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Abstract
We propose an information fusion approach to audio-visual
voice activity detection (AV-VAD) based on cross-modal
teacher-student learning leveraging on factorized bilinear pool-
ing (FBP) and Kullback-Leibler (KL) regularization. First, we
design an audio-visual network by using FBP fusion to ful-
ly utilize the interaction between audio and video modalities.
Next, to transfer the rich information in audio-based VAD (A-
VAD) model trained with a massive audio-only dataset to AV-
VAD model built with relatively limited multi-modal data, a
cross-modal teacher-student learning framework is then pro-
posed based on cross entropy with regulated KL-divergence.
Finally, evaluated on an in-house dataset recorded in realistic
conditions using standard VAD metrics, the proposed approach
yields consistent and significant improvements over other state-
of-the-art techniques. Moreover, by applying our AV-VAD tech-
nique to an audio-visual Chinese speech recognition task, the
character error rate is reduced by 24.15% and 8.66% from A-
VAD and the baseline AV-VAD systems, respectively.
Index Terms: Voice activity detection, audio-visual informa-
tion fusion, factorized bilinear pooling, teacher-student learn-
ing, KL-regularization

1. Introduction
Voice activity detection (VAD) aims to separate speech and
nonspeech segments from the target audio. It is an essential
front-end component in many speech processing application-
s, such as speech recognition, speaker recognition, speech en-
hancement and sound event detection [1, 2, 3, 4]. The accuracy
of speech/nonspeech detection is severely degraded when the
speech signal is distorted by noise [5, 6]. In the realistic ad-
verse environments, VAD is still a challenging problem which
has been investigated for many years [7, 8].

The early approaches for VAD are generally based on statis-
tical signal processing [9, 10], consisting of a feature extraction
stage followed by a speech/nonspeech classifier. The common
features used for VAD include energy, zero-crossing rate, cep-
stral coefficients, autocorrelation features and Mel-frequency
cepstral coefficients (MFCC) [11, 12]. The classical Gaussian
model was widely used for VAD [13]. Sohn et al. [9] devised
the VAD based on a Gaussian statistical model by employing
the decision rule based on the geometric mean of the likelihood
ratio. An unsupervised learning framework was proposed to
construct statistical models for VAD by a sequential Gaussian
mixture model in [14] and the evaluations effectively showed
its promising performance in comparison with some typical
semi-supervised VAD. The machine learning-based methods

are also considered for VAD back-ends, such as classification
and regression tree (CART), Gaussian likelihood ratio test (L-
RT) [9, 15]. In [16], support vector machine (SVM) were in-
vestigated to improve receiver operating characteristic (ROC)
curve.

Recently, deep learning (DL) based VAD in particular have
attracted much attention [17, 18]. A joint training approach to
VAD to address the issue of performance degradation due to
unseen noise conditions was presented in [19]. Fan et al. [20]
proposed to optimize the area under ROC curve (AUC) by
deep neural networks (DNN), which can maximize the perfor-
mance of VAD in terms of the ROC curve. Convolution neu-
ral networks (CNNs) and recurrent neural networks (RNNs)
have several properties that make them popular choices for
VAD [18, 21]. In [22], the authors proposed a novel adap-
tive VAD approach to control the speech/non-speech decision in
naturalistic environments. For the most commonly used down-
stream tasks, automatic speech recognition and voice activi-
ty detection were integrated in an end-to-end manner in [23].
Considering the complexity of the realistic conditions, some re-
searchers introduce the visual information to VAD system. Pre-
vious studies have demonstrated that adding visual-based voice
activity detection systems relying on facial features can improve
the performance in noisy environments [24, 25, 26, 27]. How-
ever, in real applications, audio-visual cross-modal databases
are usually far smaller than available audio-only databases due
to the complex recording conditions and high cost. So how to
deeply transfer the rich information in audio-based VAD (A-
VAD) model to audio-visual VAD (AV-VAD) model and fully
utilize the information of both audio and video modalities is
quite important to explore, which is also focus of this study.

Inspired by the work in audio-visual speech recogni-
tion [28], we present a novel information fusion approach to AV-
VAD based on factorized bilinear pooling (FBP) and Kullback-
Leibler (KL) regularization. Specifically, we first design an
audio-visual network by using FBP fusion to fully utilize the in-
formation interaction between audio modality and video modal-
ity. Next, a cross-modal teacher-student learning framework by
minimizing the cross entropy (CE) with KL-divergence regular-
ization is utilized to deeply transfer the rich information in A-
VAD model trained using massive audio data to AV-VAD mod-
el built with relatively limited multi-modal data. Evaluated on
an in-house dataset for AV-VAD task, the proposed approach
can yield consistent and significant improvements on the stan-
dard VAD metrics compared with other single-modal and multi-
modal methods. Furthermore, by applying our AV-VAD system
to an audio-visual Chinese speech recognition task, character
error rate (CER) is reduced by 24.15% and 8.66% compared
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Figure 1: AV-VAD architecture based on FBP audio-visual fu-
sion and KL-regularized teacher-student learning.

with A-VAD system and the baseline AV-VAD system respec-
tively.

The remainder of this paper is organized as follows. Section
2 gives detailed description of our proposed approach. In Sec-
tion 3, experimental results and analysis are discussed. Finally,
we conclude in Section 4.

2. Proposed Approach for AV-VAD
The overall flowchart of proposed AV-VAD model architecture
is illustrated in Figure 1, consisting of teacher model training
using audio-only data and student model training using audio-
visual data. In the training stage, first the large-scale external
audio data is used to build the teacher model using CE criterion.
Next, audio and video streams are fused as the student model to
utilize multimodal information via FBP. Finally, teacher-student
learning using weighted CE with KL-regularization is conduct-
ed to improve the student model. The details are elaborated in
the following subsections.

2.1. Teacher Model Training Using Extensive Audio Data

For the teacher model training, inspired by [21], the extracted
acoustic features are fed into a LSTM layer followed by a time
convolution layer which is used to utilize acoustic context in-
formation, and then a fully connected (FC) layer is adopted to
classify speech/nonspeech frames. We use 40-dimensional filter
bank (FBank) features normalized by global mean and variance
to train the audio teacher model. The LSTM layer has 416 cells.
The kernel size of the time convolution layer is set to 5×1. The
whole network is optimized by minimizing the cross entropy
criterion as:

lTCE = −
∑
t

log(PT(yt|xa,t)), yt ∈ {0, 1} (1)

where PT(yt|xa,t) is the speech/nonspeech class posterior of yt
given xa,t generated by the teacher audio model, xa,t denotes
the acoustic feature vector at the t-th frame, and yt is the cor-
responding VAD label at the t-th frame. The teacher model is
trained using 60,000 hours audio data, which is commercially
used in iFlytek’s speech products.

2.2. Audio-Visual Student Model Using FBP Fusion

For the audio-visual student model, the structure of audio
stream initially copies from the teacher model, except that the
final fully connected layer is removed. For the video stream,
considering practicality and lightweight, we choose a combina-
tion of MobileNetV2 [29], one time convolution layer and two
GRU layers, as shown in Figure 1. In this study, 13 linear bot-
tlenecks are adopted in MobileNetV2 as a feature extractor. The
grayscale lip reshaped to 64×64 is used as the video network in-
put, and the output is an encoded vector by using average pool-
ing. For details, please refer to [29]. We employ cross entropy
loss to train the video-based VAD (V-VAD) system by adding a
fully connected layer at the end of the video stream in Figure 1,
which will be mentioned in the experiments.

Inspired by [30], a direct concatenation for audio-visual fu-
sion at the encoder is first considered. Due to the effectiveness
of bilinear pooling in visual question answering (VQA) tasks,
we apply factorized bilinear pooling for AV-VAD fusion. Bi-
linear pooling is introduced in [31] and initially used for fea-
ture fusion. Then the fused vectors are used for classification.
Although the system performance is improved, it also brings
a huge amount of computation. Some researches on reduc-
ing computational cost have achieved the considerable result-
s [32, 33]. According to [33], given two feature vectors in differ-
ent modalities, i.e. the audio encoder vector a ∈ RM (M=384)
and the visual encoder vector v ∈ RN (N=64), the simplest
cross-modal bilinear model is defined as follows:

zi = a>Wiv (2)
where W ∈ RM×N is a projection matrix, zi ∈ R is the output
of bilinear model. We use the Eq. (3) to obtain the output fusion
vector z = [z1, · · · , zO]. The formula derivation from formula
Eq. (2) to Eq. (3) was described in [33].

z = SumPooling(Ũ>a ◦ Ṽ >v,K) (3)
where the function SumPooling(x,K) applies sum pooling

within a series of non-overlapped windows to x.
∼
U ∈ RM×KO

and
∼
V ∈ RN×KO are reshaped parameter 2-D matrices to be

learned. In our experiment, O and K are set to 128 and 4 re-
spectively. ◦ represents the element-wise multiplication of two
vectors. Besides, dropout is adopted to prevent over-fitting. The
L2-normalization is used to normalize the energy of z to avoid
the dramatical variation of the output magnitude. The whole
network is optimized in an end-to-end manner by minimizing
cross entropy similar to Eq. (1).

2.3. Cross-Modal Teacher-Student Training

Considering that audio-visual cross-modal databases are usu-
ally far smaller than available audio-only databases due to the
complex recording conditions and high cost, we explore how
to use the abundant external audio data to improve the perfor-
mance of the cross-modal model. We present a teacher-student
learning framework based on KL regularization and FBP fu-
sion. We find that for the VAD task in realistic noisy condi-
tions, adding video modality can bring significant performance
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Table 1: Detailed data distribution of our AV-VAD training cor-
pus in different environments.

Environment TV Program Mobile Phone Car

Size 220h 65h 235h

improvements (see section 3.2 for details). Unlike in [28] where
using video modality can not bring significant gains for audio-
visual speech recognition task, it is not adequate to use just KL-
divergence as the loss function for the teacher-student learning
in AV-VAD. Accordingly, here KL-divergence is adopted as a
regularization term for traditional cross entropy loss, which is
calculated by using the output of the teacher network and the
audio stream in student network. In this way, the impact of
video modality can be enhanced and the trade-off between CE
and KL-divergence leads to better VAD performance. The KL-
divergence and CE loss are calculated as:

lSKL =
∑
t

PT(yt|xa,t) log
PT(yt|xa,t)

PS(yt|xa,t,xv,t)
(4)

lSCE = −
∑
t

log(PS(yt|xa,t,xv,t)), yt ∈ {0, 1} (5)

where PT(yt|xa,t) and PS(yt|xa,t,xv,t) are the speech or non-
speech class posteriors generated by teacher and student net-
works, xa,t and xv,t denote the acoustic feature vector and vi-
sual feature vector at the t-th frame. Then, the final loss function
is:

L = λ× lSCE + (1− λ)× lSKL (6)

where λ is a weighting factor set to 0.7 in our experiments,
which ranges from 0 to 1. L is used to optimize the whole s-
tudent audio-visual network and the parameters of the teacher
network are fixed.

3. Experiments and Result Analysis

3.1. Databases and Implementation Details

We conduct VAD experiments on an audio-only dataset of about
60,000 hours and an audio-visual dataset of about 520 hours
collected in realistic conditions. All these in-house data are col-
lected by iFlytek. Table 1 reports detailed data distribution of
our AV-VAD training corpus in different environments. We use
the following standard metrics for evaluation of VAD perfor-
mance: accuracy, precision, recall and AUC. Both the validation
set and test set include about 6-hour audio-visual data recorded
in the car environment.

We further evaluate VAD using character error rate (CER)
by applying it to an audio-visual Chinese speech recognition
(AVCSR) task with a large vocabulary of 14,835 words. The
AVCSR model architecture [34], having a hybrid CNN-HMM
acoustic model is with 15,003 tied states. To train the AVC-
SR model, we first initialize the audio-stream parameters by
pre-training using about 50,000h audio-only data and the video-
stream parameters by pre-training using about 300h video-only
data. Then about 150 hours of audio-visual data recorded in
car environments are employed to fine-tune the whole AVCSR
model. The test set consists of about 3-hour of audio-visual da-
ta in the same car environments. A 3-gram language model is
adopted for decoding.

We use pytorch to train all VAD networks and minimize the
loss function using the Adam optimization method. The batch
size is 128 and the dropout probability is equal to 0.2 to prevent
over-fitting. The learning rate is 0.005 for A-VAD and 0.0001
for V-VAD and AV-VAD. For the selection ofO andK, we take
O = 128 as the benchmark and the range of K is 2 ∼ 10. For
λ, we select it from 0 to 1 with a step of 0.1, and the value with
the best result on the validation set is determined.

3.2. Results on Standard VAD Metrics

First we evaluate the performance of the single-modal systems.
We train the A-VAD and the V-VAD system respectively, cor-
responding to the audio stream and video stream of the student
model in Figure 1, by minimizing the cross entropy loss. The
A-VAD model is trained by external audio data in addition to
the audio portion of the given audio-visual training corpus. The
V-VAD model is built based on video portion of audio-visual
training corpus. Our results are presented in Table 2. We can
observe that the better results were achieved by A-VAD system
compared with V-VAD in all four metrics. For example, the per-
formance gap for precision measure is 11.71% between A-VAD
and V-VAD.

Table 2: Test set performance on standard metrics for VAD sys-
tems. [Acc: accuracy, Pre: precision, Rec: recall]

System Acc(%) Pre(%) Rec(%) AUC(%)

V-VAD 88.59 77.80 90.51 95.49
A-VAD 94.74 89.51 94.86 98.85
Concat 94.99 89.48 95.75 98.99

FBP 95.54 90.53 96.28 99.05
TS-Concat 95.06 89.48 96.00 99.03
TS-FBP 95.73 91.03 96.28 99.16
TS [28] 88.03 74.46 95.84 92.48

Next, we compare different AV-VAD systems. Inspired
by [30], a direct concatenation for audio-visual fusion at the
encoder is implemented and denoted as ‘Concat’ in Table 2,
which yielded remarkable improvements for accuracy, recall
and AUC measures. Moreover, the audio-visual fusion using
FBP achieved consistent performance gains over audio-visual
concatenation for all four VAD metrics.

Finally, our proposed cross-modal teacher-student (TS)
learning is applied for both AV-VAD systems based on feature
concatenation (‘TS-Concat’) and FBP fusion (‘TS-FBP’). The
teacher-student (TS) learning method in [28] which has been
successfully used for audio-visual speech recognition is also u-
tilized for comparison. Our TS learning methods yielded addi-
tional improvements on top of both ‘Concat’ and ‘FBP’ system-
s. However, the performance of TS method in [28] was much
worse as it only employs KL-divergence loss for optimization
without the constraint of CE loss. Overall, ‘TS-FBP’ achieved
the best performance for all VAD measures. The similar perfor-
mance trend can be also observed from Figure 2, which shows
the ROC curves for different systems, obtained by varying the
classification threshold. Note that the ‘TS-FBP’ curve is su-
perior to other systems, which is consistent with our previous
results in Table 2.

Furthermore, we make a comparison of the learning curves
between ‘TS-FBP’ and TS system in [28] on the validation set.
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Figure 2: Comparison of ROC curves of different VAD systems.

Figure 3: Comparison of learning curves between TS-FBP and
TS [28] system.

As illustrated in Figure 3, the generalization ability of ‘TS-FBP’
can be enhanced, and the fluctuation of the curve is smaller. Ac-
cordingly, our approach can achieve a smaller loss which leads
to better system performance.

Table 3: Test set performance of different VADs for AVCSR. [I:
insertion error, D: deletion error, S: substitution error]

System I(%) D(%) S(%) CER(%)

V-VAD 1.76 13.96 8.75 24.47
A-VAD 6.90 6.26 9.37 22.53
Concat 1.52 8.83 8.36 18.71

FBP 1.54 8.07 8.39 18.00
TS-Concat 1.77 8.35 8.28 18.40
TS-FBP 1.54 7.30 8.25 17.09
TS [28] 6.59 7.01 8.89 22.49

3.3. Results on CER for AVCSR System

We further evaluate the VAD system performance on AVC-
SR and the results are shown in Table 3. Different from
audio-visual speech recognition task in [28], the performance of
VAD systems have been significantly improved after fusing the
video modality. Specifically, according to Table 3, compared
with A-VAD, the system performance of the direct concate-
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(c) Proposed TS-FBP

Figure 4: Analysis on one utterance example.

nation at the encoder is relatively improved by 16.96%. This
is our motivation to introduce the weighted CE loss with KL-
regularization. After using FBP for audio-visual fusion, the
CER yielded an absolute accuracy gain of 0.71% over the ‘Con-
cat’ based approach. After using the proposed teacher-student
learning through KL regularization, the performance of these t-
wo audio-visual fusion systems has been further improved. And
‘TS-FBP’ achieved the best CER result of 17.09%.

Figure 4 gives an utterance example from the real test set.
Figure 4(a) plots the audio waveform with background mu-
sic noise. The frame-level VAD probabilities of the utterance
provided by the TS method in [28] and the proposed TS-FBP
are shown in Figure 4(b) and Figure 4(c) respectively. Clear-
ly, the TS-FBP output is much smoother when compared to T-
S in [28]. Based on the AVCSR results, it seems that the TS
method in [28] led to more deletion and substitution errors due
to speech segments missing after AV-VAD, as shown in the two
red dotted boxes in Figure 4(a)-(c). Our proposed TS-FBP for
AV-VAD could well preserve those speech segments and gener-
ate correct recognition results. The reason is that our approach
can fully utilize the video information by introducing a weight-
ed loss of CE and KL-divergence. In this example, the input
for the video stream only contains the target speaker’s lip, and
does not include the interferer’s lip (e.g., singers). This way it
is more robust to noise interferences.

4. Conclusion
We present a novel information fusion approach to audio-
visual voice activity detection based on teacher-student learn-
ing through KL regularization and factorized bilinear pooling
fusion. FBP fusion demonstrates its superiority over the simple
audio-visual feature concatenation. Then cross-modal teacher-
student learning is verified to be effective to transfer the rich
information in audio-only teacher model to the audio-visual stu-
dent model. Evaluated on a real-world recorded dataset, the pro-
posed approach yields consistent improvements over state-of-
the-art techniques in terms of standard VAD metrics and CER
for audio-visual speech recognition.
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