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Abstract
One main challenge for acoustic scene classification (ASC) is
there are remarkable overlaps and similarities between differ-
ent acoustic scenes. However, the most existing ASC tasks are
always lack of adequate training data to well distinguish dif-
ferent classes, especially in the deep learning approaches, such
as using convolutional neural network (CNN). Motivated by the
success of the transfer learning mechanism from the image clas-
sification task (e.g., ImageNet) with a large amount of training
data to other computer vision tasks with less training data [1],
in this study we investigate the possibility of transfer learning
between two quite different classification tasks with the inputs
of 2D image signals and 1D audio signals. One strong motiva-
tion behind this is the spectrograms of the audio signal can be
also considered as the 2D images which are potentially have the
similar structures to those samples in the image classification
task. Specifically, we conduct the transfer learning mechanism
by adopting the pre-trained CNNs with different architectures
from the ImageNet task to the DCASE2018 ASC subtask A.
Furthermore, by leveraging more input channels and training
data fragments, the classification accuracy of our proposed sys-
tem is increased from 59.7% to 77.8% on the evaluation set, in
comparison to the officially provided CNN system trained using
only audio data.
Index Terms: transfer learning, image classification, acoustic
scene classification, convolutional neural network, pre-training

1. Introduction
Sounds carry a large amount of information regarding to the
environment and physical events. Humans can perceive the
sound scene (e.g., busy square, park), and recognize individ-
ual sound sources (e.g., bus passing by, footsteps). This process
is called auditory scene analysis [2]. The research field study-
ing this process is called computational auditory scene analysis
(CASA) [3]. The computational algorithms attempt to automat-
ically make sense of the environment through the analysis of
sounds using signal processing and machine-learning method-
s. The corresponding task is called acoustic scene classification
(ASC) [4], and the goal is to classify a test audio into one of
predefined classes that characterizes the environment in which
it was recorded, e.g., airport, park, metro station.

In the past few years, acoustic scene classification has been
gradually receiving attention in the field of audio signal process-
ing and machine learning. Substantial progress has been made
by several important challenges, such as Detection and Classi-
fication of Acoustic Scenes and Events (DCASE2016) [5] and
DCASE2017 [6]. Many new techniques have emerged and been
widely investigated, including the aspects of feature deisigns, s-
tatistical models, decision criteria, and meta-algorithms. Sever-
al categories of audio features have been employed in acoustic

Figure 1: System overview.

scene classification systems, such as low-level time-based and
frequency-based audio descriptors [7, 8], frequency-band ener-
gy features (energy/frequency) [7], auditory filter banks (Gam-
matone, Mel filters), Mel-Frequency Cepstral Coefficients (M-
FCCs), spatial features,like interaural time difference (ITD), in-
teraural level difference (ILD) [9], voicing features (fundamen-
tal frequency f0) [10] and i-vector [11]. In DCASE2017, har-
monic, percussive [12] and constant-Q transform (CQT) [13]
have also been investigated, and achieved better results. The
features described here can be further processed to derive new
quantities that are used either in place or as an addition to the
original features, like principal components analysis and time
derivatives [14].

Once the features are extracted from the audio samples, the
next stage is learning statistical distribution models of the fea-
tures. Statistical models can be divided into generative and dis-
criminative methods. One classical generative model for acous-
tic scene classification is the Gaussian mixture models (GM-
M) [15] where features are interpreted as being generated by a
sum of Gaussian distributions. MFCC features and maximum
likelihood criterion are used for GMM training and testing. As
for discriminative models, support vector machine (SVM) is a
popular discriminative classifier for acoustic scene classifica-
tion [9, ]. In terms of training data augmentation, generative
adversarial nets (GAN) scored first place in DCASE2017 [16].
Recently, convolutional neural networks (CNNs) have been in-
vestigated and applied much for music tagging [17], acoustic
scene classification [18, 19]. CNN provides an effective way
to capture spatial information of multidimensional data. And
each feature map captures information at different locations in
the picture.

One main problem for most acoustic scene classification
tasks is the lack of training data to well distinguish the confus-
ing and overlapping acoustic scenes. Motivated by the success
of the transfer learning mechanism from the image classifica-
tion task (e.g., ImageNet) with a large amount of training data
to other computer vision tasks with less training data [1], in
this study we investigate the possibility of transfer learning be-
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Figure 2: Illustration of CNN-based transfer learning (VGGNet as the example).

tween two quite different classification tasks with the inputs of
2D image signals and 1D audio signals. One strong motivation
behind this is the spectrograms of the audio signal can be al-
so considered as the 2D images which are potentially have the
similar structures to those samples in the image classification
task. Specifically, we conduct the transfer learning mechanism
by adopting the pre-trained CNNs with different architectures
from the ImageNet task to the DCASE2018 ASC subtask A.
We compare several typical CNN architectures and the modi-
fied VGG network works the best. Furthermore, by leveraging
more input channels and training data fragments, the classifica-
tion accuracy of our proposed system is increased from 59.7%
to 77.8% on the evaluation set, in comparison to the official-
ly provided CNN system trained using only audio data. This
demonstrates the transfer learning between image and audio
tasks is quite effective. The remainder of the paper is organized
as follows. In Section 2, we first introduce the proposed system
overview used for experiments. In Section 3, we report and an-
alyze experiment results. Finally we summarize our work and
present conclusions in Section 4.

2. Our Proposed ASC System
The overall flowchart of our proposed system is illustrated in
Figure 1. For the feature extraction, the audio samples are pro-
cessed to extract MFCC features. Accordingly, for each audio
recording, a Mel spectrogram can be extracted. In the train-
ing stage, if the audio recording is quite long, we can split the
corresponding Mel spectrogram into several Mel spectrogram
fragments for the purpose of easy model training and data aug-
mentation. Moreover, if the audio is recorded by a binaural
microphone, the average of the left channel and right channel
in the time domain is often adopted as the input. But the orig-
inal data from the left and right channels can be still used as
the augmented training data. With the extracted features of all
training data, the CNN-based classifier can be learned via the
transfer learning mechanism, which will be elaborated in the
next section.

In the testing stage, for each channel, we first extract the
Mel spectrogram features and split into more fragments. Then,
using the classifier, the score of each channel is calculated by

averaging the posterior probabilities of all fragments. Finally,
the score fusion is performed to generate the detected scenes by
averaging the scores of all channels.

3. CNN-based Transfer Learning
CNN has been widely used for acoustic scene classification
[20, 21]. Compared with traditional handcrafted feature ex-
traction, CNN can automatically learn the feature represen-
tation. And it has been proved that CNN-based system can
often achieve a better accuracy compared with the tradition-
al machine learning method on the acoustic scene classifica-
tion task [19]. The basic components of CNN are convolu-
tion, pooling and activation layers. The typical CNNs, includ-
ing AlexNet [22]. Oxford VGGNet [23], ResNet [24] take
fixed-size input. In this study, as shown in Figure 2, we turn
the AlexNet/VGGNet/ResNet into a fully convolutional net-
work (FCN) by simply removing its fully connected layers.
To adopt these networks for acoustic scene classification, a
softmax layer is appended with 10 nodes as 10 scene class-
es. In the image classification task such as ImageNet [22],
AlexNet/VGGNet/ResNet achieved a great success. AlexNet
won the champion of ILSVRC (ImageNet Large Scale Visu-
al Recognition Competition) in 2012. VGG was the winner of
the ILSVRC competition in 2014. ResNet has also won cham-
pionships of multiple contests in computer vision area recently.
This is the reason that we make a comparison among these three
CNN structures in the experiment.

By conducting the transfer learning from image classifica-
tion to acoustic scene classification, we should also consider the
adaptation problem of both inputs and outputs between these t-
wo different tasks. Different from image classification task of-
ten containing RGB three channels, we only use one channel
of Mel spectrograms as the input. We also compare the FCNs
with random initialization and the pre-trained FCNs based on
ImageNet dataset [22].

Based on the FCN part, we investigate two designs of the
linking between the FCN and the final output layer with 10 n-
odes. Assuming that the FCN output is a 3-dimensional array
of size F × T × C, F and T are the sizes regarding to the
frequency and time domains. The first design is using a global
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average pooling across both F -axis and T -axis to generate a C-
dimensional vector which is fully connected (FC) to the output
layer.

For the second design, an additional module is adopted as
shown in the dotted box of Figure 2. We first reshape the FCN
output as a 2-dimensional arrayA of size L×C (L = F ×T ):

A = {a1, · · · ,aL} ,ai ∈ R
C . (1)

Then, we add a multilayer-perceptron (MLP) layer with C′ out-
put nodes and the tanh as the non-linear activation function.
Moreover, a learnable C′-dimensional vector u is used to per-
form an element-wise product with the MLP output:

ei = u ◦ tanh(Wai + b), (2)

where (W , b) is the parameter set of MLP.E = {e1, · · · , eL}
as a new representation of A is then fed for the global aver-
age pooling across the L-axis. In our experiments, C = 512
and C′ = 256. Compared with the first design, our proposed
second design is verified to yield a higher accuracy by using
more parameters trained with the audio data. Please note that
in the subsequent experiments, the first design is used as default
and the comparison between the first and second designs is only
conducted in the final system.

4. Experiments and Analysis
4.1. Data set and feature extraction

The experiments use the TUT Urban Acoustic Scenes 2018
dataset. The audio recordings with 48 kHz sampling rate con-
taining 10 different scenes were recorded by electret binaural
microphone. The length of each audio recording is 10 sec-
onds. For the feature extraction like in [12], we first perform
short-time Fourier transform on each audio. The frame length
is 46.4ms while the frame shift is 23.2ms. Then, we calculate
the amplitude of each bin and apply 128-bank mel-scale filter
banks followed by the logarithm transform. Finally the 128-
dimensional Mel spectrogram features are generated. Since the
audio recording is dual channel, we can use the original data
from the left channel, right channel and the average one of left
and right channels.

4.2. Different CNN structure comparison

Table 1: The classification accuracy comparison of different C-
NN structures and initializations.

Network Random-init Finetune

AlexNet 59.5% 64.3%
VGGNet-16 61.9% 70.6%
ResNet 61.6% 70.2%

Table 1 summarizes the results of AlexNet, VGGNet16,
ResNet with different initializations. The system uses only the
average channel, does not use the data augmentation (namely
splitting one Mel spectrogram of 10s recording into more frag-
ments) and the additional MLP layer in Figure 2. It is inter-
esting to observe the pre-trained CNNs with ImagetNet data al-
ways outperform the CNNs with random initialization weights,
yielding a significantly absolute increase of 8.7% accuracy in
the pre-trained VGGNet-16 case. Moreover, the VGGNet-16

achieves the best performance compared with the other two C-
NNs for both random initialization and fine-tuning. The reason
why VGGNet-16 is superior might be explained as the tradeoff
of increasing the network complexity and alleviating the over-
fitting problem.

It is well known that 1D audio signal is quite different
from the 2D image signal. However, ImageNet dataset contain-
s 1281167 image samples, which are far more than the train-
ing samples of our ASC task. We suppose that some natural
scene images in the ImageNet dataset may include similar struc-
tures to the Mel spectrograms, e.g., dusk, walls, roads, and even
wheat fields. Therefore, for the FCN part which is extracting
distinctive features, the pre-training using ImageNet data can
help FCN to extract more useful information from the input Mel
spectrograms.

4.3. Data augmentation and segmentation

Table 2: The classification accuracy comparison of different da-
ta augmentations using the pre-trained VGGNet-16.

Network Ns Accuracy

VGGNet-16 3 71.6%
VGGNet-16 6 73.9%
VGGNet-16 9 71.8%
VGGNet-16 12 71.8%

Inspired by [25], we split the whole Mel spectrogram of
each 10s audio recording into more fragments. We used the s-
mall fragments as the augmented samples for training. And for
the testing stage, the score of each audio recording is the aver-
age of posterior probabilities of all fragments. Table 2 lists the
results of the classification accuracy with different settings of
data augmentations based on the pre-trained VGGNet-16 clas-
sifier. Ns is the number of fragments for an audio. Compared
with the result in Table 1 without splitting, all settings of the
number of fragments increased the accuracy. And the setting
of 6 fragments achieved the best performance with an absolute
accuracy gain of 3.3% over the no-splitting case.

To give a better explanation, we compared and analyzed the
results of the different settings of fragments only in the testing
stage. We found that the main reason that there was an optimal
setting of fragments was the effective segments in a long audio
recording which could distinguish from other confusing classes
might be a small faction (less than 50%) of the whole record-
ing. In such cases, the no-splitting setting obviously led to the
misclassified result. Similarly, if we split one recording into
too many fragments (one frame as one fragment in the extreme
case), the classification result was still not correct. So there
might be a proper setting of the number of fragments where the
voting result could be correct.

In Figure 3, two examples of Mel spectrograms labeled as
“public square” and “street traffic” from the average channel
are given as an illustration. These two audio recordings sounds
very similar. However, both are classified as the “street traffic”
class. And we found that in Figure 3(b) a horn sound is the most
effective segment to distinguish these two classes between 7.2
and 7.6 seconds of this audio. This could be also easily observed
in the Mel spectrogram. This further indicates that the decision
based a long audio recording should pay more attention to the
effective segments, which implies that the detection and extrac-
tion of representative segments for acoustic scene classification
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(a) The example labeled as public square.

(b) The example labeled as street traffic.

Figure 3: The comparison of Mel spectrograms of two exam-
ples labeled as public square and street traffic from the average
channel.

are quite important.

4.4. Overall comparison

In this subsection, we further examine the effectiveness of using
multi-channel fusion and the newly designed linking between
FCN and the output layer as shown in Figure 2. Considering
that the audio is recorded by a binaural microphone, both left
and right channel could be also used for training as the supple-
mentary of the average channel. In the testing stage, the score
fusion is performed for multi-channel inputs.

Table 3: The classification accuracy comparison of differen-
t systems.

Input Network Ns Accuracy

Average Baseline [26] 1 59.7%
Average VGGNet-16 6 73.9%

Left,Right,Average VGGNet-16 6 75.5%
Left,Right,Average VGGNet-16+MLP 6 77.8%

Table 3 shows the corresponding experimental results. The
multi-channel fusion led to the accuracy increase from 73.9%
to 75.5%, demonstrating the complementarity among differ-
ent channels. Moreover, by using the new design of linking
between FCN and output layer, the VGGNet-16+MLP sys-
tem generated an additional accuracy gain of 2.3% over the

VGGNet-16 system. Finally, our best system can increase the
accuracy from 59.7% to 77.8% compared with the officially
provided baseline system [26]. The baseline system is a con-
volutional neural network with two layers and random initial-
ization.

Figure 4: Confusion matrix of the proposed system . X-axis
indicates the predicted label and Y-axis indicates the true label.

Figure 4 shows confusion matrix of the proposed system.
It can be observed that the “public square” classification re-
sults are the worst and are mainly misclassified as “park”,
“street pedestrian”, and “street traffic”. Also the accuracy of
“airport” and “shopping mall” did not reach 70%. Our future
work intends to design more effective segmentation approaches
to improve the performance of those confusing scenes.

5. Conclusions
In this paper, we investigated the transfer learning mechanism
of CNN architecture and weight initialization from the image
classification to acoustic scene classification. We experiment-
ed on several typical CNNs (AlexNet, VGGNet-16, ResNet-
50) and found that the pre-trained networks from ImageNet
task achieved better performance of acoustic scene classifica-
tion than randomly initialized one. Moreover, by splitting each
audio recording into smaller segments, the accuracy could be
further improved. Validated on the DCASE2018 ASC subtask
A, our proposed system achieved an accuracy of 77.8% on the
evaluation set. This demonstrates that the transfer learning be-
tween two tasks with quite different input signals (2D image vs.
1D audio) is possible.
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