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Abstract—Recently, we propose deep neural network based
hidden Markov models (DNN-HMMs) for offline handwritten
Chinese text recognition. In this study, we design a novel writer
code based adaptation on top of the DNN-HMM to further
improve the accuracy via a customized recognizer. The writer
adaptation is implemented by incorporating the new layers with
the original input or hidden layers of the writer-independent
DNN. These new layers are driven by the so-called writer code,
which guides and adapts the DNN-based recognizer with the writ-
er information. In the training stage, the writer-aware layers are
jointly learned with the conventional DNN layers in an alternative
manner. In the recognition stage, with the initial recognition
results from the first-pass decoding with the writer-independent
DNN, an unsupervised adaptation is performed to generate the
writer code via the cross-entropy criterion for the subsequent
second-pass decoding. The experiments on the most challenging
task of ICDAR 2013 Chinese handwriting competition show that
our proposed adaptation approach can achieve consistent and
significant improvements of recognition accuracy over a high-
performance writer-independent DNN-HMM based recognizer
across all 60 writers, yielding a relative character error rate
reduction of 23.62% in average.

Keywords—Offline handwritten Chinese text, adaptation, writ-
er code, DNN-HMM.

I. INTRODUCTION

Historically, Chinese character recognition has been ex-

tensively studied [1], [2], [3], [4]. In the mobile internet

era, the research on the robust recognition of handwritten

Chinese characters in an unconstraint manner has become

increasingly popular due to the application demand. In terms

of the task complexity [5], [6], the offline handwritten Chinese

text recognition is the most challenging task due to the lack

of trajectory information and the free writing style, which is

also the topic of this study.

The research efforts for offline handwritten Chinese tex-

t recognition can be divided into two categories, name-

ly oversegmentation-based and segmentation-free approaches.

The former one [7], [8], [9], [10] often builds several modules

first including character oversegmentation, character classifi-

cation, modeling the linguistic and geometric contexts, and

then incorporate them for calculating the score for path search.

The most effective one in [10] is to integrate multiple con-

texts for recognition of handwritten Chinese text line, which

achieves the best recognition performance on the ICDAR

2013 Chinese handwriting competition task. Compared with

the diversified oversegmentation-based approaches, there are

not many segmentation-free approaches. One early approach

to the text line modeling [11] adopts the Gaussian mixture

model based hidden Markov model (GMM-HMM). Another

recent approach [12] uses multidimensional long-short term

memory recurrent neural network (MDLSTM-RNN), which is

inspired by well verified LSTM-RNN approaches [13] for the

recognition of handwritten western languages with a small set

of character classes. The MDLSTM-RNN approach is quite

flexible as connectionist temporal classification (CTC) tech-

nique [14] is adopted to avoid the explicit segmentation. And

it can achieve the comparable recognition accuracy with the

best oversegmentation-based approach [10]. More recently, we

propose a novel segmentation-free approach [15] using deep

neural network based hidden Markov model (DNN-HMM)

[16], [17] for offline handwritten Chinese text recognition,

which can yield the best reported results on the ICDAR 2013

competition task.

However, in real applications the recognition accuracy is

not always satisfactory due to the different writing styles,

especially the cursive and continuous writing styles. To address

this problem, one possible solution is the normalization strat-

egy to solve the shape variation, including the simple linear

normalization, nonlinear normalization [18] or other normal-

ization strategy such as the aspect ratio adaptive normalization

(ARAN) [19]. Another solution is writer adaptation which

aims to improve the recognition performance and user experi-

ence of a single writer by using the corresponding data samples

to be recognized itself via an unsupervised adaptation strategy,

or by using a small of adaptation data samples with labels

collected from the target writer via a supervised adaptation

strategy. For the past several decades, many writer adaptation

approaches designed based on different models have been

investigated. For example, the writer adaptive structures are

incorporated with neural network based classifiers [20], [21].

In [22], a support vector machine (SVM) based classifier

with a biased regularization is adopted for personalization.

Furthermore, the writer adaptation via maximum likelihood

linear regression (MLLR) or maximum a posteriori (MAP)

criterion is conducted for an HMM based recognition system

for cursive German script [23]. For online Chinese handwritten
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Fig. 1. A block diagram of the proposed system.

character recognition, one type of the adaptation methods is

to use a linear feature transformation for adapting the writing

styles via different criteria, e.g., style transfer mapping (STM)

[24] or discriminative linear regression (DLR) [25], [26],

which are verified to be effective incorporated with prototype-

based classifier, DNN-based classifier, and convolutional neu-

ral network (CNN) based classifier.

In this study, for the most challenging task, namely the

offline handwritten Chinese text recognition, we design a novel

writer code based adaptation on top of a high-performance

DNN-HMM based recognizer to further improve the accuracy.

The main idea is motivated by the recent work of speaker

adaptation in the speech recognition area [27], [28], [29].

The writer adaptive structures are implemented by linking

the new layers to the writer-independent DNN. These new

layers are driven by a writer-dependent vector, namely the

writer code, which adapts the DNN-HMM based recognizer

with the writer information. In the training stage, the writer-

aware layers are jointly learned with the conventional DNN

layers using back-propagation algorithm [30] in an alternative

manner. In the recognition stage, with the initial recogni-

tion results from the first-pass decoding using the writer-

independent DNN, an unsupervised adaptation is performed

to generate the writer code via the cross-entropy criterion for

the subsequent second-pass decoding. The experiments on the

ICDAR 2013 Chinese handwriting competition task show that

our proposed adaptation approach can yield consistent and

significant improvements of recognition accuracy over a best

reported DNN-HMM based recognizer.

The rest of this paper is organized as follows. In Section II

we introduce the overall system architecture. In Section III

we elaborate the writer-independent DNN-HMM recognizer.

In Section IV we describe the proposed writer coder based

adaptation DNN-HMM in detail. In Section V we report

experimental results and finally we summarize our work in

Section VI.

II. SYSTEM OVERVIEW

The overall flowchart of our proposed system is shown

in Fig. 1. In the training stage, we build three HMM sys-

tems, namely GMM-HMM [31], WI-DNN-HMM and WA-

DNN-HMM. WI-DNN-HMM refers to the writer-independent

DNN-HMM system while WA-DNN-HMM represents writer-

adaptive DNN-HMM system. First, the gradient-based fea-

tures on a frame-level are extracted, which is followed by

principal component analysis (PCA) transformation to obtain

to a lower dimensional feature vector. Then the parameters

of GMM-HMMs for all character classes are trained using
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Fig. 2. The procedure of feature extraction.

maximum likelihood (ML) estimation. With the well-trained

GMM-HMMs, the state-level forced-alignment is conducted

to obtain the frame-level labels used for the subsequent DNN

training. As for the WI-DNN-HMM system, the WI-DNN

model is learned using the cross-entropy (CE) criterion via

the back-propagation algorithm. On top of the WI-DNN,

the writer adaptive structures based on the writer code are

attached, which are optimized using the same CE criterion

alternatively with the writer-independent layers. Finally, the

WA-DNN model for the WA-DNN-HMM system is generated

with both writer-independent and writer-code-driven layers.

In the recognition stage, after the feature extraction of the

unknown handwritten text lines, the first-pass decoding results

are generated by using a weighted finite-state transducer (WF-

ST) [32], [33] based decoder integrating both WI-DNN-HMM

character model and n-gram language model (LM). Based on

the recognition results, the unsupervised writer adaptation is

performed to update the writer coder of WA-DNN, which

is followed by the second-pass decoding to generate final

recognition results. The details of WI-DNN-HMM and WA-

DNN-HMM are elaborated in the following sections.

III. THE WI-DNN-HMM BASED RECOGNIZER

According to our recent work [15], the WI-DNN-HMM

based recognizer has demonstrated its superiority over the

other conventional approaches for recognition of offline hand-

written Chinese text line. In this section, three important

modules, namely feature extraction, HMM, and WI-DNN are

briefly reviewed as follows.

A. Feature Extraction

The procedure of feature extraction, illustrated in Fig. 2,

consists of the following steps.

• Step1: Binarization Processing
The Otsu’s method [34] is used for binarization of the

original text line image.

• Step2: Normalization and Margin Extension
First, we estimate the height of the text line while

���� ���� ���� 

Observed sequence of feature vectors   

The sequence of hidden states 

Output distribution 

Fig. 3. A typical HMM representing one character class.

keeping the aspect ratio. Then the margin is extended

to accommodate the text area for the sliding windows in

the next step. Finally, the center line is calculated.

• Step3: Framing
Along the centre line, each frame, represented by a 64×
32 sliding window from the left to right, with a frame

shift of 3 pixels, is scanned across the text line.

• Step4: Calculating Gradient Images
For each frame, 8-directional gradient images can be

generated according to [35] via the Sobel operator.

• Step5: Extracting Gradient Features and PCA
Based on all 8 gradient images, a 256-dimensional feature

vector can be obtained by spatial sampling and blurring

techniques in [36], followed by the PCA transformation

[37] to generate a lower 50-dimensional feature vector

fed to the subsequent character modeling.

B. HMM

To model a sequence of Chinese characters, we adopt a left-

to-right HMM to model each character class as a basic unit.

Accordingly, the text line is modeled by a sequence of HMMs.

A typical HMM [38] is illustrated in Fig. 3 for one handwritten

character class with a set of invisible states. For the feature

sequence extracted from one handwritten character sample,

each frame is supposed to be assigned to one underlying state.

For each state, an output distribution describes the statistical

property of the observed feature vector, which is represented

by a GMM for GMM-HMM system. For DNN-HMM system,

a DNN, elaborated in the next section, is adopted to calculate

the state posterior probability which can be easily converted

to the observation probability given each state. Furthermore,

in our implementation, the HMM topology for DNN-HMM

system is copied from that of GMM-HMM system, including

the state prior probabilities and transition probabilities.

C. WI-DNN

The WI-DNN is a writer-independent DNN directly trained

using the data samples of all writers, as shown in Fig. 4. In

this study, WI-DNN aims to model the posterior probability
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Fig. 4. The architecture of WI-DNN.

Fig. 5. The architecture of WA-DNN.

of the HMM states for all character classes using the input

feature vector with multiple neighbouring frames. The acti-

vation function of each hidden layer is the logistic sigmoid

function. After the random initialization of all the weight

parameters, a supervised fine-tuning is conducted. For this

multiclass classification task, output unit j converts its total

input zj into a class probability pj by using the “softmax”

non-linearity:

pj =
exp(zj)∑
k exp(zk)

(1)

where k is an index over all classes. Then the objective

function is the cross-entropy between the target probabilities

p̄ and the outputs of the softmax p:

C = −
∑

j

p̄j log pj (2)

where the target probabilities, taking values of one or zero,

are the supervised information provided to train the DNN

classifier. As our task involves large training samples, the ob-

jective function is optimized using back-propagation procedure

with stochastic gradient descent in mini-batch mode. For more

details of WI-DNN-HMM training, the readers can refer to

[15].

IV. WRITER CODE BASED ADAPTATION

To perform the writer adaptation, we design a writer-

adaptive structure incorporated with WI-DNN, namely WA-

DNN as illustrated in Fig. 5. The structure in the dashed box is

exactly the WI-DNN with the corresponding parameters fixed

during the WA-DNN training. For the newly added structure,

the input is a K-dimensional vector named as the writer code

to represent the information of a specific writer. For each of

the hidden layers and output layer in WI-DNN, a new link

is created from the writer code. For the l-th layer, the new

relationship between the input vector xl−1 (actually the output

of the (l−1)-th layer) and the output vector yl before applying

the activation or softmax function can be expressed as:

yl =W lxl−1 + bl +Blw(c), 1 ≤ l ≤ L+ 1 (3)

where W l and bl are the weight matrix and bias vector of l-th
layer in the WI-DNN. Bl is a weight matrix linked from the

writer coder w(c) of c-th writer. L is the number of hidden

layers. Obviously, if w(c) is set to a zero vector, WA-DNN

degenerates into WI-DNN.

In the training stage, by adopting the same CE criterion as

in Eq. (2), the linking matrices B and the writer codes are

simultaneously optimized with the random initialization. With

the back-propagation algorithm, the gradients of the objective

function C with respect to the linking matrices are calculated

as:
∂C

∂Blmk
=

∂C

∂ylm
× ∂ylm

∂Blmk
= δlmwk(c) (4)

where Blmk is the (m, k)th element of Bl while ylm is the

mth component of yl. δlm is the error signal of the m-th node

in the l-th layer. wk(c) is the k-th component of the writer

coder w(c). Similarly, the gradients of the objective function

C with respect to the writer codes can be derived:

∂C

∂wk(c)
=

1

L+ 1

∑

l

∑

m

δlmBlmk (5)

where the scaling of gradients by the number of layers is a

good strategy to control the dynamic range. After the training

procedure, only the linking matrices are stored as parameters

and the learned writer codes for all writers are useless for the

unsupervised adaptation with an unseen writer.

In the recognition stage, with the first-pass recognition

results of all samples from a specific writer, the unsupervised

adaptation is conducted to only update the writer code with

the CE criterion by fixing both W and B.

V. EXPERIMENTAL RESULTS AND ANALYSIS

The experiments are conducted on the public CASIA-

HWDB database [39]. The training set consists of HWDB1.0,

HWDB1.1, HWDB2.0, HWDB2.1, and HWDB2.2 datasets.

HWDB1.0 and HWDB1.1 are offline isolated handwritten

Chinese character datasets while HWDB2.0-HWDB2.2 are

offline handwritten Chinese text datasets. In total, there are

3,980 classes (Chinese characters, symbols, garbage) with

4,091,599 samples. Here “garbage” classes represent the short

blank model between characters and the long blank model at

the beginning or end of the text line. As for the evaluation set,

the ICDAR 2013 competition set with 60 writers is adopted

[6]. The 50-dimensional feature vector is directly used for

GMM-HMM system while an augmented version of 7 frames

is fed to DNN-HMM system.

For GMM-HMM system, each character class is modeled by

a left-to-right HMM with 5 states. For each state, a GMM with
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Fig. 6. Performance comparison of WI-DNN-HMM and WA-DNN-HMM with K=1000 on the test set of all 60 writers.

TABLE I
PERFORMANCE COMPARISON OF WI-DNN-HMM AND WA-DNN-HMM

WITH DIFFERENT DIMENSIONS OF WRITER CODE ACROSS ALL THE

WRITERS ON THE TEST SET.

System CER Relative CER Reduction
WI-DNN-HMM 6.73% -

WA-DNN-HMM (K=100) 6.01% 10.70%
WA-DNN-HMM (K=200) 5.82% 13.52%
WA-DNN-HMM (K=300) 5.62% 16.49%
WA-DNN-HMM (K=500) 5.36% 20.36%
WA-DNN-HMM (K=800) 5.17% 23.18%

WA-DNN-HMM (K=1000) 5.14% 23.62%

40 Gaussian mixtures is used. The total number of Gaussians

is 3, 980 ∗ 5 ∗ 40 = 796, 000. For WI-DNN-HMM system, the

input size of DNN is 350 while the output size is 3, 980∗5 =
19, 900 corresponding to the number of states of all classes.

6 sigmoidal hidden layers with 2048 nodes for each layer are

used. The mini-batch size is 256. The initial step size is set to

0.008 which is halved after each iteration if the loss of cross-

validation set is reduced. 16 iterations are conducted. For WA-

DNN-HMM, the mini-batch size is 128 and the learning rate

is set to a fixed value of 0.4.

For the decoding, a 3-gram language model is generated

by using different text sources [15]. The Kaldi tool [40] is

adopted for both training and testing. The evaluation measure

is the character error rate (CER), which is the ratio between

the total number of substitution/insertion/deletion errors and

the total number of character samples in the evaluation set.

Table I lists a performance comparison of WI-DNN-HMM

and WA-DNN-HMM with different dimensions of writer code

across all the writers on the test set. First, the WI-DNN-

HMM system yields the best reported recognition results on

the competition set without adaptation techniques. Second, all

WA-DNN-HMM systems using writer coder based adaptation

can achieve the relative CER reductions of more than 10%

over WI-DNN-HMM system. However, with the increase of

the dimension K from 100, the CER is significantly reduced

and saturated at K=1000, yielding a 1.59% absolute error re-

duction (a 23.62% relative error reduction) in average. By con-

sidering that we conduct the unsupervised adaptation without

any supervised information and the baseline WI-DNN-HMM

system already achieves a high recognition performance, our

proposed writer adaptation approach seems quite effective.

Fig. 6 gives a performance comparison of WI-DNN-HMM

and WA-DNN-HMM with K=1000 on the test set of all 60

writers sorted by the recognition accuracy of WI-DNN-HMM

system. Clearly, significant and consistent improvements of

recognition accuracy, especially for the cases with high CERs,

can be observed for most of the writers, which indicates

that our approach is robust for different writing styles. There

are only two exceptions on the No.54 and No.60 writers,

which seem reasonable as it is quite challenging for the

unsupervised adaptation approach to generate additional gains

over the systems with 2%-3% CER. While the CERs of WI-

DNN-HMM system range from 18.87% to 1.90% for different

writers, our proposed WA-DNN-HMM system achieves better

CERs from 14.09% to 1.75%. For the No.7 writer, almost a

half of the error rate is reduced with the CER from 12.68%

to 6.50%.

VI. CONCLUSION

In this study, we propose an effective adaptation approach

by incorporating the writer-coder-driven layers with the con-

ventional DNN model for offline handwritten Chinese text

recognition. And on the ICDAR 2013 competition task, the

average CER of the proposed approach is close to 5% making

a new milestone. As for the future work, more types of neural

networks, e.g. CNN and LSTM, with more objective functions

will be investigated to further demonstrate the effectiveness of

the adaptation approach.
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