
classes remain unchanged.

The participating systems in all of the CROHME competi-
tions are ranked by expression recognition rates (ExpRate), i.e.,
the percentage of predicted mathematical expressions matching
the ground truth, which is simple to understand and provides a
useful global performance metric. The CROHME competition
compared the competing systems not only by ExpRate but also
those with at most one to three symbol-level errors. In our experi-
ments, we first transfer the generated strings into MathML
representation and then compute these metrics by using the of-
ficial tool provided by the organizer of CROHME. However, it
seems inappropriate to evaluate an expression recognition sys-
tem only at the expression level. Here, we also evaluate our
system at the symbol-level by using WER [63] metric, which
reveals errors such as substitutions, deletions and insertions.

B. Evaluation of Guided Hybrid Attention (Q1)

In this section, we show the effectiveness of each component
in guided hybrid attention through several designed systems in
Table I.

The classic spatial attention model is essential for each sys-
tem. Meanwhile, the temporal attention only works well when
the attention guider is also implemented, which might be ex-
plained as that the small training set is not adequate for the

1https://github.com/JianshuZhang/TAP
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TABLE I
COMPARISON AMONG SYSTEMS FROM P1 TO P8

Attributes for comparison include: 1) employing the classic spatial attention model; 2)
appending a coverage vector into the classic spatial attention model; 3) employing the
temporal attention model; 4) employing the attention guider; 5) using ensemble method
as described in Eq. (32).

TABLE II
COMPARISON OF RECOGNITION PERFORMANCE (IN %) AND TIME EFFICIENCY

(IN SECOND) AMONG DIFFERENT SYSTEMS IN TABLE I ON CROHME 2014

Train Time denotes the time cost for only one epoch, Epochs denotes the number of
needed epoches for training, Test Speed denotes the time cost for evaluation on the
whole CROHME 2014 test set (986 HMEs). Train Time of ensemble systems P5–P8
is not shown as their base models have been already trained.

hybrid attention to train the model parameters properly with
random initialization.

In Table II, we show the recognition performance and time
efficiency of systems P1–P8 on CROHME 2014 test set. Firstly,
by the comparison of ExpRate we show the improvement via
coverage vector, attention guider and temporal attention by ap-
pending each of them to their previous system step by step. More
specifically, the ExpRate is increased from 42.49% to 46.86%
after the coverage vector is appended into the classic spatial
attention model (P1 vs. P2). As already illustrated in Fig. 5, the
attention guider drives the attention alignment more reasonable
and we prove that more reasonable attention can lead to bet-
ter recognition performance as the ExpRate is increased from
46.86% to 49.29% after the attention guider is equipped (P2 vs.
P3). By comparing P3 with P4, the proposed temporal attention
could also improve the ExpRate from 49.29% to 50.41%. To
better interpret its superiority, we show an example of OHMER
improved by temporal attention in Fig. 8. Beta represents the
temporal attention gate in Eq. (27), the higher the parser should
not pay attention to input traces. P4 successfully learns to less
attend to the input traces when generating v-symbols. Further-
more, when encountering ambiguous symbols such as the sym-
bol in red rectangle, P4 also assigns a relatively high temporal
attention probability. By more attending to the language model
and less attending to input traces, P4 successfully recognize it

Fig. 8. An illustration of using temporal attention, symbol in the red rectan-
gle is incorrectly recognized as “8” without temporal attention and correctly
recognized as “f” with temporal attention.

as “f” rather than “8”, since the case of the symbol “e” followed
by the symbol “8” unlikely happens in math language.

Secondly, we show the comparison of computational cost
among P1–P4 by investigating their Train Time and Test Speed.
As we can see in Table II, system P1 needs 476 seconds for
one epoch. The overall training procedure takes 21 hours for P1
to converge as it needs nearly 157 epochs. During testing, we
evaluate 986 HMEs of CROHME 2014 test set one by one and
P1 costs 70 seconds to finish the testing procedure. Comparing
P1 with P2, the coverage based attention model slows down
the training procedure and testing procedure even if it brings a
great improvement on ExpRate. After appending the attention
guider (P2 vs. P3), our model becomes easier to train properly
(need less epochs). Since it performs as a regularization term
during training, it does not affect the Test Speed but it slows
down the backward propagation of gradient during training. The
computational cost of temporal attention can be ignored (P3 vs.
P4) but it takes more epochs to converge. The Test Speed of P4
is even slightly faster than P3 as the recognition performance of
P4 is better, encountering less insertion error during decoding.

Finally, we compare the ensemble systems P5–P8 with single
systems P1–P4 respectively. It is obvious to see that combining
3 models in an ensemble way (Eq. (32)) can yield more than
5% absolute gain but also brings 3 times computational cost for
testing.

C. Attention Visualization (Q2)

In this section, we show through attention visualization how
the proposed model is able to analyze the two-dimensional struc-
ture of HME. The proposed TAP approach to perform symbol
segmentation implicitly is also explained. We draw the trajec-
tory of input HME in a 2D image to visualize attention. We
use the red color to describe the attention probabilities, namely
the higher attention probabilities with the lighter color and the
lower attention probabilities with the darker color.

To analyze the 2D structure of HME, it is essential to iden-
tify the spatial relationships between math symbols, which are
statistically determined and might be horizontal, vertical, sub-
script, superscript or inside. As shown in Fig. 9, the horizontal
and vertical relationships are easy to learn by focusing on the
middle operator. To handle the superscripts, the parser precisely
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Fig. 9. Learning of five spatial relationships (horizontal, vertical, subscript,
superscript, and inside) through attention visualization.

Fig. 10. Hybrid attention visualization for an example of an HME with the

ground truth “e ∧ { x } + 1 8 x + 1 2”, spatial attention is shown through
red color in images and temporal attention is shown in the attached boxes, on
the right of boxes are predicted symbols.

pays attention to the end of base symbols and the start of super-
script symbols, which is reasonable because traces in the start of
superscript symbols are on the upper-right of traces in the end
of base symbols, describing the upper-right direction. Similarly,
for subscripts, the ending traces of base symbols and the start-
ing traces of subscript symbols can also describe a bottom-right
direction. As for the inside relationships, the decoder attends to
the bounding symbols.

More specifically, in Fig. 10, we take the expression ex +
18x + 12 as a correctly recognized example. We show that how
our model learns to translate this handwritten mathematical ex-
pression from a sequence of trajectory points into a se-
quence “ e ∧ { x } + 1 8 x + 1 2 ” step by step. When encoun-
tering basic math symbols like “e”, “x”, “+”, “1”, “2” and “8”,
the attention model well generates the alignment strongly cor-
responding to the human intuition. When encountering a spatial
relationship in ex , the attention model correctly distinguishes
the upper-right direction and then produces the symbol “∧”.
Immediately after detecting the superscript spatial relationship,
the decoder successfully generates a pair of braces “{}”, which
are used to compose the exponent grammar in and the

TABLE III
COMPARISON OF RECOGNITION PERFORMANCE (IN %) AND TIME EFFICIENCY

(IN SECOND) AMONG FIVE DIFFERENT SYSTEMS ON CROHME 2014 AND

CROHME 2016

S1 denotes system WAP, S2 denotes system WAP using 8-directional trajectory features,
S3 denotes system TAP, S4 denotes system TAP combining WAP, S5 denotes system
TAP combining WAP and GRU-based language model.

Fig. 11. (a) The curve of ExpRate with respect to ξ1 (the contribution of
TAP) in the ensemble of TAP and WAP (with ξ2 = 1 − ξ1 , ξ3 = 0). (b) The
curve of ExpRate with respect to (ξ1 + ξ2 ) in the ensemble of (TAP+WAP) and
GRU-LM (with ξ1 /ξ2 = 3/2, ξ3 = 1 − ξ1 − ξ2). We draw the two curves on
the validation set.

temporal attention coefficients increase significantly when en-
countering these v-symbols (“{}”).

D. Evaluation of Model Combination (Q3)

In Table III, we show the improvements and additional com-
putational cost via a WAP model and an additional GRU-based
language model by appending each of them to the proposed
TAP model step by step. Here, Time denotes the total seconds
for each system to finish the evaluation of CROHME 2014 (986
HMEs) and CROHME 2016 test set (1147 HMEs).

S1 denotes a pure WAP model that takes only static expression
images as input. S2 still denotes the WAP model but the input
contains static expression images and additional 8-directional
pattern images. The 8-directional pattern images are the inter-
mediate products of the 8-directional raw features [64] which
contain dynamic trajectory information. The dynamic trajec-
tory information embedded in 8-directional pattern images helps
WAP achieve a 2% gain (S1 vs. S2) and the computational cost
can be ignored. S3 denotes the proposed TAP model which is
same one as P8 in Table II and its performance shows the great
superiority of dynamic trajectory information for OHMER com-
pared with static images. Then, we can observe that the ExpRate
increases about 5% compared to TAP after the combination of
TAP and WAP (S4), which demonstrates the strong complemen-
tarity between dynamic traces and static images. The optimal
weighting coefficients ξ1 and ξ2 for TAP and WAP can be de-
termined by Fig. 11(a) on the validation set. Note that S2 also
utilizes the complementarity between traces and images, but the
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TABLE IV
COMPARISON OF EXPRATE (IN %) ON CROHME 2014, WE ERASE SYSTEM III

BECAUSE IT USED EXTRA TRAINING DATA

TABLE V
COMPARISON OF EXPRATE (IN %) ON CROHME 2016, WE ERASE TEAM

MYSCRIPT BECAUSE IT USED EXTRA TRAINING DATA

gap between S2 and S4 indicates that RNN seems a better way
for processing dynamic trajectory information even if it takes
nearly twice time than CNN for evaluation. Furthermore, after
we blend the GRU-based language model into the ensemble
of TAP and WAP (S5), the ExpRate increases from 60.34% to
61.16% on CROHME 2014, and from 55.27% to 57.02% on
CROHME 2016. As the language model is only a single uni-
directional GRU layer, it does not bring much time consump-
tion. The optimal weighting coefficients can be determined by
Fig. 11(b), namely ξ1 = 0.48, ξ2 = 0.32, ξ3 = 0.2.

E. Comparison With State-of-the-arts (Q4)

First, we make a comparison of our best system and other
submitted systems on both CROHME 2014, as shown in Ta-
ble IV. Details of these systems can refer to [61]. To make a
fair comparison among different systems, we only list the re-
sults using the CROHME training set. Our model represents the
ensemble of three TAP models, three WAP models and three
GRU-based language models. The textual data for training the
language model is also provided by CROHME 2014. There was
a large gap between the top-1 system of CROHME 2014 compe-
tition and our proposed system. Although another system named
“MyScript” of CROHME 2014 competition achieved a slightly
higher result (with an ExpRate of 62.68%), that system used a
large private dataset and the technical details were unrevealed.

To complement a more recent algorithm comparison and test
the generalization capability of our proposed approach, we also
validate our best system on CROHME 2016 test set as shown in
Table V, with an ExpRate of 57.02% which was quite a promis-
ing result compared with other participating systems. The team
Wiris was awarded the first place on CROHME 2016 competi-
tion using only the CROHME training data with an ExpRate of
49.61%, and it used a Wikipedia formula corpus, consisting of

Fig. 12. Two examples of HME which are incorrectly recognized, besides the
HME images are their predicted output and ground truth, in the ground truth
green texts are predicted correctly while red texts are predicted incorrectly.

more than 592000 formulae, to train a strong language model.
The details of other systems refer to [62].

Note that, CROHME participants evaluate their predicted
HMEs based on LG representations which identify the labels of
each stroke. However, in our experiments we evaluate predicted
HMEs based on MathML representations. Compared with eval-
uation based on LG representations, the MathML evaluation is
less strict as it does not check the stroke segmentation. We adopt
MathML representations rather than LG representations because
our system only aims to directly generate the predicted
string, it does not provide accurate stroke segmentation results.
Although such issue might not change much the recognition per-
formance, we will improve our system to provide stroke-level
evaluation by refining the alignment produced from attention
model in the future so that our performance are completely
comparable with CROHME participants.

F. Error Analysis

Although WAP and GRU-LM can help alleviate some over-
parsing and under-parsing problems coming from TAP, the com-
bination of TAP, WAP and GRU-LM still reveals some problems
need to be addressed. Fig. 12 shows two examples of HME that
are incorrectly recognized. The blue one is an under-parsing
problem as the decimal point “.” is missed in the predicted

string. As we can see the decimal point is very close to
math symbol “3” and its scale is much smaller than its adjacent
symbols. After some pooling operations (subsampling in TAP or
max-pooling in WAP) that will drop the fine-grained details of
extracted features, the visual information of the decimal point is
gone, leading to an under-parsing problem. The purple example
in Fig. 12 shows a disastrous error that most parts of HME are
missing in the predicted string, even if the simple hori-
zontal structure (represented by math symbol “=”) has not been
parsed. The diaster happens as the parser performs more like a
language model without considering the HME as a composition
of several sub-expressions, therefore previous predicted errors
are accumulated severely and inherited by next decoding step.

Another interesting analysis concerns the distribution of Ex-
pRate with respect to the number of strokes. Fig. 13 illustrates
this behaviour. In general, when the number of strokes is no
more than 15, HMEs are inaccurately recognized due to failure
of symbol recognition, mostly resulting from handwriting am-
biguities and similarities among math symbols. We expect the
model to perform poorly on HMEs composed of large number
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Fig. 13. Number of strokes vs. ExpRate (in %) on CROHME 2014.

of strokes due to 1) the number of training samples composed
of many strokes is quite limited; 2) HMEs that consist of many
strokes are usually related with long strings and HMEs
with longer strings are more likely to bring about the
mentioned disastrous errors.

VII. CONCLUSION

In this study we introduce an end-to-end framework with
guided hybrid attention based model to recognize online hand-
written mathematical expressions. The proposed model is data-
driven and alleviates the problem of explicit segmentation. We
demonstrate through visualization and experiment results that
the novel guide hybrid attention performs better than the con-
ventional attention model. We also verify that there is a strong
complementarity between static-image based representation and
dynamic-trace based representation for OHMER. Combining
TAP with WAP and an additional language model, we achieve
promising recognition results on both CROHME 2014 and
CROHME 2016 competition.
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