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Abstract
In this study, we investigate the effects of deep learning (DL)-
based speech enhancement (SE) on speech emotion recogni-
tion (SER) in realistic environments. First, we use emotion
speech data to train regression-based speech enhancement mo-
dels which is shown to be beneficial to noisy speech emotion
recognition. Next, to improve the model generalization capa-
bility of the regression model, an LSTM architecture with a
design of hidden layers via simply densely-connected progre-
ssive learning, is adopted for the enhancement model. Finally,
a post-processor utilizing an improved speech presence proba-
bility to estimate masks from the above proposed LSTM struc-
ture is shown to further improves recognition accuracies. Ex-
periments results on the IEMOCAP and CHEAVD 2.0 corpora
demonstrate that the proposed framework can yield consisten-
t and significant improvements over the systems using unpro-
cessed noisy speech.
Index Terms: speech emotion recognition, speech enhance-
ment, realistic environments, multiple-target learning, LSTM

1. Introduction
Speech emotion recognition, as an important part of human-
computer interaction, has been widely investigated [1, 2, 3].
However, the systems that are trained with clean speech often
suffer from a huge performance degradation when tested in a
noisy environment due to the mismatch between the train and
test conditions [4, 5, 6]. Unfortunately, noise pollution is an in-
discernible part of our daily life, caused often by various human
activities and other background noise. Therefore, in real world
applications, speech enhancement (SE) is a necessary module
for emotion recognition system.

Despite recent advances in the field of speech emotion
recognition [7, 8, 9], recognizing emotions in noisy environ-
ments remains an open research topic [10, 11, 12]. The prima-
ry concern of SE for emotion recognition is to remove noise
effectively and preserve emotional information in noisy speech.
Huang et al. [13] have studied the influence of white Gaussian
noise on speaker’s emotional states based on Gaussian mixture
model (GMM), a typical emotion recognition system. By us-
ing algorithm based on spectral substraction and masking pro-
perties, they showed that the SE algorithms constantly improved
the performance of emotion recognition system under various
signal-to-noise ratios (SNRs). In [14], noise robust feature se-
lection with k nearest neighbor (KNN) was found to be benefi-
cial to emotion recogniztion in noisy speech. A front-end voice
activity detector (VAD) based unsupervised method to select
the frames with a relatively better SNR in the spoken utterances
was proposed and shown to be effective in [15]. In [16], effect-
s of different feature types and optimization techniques with
different noises or microphone positions for automatic speech

emotion recognition have been explored. Authors in [6] com-
pared various front-end techniques for their efficacy in emotion
recognition. In terms of the intelligibility of expressive speech
in noise, researchers in [17] suggested that the intelligibility of
emotion speech in noise was simply related to its audibility as
conditioned by the effect that the expression of emotion has
on its spectral profile. In [18], an interesting research investi-
gated the performance of two enhancement methods in terms of
perceptual quality as well as their impacts on emotion recog-
nition. Furthermore, it demonstrated that quality measures can
be an important indicator of enhancement model performance
towards emotion recognition.

Although the aforementioned studies have shown the be-
nefit of applying denoising algorithms to noisy speech, there are
few studies on emotion recognition in realistic noisy environ-
ments. The most important reason may be that there are com-
plex environmental noises and interferences to deal with. Re-
searchers in [19] studied how a scalable deep learning (DL) ar-
chitecture can be trained to enhance audio signals in a large
number of unseen environments and benefitf common emotion
recognition pipelines in terms of noise robustness. However the
tested noisy data in [19] is still simulated.

In this paper, we investigated deep learning based speech
enhancement framework for speech emotion recognition (SER).
Specifically, the ideal ratio mask (IRM) estimated by the trained
a long short-term memory (LSTM) model was first used for SE.
We also find that the SE model trained with emotional corpus
could achieve a higher accuracy for SER. To improve the mod-
el generalization capability of the regression model, an LSTM
architecture with a design of hidden layers via simply densely-
connected progressive learning, is adopted for the enhance-
ment model. The proposed architecture further improves the
performance of emotion recognition. Finally, considering the
complexity of the realistic environment, the proposed improved
speech presence probability (ISPP) based post-processing algo-
rithm combined with deep learning by incorporating the esti-
mated progressive ratio mask (PRM) obtained from the progre-
ssive learning structure further improves the noise robustness.
Synthesized training data pairs generated from the WSJ0 [20]
and IEMOCAP databases [21] were used to train SE mod-
els. Evaluated on the IEMOCAP and CHEAVD 2.0 databa-
ses [22], adopting emotional speech corpus (IEMOCAP) is cru-
cial to SER performance rather than using non-emotional cor-
pus (WSJ0) for both simulated and realistic noisy speech da-
ta. Moreover, the progressive learning network combined with
ISPP post-processing can yield significant improves for SER on
CHEAVD dataset recorded in realistic noisy conditions.

The remainder of this paper is organized as follows. Section
2 gives detailed description of our proposed approach. In Sec-
tion 3, experimental results and analysis are discussed. Finally,
we conclude in Section 4.
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Figure 1: Architecture of speech enhancement preprocessor.

2. Speech Enhancement Preprocessing
In daily situations, the speech polluted by background noises
may severely destroy the SER performance. Hence, a reliable
SE system which can not only effectively suppress the back-
ground noise but also retain the emotional information is the
key to improve the SER performance. In this study, three strate-
gies used to improve SER performance are investigated.

2.1. Training data for speech enhancement

For automatic speech recognition (ASR), in order to ensure the
effectiveness of system, a large number of data must be collect-
ed to cover all acoustic changes in speech recognition applica-
tions, such as speakers, background noises, different effects of
microphone and communication channels, even different recog-
nition tasks, etc. Training data is also important for speech e-
motion recognition. In [23], generalization involving the target
persons speech samples and prior knowledge about their emo-
tional content are investigated. In [24], the authors proposed an
adversarial learning framework to alleviate the culture influence
on emotion recognition. The effect of gender bias in speech e-
motion recognition has also been studied in [25]. The prepro-
cessor for speech emotion recognition, which is different from
the traditional SE, needs to remove the noise without destroy-
ing the emotion clues of speech as much as possible. Inspired
by this, we found that when the SE system trained with more
matching data (corpus with emotional speech), it is helpful to
improve the performance of SER from noisy speech compared
to using non-emotional speech corpus. It is verified for the set-
tings of both simulated and realistic noisy data.

2.2. A novel progressive multi-target architecture

Deep neural networks (DNNs) and recurrent neural network-
s (RNNs) have been widely used in speech enhancement for
a long time [26]. However, the conventional RNN can not
hold information for a long period and the optimization of RN-
N parameters via the back propagation through time (BPTT)
faces the problem of the vanishing and exploding gradients [27].

The problems can be well alleviated by the invention of LSTM
which introduces the concepts of memory cell and a series of
gates to dynamically control the information flow. As shown in
Figure 1, all LSTM layers consist of memory cells.

The LSTM-based densely connected progressive learning
was proposed by [28] and proved to be effective for speech en-
hancement. To improve the generalization capability of LSTM
architecture, a design of hidden layers via densely connected
progressive learning and output layer via multiple-target learn-
ing is presented (denoted as LSTM-PL-MTL), as illustrated in
Figure 1. The log-power spectra (LPS) features are adopted for
network inputs and outputs. The input is noisy LPS (NLPS)
features and final output is clean LPS (CLPS) and IRM.

A series of progressive ratio masks (PRMs) are concate-
nated with the progressively enhanced LPS (PELPS) features
together as the learning targets. PRM, to perform a trade-off
between noise reduction and speech distortion, is defined as:

MPRM(t, f) =
S(t, f) +NT(t, f)

S(t, f) +NI(t, f)
(1)

where S(t, f) represents the power spectrum of the speech
signal at the time-frequency (T-F) unit (t, f), NT(t, f) and
NI(t, f) represent the power spectrum of the noise signals in
one PRM target and input noise signals at the T-F unit (t, f)
respectively. All the target layers are designed to learn interme-
diate speech with higher SNRs or clean speech. The multi-task
error between the output of target layer k and its ground-truth
label is

EMTL(k) =
∑
t,f

[(x̂PELPS(k, t, f)− xPELPS(k, t, f))
2

+ (M̂PRM(k, t, f)−MPRM(k, t, f))
2]

(2)

where x̂PELPS(k, t, f) and xPELPS(k, t, f) are predicted and
ground-truth PELPS features of the kth target layer, while
M̂PRM(k, t, f) and MPRM(k, t, f) are predicted and ground-
truth PRM features of the kth target layer. Both x̂PELPS(k, t, f)

and M̂PRM(k, t, f) are nonlinear functions of PELPS and PRM
in preceding target layers. xPELPS(k, t, f) and MPRM(k, t, f)
can be easily calculated with a predefined SNR gain of target
layer k. Please note that PELPS and PRM of target layer 3 cor-
respond to clean LPS (CLPS) features and IRM, respectively.
The errors of all target layers are computed in the mean squared
error (MSE) sense, and added together to optimize the trainable
parameters. In our LSTM-PL-MTL, the dimension of both LPS
and PRM (IRM) feature vectors is 257, single frame is used for
input, the number of LSTM memory cells in each layer is 1024,
and we use 3 target layers (with 10dB SNR gain for both target
layer 1 and 2).

2.3. Speech post-processing with ISPP

One advantage of the method based on progressive learning is
that there are multiple estimated targets that can be obtained
from the network. The different targets can provide rich infor-
mation for post-processing. Meanwhile, a post-processing ap-
proach, the improved speech presence probability (ISPP) com-
bining conventional and deep learning techniques [29, 30] by
incorporating the estimated PRM obtained from the proposed
structure was employed. By incorporating neural network based
mask estimation M̂PRM(t, f) to define an intermediate item

Ĝ(t, f) = δM̂PRM(t, f) + (1− δ)GISPP(t, f) (3)
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where GISPP(t, f) denotes ISPP-based gain function at T-F unit
(t, f) and δ is a weighting factor empirically set to 0.5 in our
experiments, see [29] for details.

3. Experiments and Result Analysis
3.1. Databases

7138 utterances of WSJ0 corpus [20] (about 12 hours of reading
style speech) from 83 speakers were used to train LSTM-IRM
model, denoted as SI-84 training set.

Interactive emotional dyadic motion capture database
(IEMOCAP) corpus [21], one of the widely used standard emo-
tional databases on speech emotion recognition, comprises five
sessions, each of which includes labeled emotional speech utte-
rances from recordings of dialogs between two actors. There is
no actor overlapping between these sessions.

Chinese natural audio-visual emotion database (CHEAVD)
2.0 [22] was collected by capturing clips from films and TV
programs and used for multimodal emotion challenge (MEC)
2017 [31]. These clips are not captured in the controlled studio
environment, so there might contain background noises, which
are very close to real world scenarios. Each speech utterance
has one label among eight emotion categories. The SNR distri-
bution was investigated in [32].

3.2. Implementation details

To train SE models, WSJ0 corpus and IEMOCAP that do not
include the same speaker in SER system (about 9 hours) are cor-
rupted with CHiME-4 noise at four SNR levels (-5dB, 0dB, 5dB
and 10dB) to build a 36-hour training set respectively, consist-
ing of pairs of clean and noisy utterances. For SER system, we
conducted experiments on IEMOCAP in mismatched scenarios,
i.e clean-training and noisy-testing. We randomly picked out a
session (session 3 was used here) and only added noise to the
test set, see [33] for details. Four noise types (BUS, CAF, PED
and STR) [34] in CHiME-4 challenge were selected as the noise
database for simulation. We investigated the performance of our
algorithm at SNR levels ranging from -5dB to 15dB, with an in-
terval of 5dB and used the speech utterances from four emotion
categories, i.e., happy, sad, angry and neutral.

MEC 2017 is a more challenging task and the labels of the
test set are not available. We randomly selected 700 utterances
from the training set with a total of 4917 utterances as the vali-
dation set and the rest as the new training set, and the validation
set of the competition as the new test set for experiments. Atten-
tion based fully convolution network [33] is used as SER system
for both IEMOCAP and CHEAVD tasks. Please note that the
test set are recorded in realistic noisy conditions. Therefore,
there are high mismatches between SE model and SER system,
such as speaking style and types of background noise. These
mismatches make SER system quite challenging for our pro-
posed enhancement approach.

For front-end configurations, we used pytorch to train the
SE network. Each stage consists of 6 epochs and 5 stages are
used. The learning rate for the first stage was initialized as 0.25
and then decreased by 20% after each stage. The batch size is 8.
For the back-end configurations, the SER systems were trained
on TensorFlow, referring to [33] for specific parameter.

3.3. Results on simulated test data using IEMOCAP

Deep learning-based IRM estimation was first used for SE. Un-
der clean conditions, we trained the SER system and achieved

an accuracy of 71.90% on the test set. Our results are pre-
sented in Table 1. ‘Noisy’ denotes unprocessed noisy speech.
‘IRM-WSJ0’ and ‘IRM-IEM-2’ represent LSTM-IRM model
trained by WSJ0 and IEMOCAP respectively, where ‘2’ means
the number of hidden layers used in LSTM is 2.

Table 1: The accuracy (%) comparison of using IRM estimation
with different hidden layers (with the corresponding 71.90% for
clean speech).

Enhancement -5dB 0dB 5dB 10dB 15dB

Noisy 48.54 50.00 52.19 55.47 59.12
IRM-WSJ0 47.81 50.37 56.20 60.95 62.04

IRM-IEM-2 52.92 56.57 61.68 65.33 66.79
IRM-IEM-3 47.81 52.19 59.85 63.87 65.33
IRM-IEM-4 46.35 48.91 57.66 63.50 64.60

Our first observation is that the accuracy decreases to a cer-
tain extent as CHiME-4 noise is added to the test set in IEMO-
CAP, 48.54% at -5dB and 59.12% at 15dB. By using the LSTM-
IRM enhancement model trained on WSJ0, the SER systems
achieve better performance when using enhanced audio com-
pared to using noisy audio in most cases. The only exception
is when the test speech is under -5dB. When the enhanced mo-
del trained on the data set of IEMOCAP using the same net-
work structure, the performance of SER has a comprehensive
improvement. When the number of hidden layers in LSTM is
increased, the performance of the SER system decreases. The
reason might be that the deeper structures with limited training
data lead to the overfitting problem and emotional information
is destroyed, which is also the difficulty of SE for SER.

Table 2: The accuracy (%) comparison of different targets by
using LSTM-PL-MTL (with 71.90% for clean speech).

Enhancement -5dB 0dB 5dB 10dB 15dB

Noisy 48.54 50.00 52.19 55.47 59.12
PL-MTL [35] 51.46 56.20 59.85 63.50 67.15

T1-LPS 49.27 54.02 60.58 63.87 67.15
T1-PRM 47.08 48.18 54.02 63.50 64.60
T2-LPS 38.32 47.08 54.02 56.20 57.66
T2-PRM 47.81 48.91 56.57 63.87 66.06
T3-LPS 40.88 48.91 50.73 52.92 55.11
T3-IRM 54.38 57.30 62.77 67.15 68.25

To improve the SE model generalization for SER system,
we further investigated the SE model structure based on pro-
gressive learning which has been successfully applied to speak-
er diarization in quite challenging realistic environments [36].
As shown in Table 2, we used the structure in [35]. Interestingly,
we find that the best performance can be obtained when decod-
ing with Target 3 IRM. However, the original LSTM-PL-MTL
model in [35] underperforms LSTM-IRM model (IRM-IEM-2)
in Table 1 for most SNR cases. This might be explained as that
the dense connections in LSTM-PL-MTL result in very high di-
mensional intermediate target layers and the overfitting problem
under the setting of limited training data.

Nevertheless, with our simplified architecture as shown in
Figure 1, almost all dense connections in original LSTM-PL-
MTL model [35] are removed with only one connection from
the input layer to the final intermediate target layer. From Ta-
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ble 2, we can observe the results with the Target 3 IRM (T3-
IRM) in our proposed LSTM-PL-MTL perform better than the
system in [35] and IRM-IEM-2, across all SNR levels. A-
mong all the learning targets (T1-LPS, T1-PRM, T2-LPS, T2-
PRM, T3-LPS, T3-IRM) in our LSTM-PL-MTL model, T3-
IRM achieved the best results. The new architecture helps in
all cases and the performance gaps between the highest SNRs
(10dB and 15dB) and clean condition are small. In the case
of low SNR, there will be more residual noises after enhance-
ment, leading to the poor performance of SER. We compared
the enhanced speech spectrograms and observed that more dis-
tortions destroying the emotion information appeared at low S-
NRs. These could explain why performance is still far from
clean audio even after being enhanced.

3.4. Results on realistic test using CHEAVD

To verify the effectiveness of our proposed SE approach in
more realistic conditions, we conducted the experiments on
CHEAVD dataset recorded in realistic noisy conditions, de-
tailed results are presented in Table 3 and 4.

Table 3: The accuracy (%) comparison of using different speech
enhancement methods in real situations.

Noisy 1000h SE [35] IRM-WSJ0 IRM-IEM

41.58 41.30 40.88 42.01

In Table 3, a general SE model trained in corpus of about
1000 hours was first used for comparison [35], and it was found
that the performance of SER decreased slightly. Second, IRM-
WSJ0 model still degraded the SER performance. The reason
may be the high mismatch of speech styles (emotional vs. non-
emotional). When IRM-IEM was used, the performance of SER
not only exceeded that of 1000h enhanced model, but also ex-
ceeds that of unprocessed speech. This is consistent with our
observation in the simulation data set.

Table 4: The accuracy (%) comparison of using ISPP post-
processing. “Fusion” means that the score fusion of SER sys-
tems with enhanced speech obtained from T1-PRM and corre-
sponding ISPP post-processing.

T1-PRM-ISPP T2-PRM-ISPP T3-IRM-ISPP Fusion

43.00 42.29 42.72 44.13

Considering no significant performance improvements in
Table 3, we add to two LSTM layers for each target learning
in LSTM-PL-MTL and use the ISPP post-processing in Sec-
tion 2.3. The results are shown in Table 4 and remarkable im-
provements of SER performance could be achieved by using the
proposed LSTM-PL-MTL structure and post-processing. When
using post-processing based on T1-PRM, 43.00% accuracy can
be obtained. By score fusion of SER systems with enhanced
speech from T1-PRM and its post-processing, the best accura-
cy of 44.13% is achieved, which yields an absolute 2.55% im-
provement over the unprocessed noisy speech. This also shows
the effectiveness of proposed method.

Finally, to illustrate why the proposed speech preprocessing
can help emotion recognition. Figure 2 gives an utterance ex-
ample from the real test set of CHEAVD 2.0. Figure 2(a) plots
the spectrogram of the unprocessed noisy utterance. The girl’s

(a) Noisy spectrogram (b) 1000h SE

(c) LSTM-IRM (d) LSTM-PL-MTL + ISPP

Figure 2: The comparison of SE results of different approaches
for an utterance from the real test set of CHEAVD 2.0.

sad voice was concealed to some extent by the environmental
noise, and wrongly classified as “neutral”. By using the trained
enhancement model, a lot of background noise was removed,
and it was also correctly classified as “sad”. But it also brings
some non-linear distortions to speech, as shown in the spec-
trogram in the black rectangle of Figure 2(b). A listening in-
spection on enhanced speech showed that for SE model trained
with non-emotional corpus, in addition to removing the noise,
sounds like slight “ha ha” and sighs were also destroyed or re-
moved to some extent. Considering that emotion recognition
is sensitive to these changes resulting in performance degra-
dations, training SE models using emotional speech data can
help recovering these key speech emotion cues as shown in Fig-
ure 2(c) and Figure 2(d). Moreover, our proposed LSTM-PL-
MTL with T1-PRM and ISPP post-processing made the better
trade-off between noise reduction and speech emotion preser-
vation over LSTM-IRM method.

4. Conclusion
In this paper, we study the effects of speech enhancement as
a preprocessor on speech emotion recognition in challenging
noisy environments. We first find that speech enhancemen-
t models trained with emotion speech is more effective than
non-emotion speech. We also observe that important cues, such
as low-energy signs and laughters, are often masked by nois-
es and distorted by some enhancement models. We propose
training SE models with emotion speech corpora to achieve
a higher accuracy for speech emotion recognition. We also
present a novel LSTM-PL-MTL architecture with ISPP-based
post-processing that proves to be effective in enhancing speech
for emotion recognition, achieving a considerable performance
improvement over unprocessed noisy speech.
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