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Abstract—Automatic emotion recognition (AER) is a challeng-
ing task due to the abstract concept and multiple expressions
of emotion. Although there is no consensus on a definition,
human emotional states usually can be apperceived by auditory
and visual systems. Inspired by this cognitive process in human
beings, it’s natural to simultaneously utilize audio and visual
information in AER. However, most traditional fusion approaches
only build a linear paradigm, such as feature concatenation and
multi-system fusion, which hardly captures complex association
between audio and video. In this paper, we introduce factorized
bilinear pooling (FBP) to deeply integrate the features of audio
and video. Specifically, the features are selected through the
embedded attention mechanism from respective modalities to
obtain the emotion-related regions. The whole pipeline can be
completed in a neural network. Validated on the AFEW database
of the audio-video sub-challenge in EmotiW2018, the proposed
approach achieves an accuracy of 62.48%, outperforming the
state-of-the-art result.

I. INTRODUCTION

Emotions play an important role in human communica-
tions [1] and successfully detecting the emotional states has
practical importance in sociable robotics, medical treatment,
education quality evaluation and many other human-computer
interaction systems. Audio and video, more specifically, the
speech and facial expressions are two kinds of most powerful,
natural and universal signals for human beings to convey
their emotional states and intentions [2], [3]. According to
the linguistics and physiology, emotion changes voice charac-
teristics and linguistic contents in speech and moves the facial
muscles [4].

Considering its importance, several challenges were held to
facilitate the research on emotion recognition. As one of the
most popular benchmarks for this task, the emotion recognition
in the wild (EmotiW) challenge [5] has been held successfully
for 5 years. The audio-video sub-challenge aims to identify
people’s emotions based on audio-video clips in the AFEW
database [6], which is collected from films and TV series
to simulate the real world. The wide illumination range and
occlusions make the task challenging.

For facial emotion recognition (FER), the traditional ap-
proaches usually consist of three steps: First, a face image
is detected from an input image, and the facial components
(e.g., eyes and nose) or landmarks are identified from the
face region. Next, various spatial and temporal features are

extracted from these facial components. Finally, based on the
extracted features. a classifier such as support vector machine
(SVM), random forest, is trained to produce recognition re-
sults [7]. Different from using handcrafted features in the
traditional approaches, deep learning based FER systems adopt
convolutional neural network (CNN) to directly learn the
task-dependent features from raw face images. The feature
maps are combined by following fully-connected layers or
global pooling layer for the classification. In [8], the authors
presented the supervised scoring ensemble (SSE) with deep
CNNs to provide sufficient supervision information to the
shallow layers in CNN. In [9], deeply-supervised CNN (DSN)
architecture with a series of side-output layers was proposed to
combine the shallow and the deep layers together to achieve a
complementary effect. For the face image sequences in videos,
the long short-term memory (LSTM) and 3D convolutional
neural network (3D CNN) are widely used to analyze the
temporal features in the previous audio-video sub-challenges
in EmotiW [10], [11], [12]. Intuitively, not all the frames
in a video contain emotion information due to the sparse
expression of emotion. In order to adapt the weight of each
frame to the final classifying, according to its importance to
emotion, we propose an attention mechanism to detect the
emotion-dependent frames in the face image sequences.

As another carrier of emotion, speech has been widely
investigated for emotion recognition for decades. Compared
with FER, the traditional audio-based approaches have similar
steps: First, with a left-to-right sliding window, sequential
acoustic features are extracted from raw speech waveform.
Then, based on various statistical functions, for each sen-
tence, a global feature vector is obtained by combining all
corresponding frame-level features. For example, the 1582
dimensions feature extracted using the OpenSmile toolkit [13],
which is mostly used by participators of EmotiW [5]. Finally,
the utterance vector is fed to a classifier. With the emerging
deep learning, the state-of-the-art classifiers are always CNNs
or LSTMs [14], [15], [16]. In [17], we proposed a novel
attention based fully convolutional network for this task.

Like human beings simultaneously depend on auditory and
visual systems to apperceive the world, machine can also
greatly benefit from auditory and visual information for emo-
tion recognition. The most common strategy is to fuse results
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Fig. 1. The pipeline of our attention guided factorized bilinear pooling system for audio-video emotion recognition.

from two separate systems, i.e., audio system and visual sys-
tem, which is referred as decision-level fusion. The decision-
level fusion ignores the interaction and correlation between the
features from different modalities, which usually has a limited
improvement when one modality is much better than the other.
As an improved strategy, in middle layers, using linear fusion
(concatenation or element-wise addition) for audio feature and
visual feature from two parallel sub-systems can alleviate the
shortage in a degree. However, since the feature distributions
of different modalities vary dramatically, there is a lack of
fully capturing complex association between audio and video
for these integrated features obtained by such linear models.
In contrast to linear models, bilinear pooling [18] has recently
been used to integrate different CNN features for fine-grained
image recognition [19]. Inspired by the multi-modal factorized
bilinear pooling (MFB) for visual question answering (VQA)
in [20], we introduce factorized bilinear pooling (FBP), an
improved version of bilinear pooling to decrease the computa-
tional complexity, to integrate the features of audio and video.
Specifically, the features are selected through the embedded
attention mechanism from respective modalities. The whole
pipeline can be completed in a neural network, which is why
the proposed approach is named as deep fusion.

This paper is organized as follows. In section II, the

proposed architecture is introduced. In section III, the experi-
mental results are reported and analysed. Finally, we make a
conclusion in section IV.

II. THE PROPOSED ARCHITECTURE

In [17], we proposed a novel attention based fully convo-
lutional neural network for audio emotion recognition. The
proposed attention mechanism helps the model focus on the
emotion-relevant regions in speech spectrogram. It is intuitive-
ly obvious that the similar strategy can be adopted in videos
to detect the emotion-relevant frames. Furthermore, we first
extract emotion-relevant features for audio and video respec-
tively through two parallel streams. And then the separate
salient features are fused in a FBP block to deeply capture the
association between modalities for final emotion prediction.
The overall system architecture is shown in Fig. 1.

A. Audio Stream

As illustrated in Fig. 1, the audio stream directly handles
the speech spectrogram by using stacked convolutional layers
followed by an attention block. Without handcrafted feature
extraction, CNN has been widely used in speech emotion
recognition (SER) [15], [21], [22]. The basic components
of CNN are convolution, pooling and activation layers. The
parameters in a convolutional layer include: input channels,
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Fig. 2. The AlexNet based audio encoder. The parameters of the convolutional
layer are denoted as “Conv(kernel size)-[stride size]-[number of channels]”.
The maxpooling layer is denoted as “Maxpool-[kernel size]-[stride size]”. For
brevity, the local response normalization and ReLU activation function are not
shown.

output channels, kernel size and stride. Each kernel is a filter
with size smaller than the input feature map. The character-
istics of kernel make it operate on a local region of input
rather than the whole feature map. On a given feature map,
the parameters of the kernel are shared to detect the certain
pattern in different locations and to reduce the complexity of
network. Aiming to remove noise and extract robust features,
a pooling layer usually conducts an average or max operation.
An activation layer is element-wise nonlinear function usually
following a convolutional layer.

The typical CNNs, including AlexNet [23], VGGNet [24],
and ResNet [25] take a fixed-size input due to the limitation
of fully connected layers. Considering the loss of information
caused by the fixed-size input, we proposed a fully convolu-
tional network to handle variable-length speech in [17]. In this
study, the same is used as audio encoder, which is shown in
Fig. 1. We turn the AlexNet into a fully convolutional network
by simply removing its fully connected layers. The details of
the audio encoder are shown in Fig. 2. All the convolutional
layers are followed by a ReLU activation function, and the first
two layers are equipped with a local response normalization.

Assuming the output of the audio encoder is a 3-dimensional
array of size F × T × C, where the F and T correspond to
the frequency and time domains of spectrogram and C is the
number of channels. We consider the output as a variable-
length grid of L elements, L = F × T . Each of the elements
is a C-dimensional vector corresponding to a region of speech
spectrogram, represented as ai. Therefore, the whole audio
utterance can be represented as a set:

A = {a1, · · · ,aL},ai ∈ R
C (1)

Intuitively, not all time-frequency units in set A contribute
equally to the emotion state of the whole utterance. Based on
this assumption, we introduce attention mechanism to extract
the elements that are important to the emotion of the utterance.
And then the sum of weighted elements in the set A represents
the audio-based emotional feature. We formulate the attention
block as:

ei = uT tanh(Wai + b) (2)

αi =
exp(λei)∑L

k=1 exp(λek)
(3)

a =
L∑

i=1

αiai (4)

First, an element ai is fed to a fully connected layer
followed by a tanh to obtain a new representation of ai. Then
we measure the importance weight ei, of the element ai by
the inner product between the new representation of ai and
a learnable vector u. After that, the normalized importance
weight αi is calculated through the softmax function. Finally,
vector a is computed by the weighted sum of the elements
in the set A with importance weights as the audio-based
emotional feature. In Eq.( 3), λ is a scale factor which controls
the uniformity of the importance weights. λ ranges from 0 to
1. If λ = 1, the scaled-softmax becomes the commonly used
softmax function. If λ = 0, the vector a will be an average
vector of the set A, which means all the time-frequency units
have the same importance weights to the final utterance audio
vector.

Video Face detection

VGG-Face

FR-Net-A

FR-Net-B

FR-Net-C

EF-VGG

EF-A

EF-B

EF-C

Feature sequence

Fig. 3. The pipeline of the facial feature extraction.

B. Video Stream

In [26], four kinds of facial features are proposed for
emotion recognition. The pipeline of the feature extraction is
illustrated in Fig. 3.

a) Face detection: The dlib face detector [27] is used
to extract and align face images from FER2013 database [28]
and EmotiW video frames. For the frames in which no faces
are found, the entire images are used.

b) FER2013 fine-tuning: To extract the emotion-related
features from a face image, four deep convolutional neural
networks, i.e., VGG-Face [29], and three proprietary state-of-
the-art face recognition networks which are notated as FR-Net-
A, FR-Net-B, FR-Net-C, are used. All models are fine-tuned
on FER2013 database to make them emotion-relevant.

c) Emotional feature extraction: Features for all frames
are computed using all four networks. For VGG-Face, a 4096-
dimensional fc6 feature is selected. For other networks, the
outputs of the last layers are used.

In this paper, we notate them as EF-VGG, EF-A, EF-B,
EF-C respectively. The visual feature sequence of a L-frames
video can be represented as:

V = {v1, · · · ,vL},vi ∈ R
C (5)
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where vi represents the facial feature of frame i. And C is
the feature dimension.

Similarly, not all frames of a video contribute equally to the
emotional state. Therefore, we adapt the attention mechanism
to compute the importance weights for all frames. And then all
the weighted visual features are added to represent the video-
based emotional feature. Before entering into the attention
block, the dimension reduction is conducted to decrease com-
putational complexity and to relieve over-fitting. The formulae
are listed below:

ṽi = Wvi + b (6)

ẽi = ũT tanh(ṽi) (7)

α̃i =
exp(λẽi)∑L

k=1 exp(λẽk)
(8)

ṽ =
L∑

i=1

α̃iṽi (9)

where ṽi is a new low-dimension representation of frame i.
And ṽ is the video-based emotional feature, which is replaced
with v for simplifying in the following subsections.

C. Audio-video Factorized Bilinear Pooling

FC FC

Video vectorAudio vector

Element-wise multiplication

Dropout

Sum pooling

L2 normalization

Audio-video FBP output

iVuduAu

Fig. 4. The flowchart of the audio-video factorized bilinear pooling operation.

Given two feature vectors in different modalities: the audio
feature vector a ∈ R

m and video feature vector v ∈ R
n, the

simplest multi-modal bilinear pooling is defined as follows:

zi = aTW iv (10)

where W i ∈ R
m×n is a projection matrix, zi ∈ R is the

output of bilinear pooling. To obtain an o-dimensional output
z = [z1, · · · , zo], a W = [W 1, · · · ,W o] ∈ R

m×n×o is need

to be learned. Although bilinear pooling can effectively capture
the pairwise interactions between the multi-modal features, it
also introduces huge number of parameters which lead to a
high computational cost and a risk of over-fitting [20].

Inspired by the matrix factorization tricks [30], [31], the
projection matrix W i in Eq.(10) can be factorized into two
low-rank matrices:

zi = aTU iV
T
i v

=
k∑

d=1

aTudv
T
d v

= T (UT
i a ◦ V T

i v)

(11)

where k is the latent dimension of the factorizing matrices
U i = [u1, · · · ,uk] ∈ R

m×k and V i = [v1, · · · ,vk] ∈ R
n×k,

◦ represents the element-wise multiplication of two vectors,
and ∈ R

k is an all-1 vector.
To obtain the output feature vector z by Eq.(11), two

3-D tensors U = [U1, · · · ,Uo] ∈ R
m×k×o and V =

[V 1, · · · ,V o] ∈ R
n×k×o are need to be learned. The U

and V can be reformulated as 2-D matrices Ũ ∈ R
m×ko

and Ṽ ∈ R
n×ko respectively by using reshape operation.

Accordingly, we have:

z = SumPooling(Ũ
T
a ◦ Ṽ T

v, k) (12)

where Ũ
T
a and Ṽ

T
v are implemented by feeding a and v

to fully connected layers without biases respectively, and the
function SumPooling(x, k) apply sum pooling within a series
of non-overlapped windows to x. We indicate the Eq.(12) as
the factorized bilinear pooling (FBP).

The detailed procedures of audio-video FBP block are
illustrated in Fig. 4. Dropout is adopted to prevent over-fitting.
The l2-normalization (z ← z/‖z‖) is used after FBP to
normalize the energy of z to 1, since the magnitude of the
output varies dramatically due to the introduced element-wise
multiplication.

III. EXPERIMENTS

A. Database

We validate our method in the AFEW8.0 database, which
is used in the audio-video sub-challenge of the EmotiW2018.
The AFEW database is collected from films and TV series
to simulate the real world. It has seven categories: Angry,
Disgust, Fear, Happy, Neutral, Sad, Surprise. There are 773
videos and corresponding audios in the training set, 383 in
the validation set, and 653 in the test set.

B. Video System

The effectiveness of audio stream for emotion recognition
has been proven in [17]. In order to verify that the attention
mechanism is also effective for visual sequences, we first
design a system in which only video is used, i.e., we simply
remove the audio stream and the FBP block in Fig. 1, and
the video vector v is fed to a fully connected layer for
classifying. The scale factor λ in the attention block controls
the uniformity of the importance weights of the frames in a
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right curves for audio-video analysis. The images are partial frames from the video.
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TABLE I
THE CLASSIFYING ACCURACY IN THE VALIDATION SET OF DIFFERENT

VISUAL FEATURES.

Feature λ
name 0 1

EF-VGG 46.74% 47.78%
EF-A 48.82% 49.87%
EF-B 51.44% 51.96%
EF-C 45.69% 44.91%

video. If λ = 0, all the frames contribute the same importance,
in which case the attention block equals to a mean pooling for
all the frames.

We exam the effectiveness when EF-VGG, EF-A, EF-B,
EF-C features are used as input to system respectively. The
classification accuracies of the validation set for each case
are listed in Table I. From the Table I, it can be observed
that the systems using EF-B as the feature achieve higher
accuracies whether λ equals 0 or 1, which means the EF-B
is more emotion-relevant than other three features. Therefore,
the EF-B is selected as the feature for video stream in the
audio-video fusion system. Comparing the accuracies between
λ = 0 and λ = 1, we conclude that the systems with attention
mechanism usually outperform the systems with mean pooling
except for the EF-C. The systems using EF-C usually get
the lowest accuracies, which means the EF-C feature contains
more “noise” for this task than others. It is more difficult to
detect the emotion-relevant frames for the attention block of
the EF-C system.

The EF-B system with attention mechanism achieves an
accuracy of 54.36% in the test set, which outperforms 15 teams
of the total 32 teams in the EmotiW2018. Please note that
the systems of participators usually combine multiple audio
models and video models, and more training data are used,
while the EF-B system is a single model trained with video
data only.

To better demonstrate the effect of attention mechanism,
we plot the attention weight of each frame for two randomly
picked examples from the validation set in Fig. 5. For each
example, the left curve is the attention weight of each frame
in video system. The higher value of the attention weight, the
more important the frame is. The example 1 is a video about
a man waving a stick. At frame 25, the face of the man is
blocked by the waving stick, which means that the frame 25
is unreliable for classifying. And the attention weight of the
frame 25 is significantly lower than other frames, which is
reasonable. There is a man laughing more and more happy to
a boy in example 2. So the increasing trend of the curve is
consistent with the visual information.

C. Audio-video Fusion System

For the audio stream, the process in [17] is applied to
extract the audio feature from raw waveform. First, a sequence
of overlapping Hamming windows are applied to the speech
waveform, with window shift set to 10 msec, and window size

TABLE II
OVERALL COMPARISON OF DIFFERENT SYSTEMS.

System Single model ACC. in the test set
Video-only Yes 54.36%

Simple concatenation Yes 55.28%
FBP Yes 58.04%

FBP (+validation set) Yes 60.64%
4 FBPs (+validation set) No 62.48%

CNN+LMED+LSTM [32] No 61.87%

Fig. 6. The confusion matrix of the audio-video FBP system in the test set.

set to 40 msec. Then, for each audio frame, we calculate a
discrete fourier transform (DFT). Finally the 200-dimensional
low-frequency part of the spectrogram is used as the input to
the audio stream.

For the video stream, the EF-B is used as the visual
feature. A standard normalization is conducted before the
visual feature is fed to the network.

In the audio-video fusion experiment, we set the λ = 0 in
the attention block of the audio stream, λ = 1 for the video
stream. For the FBP block, the o is 128, the k is 4, and the
dropout probability equals to 0.3.

In Table II, we compare the accuracies of different fusion
strategies in the test set. The concatenation represents simple
concatenation of audio and video vectors, replacing the FBP
block in Fig. 1. From Table II, the audio signal can help
video improve performance (from 54.36% to 55.28%). And
compared with simply concatenating the feature vectors, the
FBP obtains a 2.76% improvement, indicating that the FBP
can fuse the audio and video information more deeply.

To analyze how the audio influences the video, we plot the
attention weights for all frames of video in the audio-video
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FBP system in Fig. 5 (the right curve for each example). The
corresponding audio spectrograms are plotted above the curves
for the audio-video analysis. For example 1, compared with
the left curve, the right curve has less fluctuation in other
frames excluding the frame 25, which means the system is
more stable and more confident for the unreliability of the
frame 25. For example 2, the increasing trend of attention
weight disappears. Instead, the weights of middle frames
are larger than the beginning and ending frames. Based on
the observation of the corresponding audio spectrogram, it
is obvious that the frames with high attention weights are
consistent to the emotional speech: “ha ha ha...”, and the
attention weights decrease at the ending frames due to the
background noise of the corresponding segment in audio. It
shows that the attention block in the video stream is influenced
by the audio signal due to the FBP fusion and joint training,
i.e., the audio and video are fused deeply.

Finally, we add the validation set for training as the previous
teams in EmotiW [8], [33]. The accuracy in the test set is fur-
ther improved to 60.64%. In Table II, we also list the previous
state-of-the-art accuracy (61.87%) in AFEW database [32],
which is achieved by combining five visual models and two
audio models. We achieve a comparable result with a single
model, which proves the effectiveness of the proposed system.
Moreover, we mean four independent randomly initialized
audio-video FBP systems (indicated as 4 FBPs), and the
validation set is also added for training, to achieve an accuracy
of 62.48% in the test set, which outperform the state-of-the-art
result.

For the further analysis, we illustrate the confusion matrix
of the audio-video FBP system in the test set in Fig. 6.
From the confusion matrix, an observation can be found: for
emotions that have obvious characteristics are classified more
correctly such as angry, happy and neutral. Meanwhile, the
emotions such as disgust and surprise are difficult for our
model to classify on account of the weak expression and
natural confusion with other emotions. Our system pays too
much attention to the other emotions so that no samples are
classified to disgust and surprise.

IV. CONCLUSION

In this paper, we introduce factorized bilinear pooling
(FBP) to deeply integrate the features of audio and video
for audio-video emotion recognition. Specifically, the features
are selected through the embedded attention mechanism from
respective modalities to obtain the emotion-related regions.
Furthermore, visualization analysis of the attention weights
helps to understand the effectiveness of attention mechanism
and multi-modal fusion. Compared with the state-of-the-art
approach, the proposed approach can achieve a comparable
result with a single model, and make a new milestone with
multi-models. For the future work, we plan to further reveal
and utilize the relevance of audio and video.

ACKNOWLEDGMENT

The authors would like to thank the organizers of EmotiW
for evaluating the accuracies of the proposed systems in the
test set of AFEW database.

This work was supported in part by the National Natural
Science Foundation of China under Grants No. U1613211 and
61671422, the National Key R&D Program of China under
contract No. 2017YFB1002202, the Key Science and Technol-
ogy Project of Anhui Province under Grant No. 17030901005,
and Huawei.

REFERENCES

[1] R. Cowie, E. Douglas-Cowie, N. Tsapatsoulis, G. Votsis, S. Kollias,
W. Fellenz, and J. G. Taylor, “Emotion recognition in human-computer
interaction,” IEEE Signal processing magazine, vol. 18, no. 1, pp. 32–80,
2001.

[2] C. Darwin and P. Prodger, The expression of the emotions in man and
animals. Oxford University Press, USA, 1998.

[3] Y.-I. Tian, T. Kanade, and J. F. Cohn, “Recognizing action units for
facial expression analysis,” IEEE Transactions on pattern analysis and
machine intelligence, vol. 23, no. 2, pp. 97–115, 2001.

[4] “Facial expression — Wikipedia, the free encyclopedia,” https://en.
wikipedia.org/wiki/Facial expression, 2019.

[5] A. Dhall, A. Kaur, R. Goecke, and T. Gedeon, “Emotiw 2018: Audio-
video, student engagement and group-level affect prediction,” in Pro-
ceedings of the 2018 on International Conference on Multimodal Inter-
action. ACM, 2018, pp. 653–656.

[6] A. Dhall, R. Goecke, S. Lucey, T. Gedeon et al., “Collecting large, richly
annotated facial-expression databases from movies,” IEEE multimedia,
vol. 19, no. 3, pp. 34–41, 2012.

[7] B. C. Ko, “A brief review of facial emotion recognition based on visual
information,” sensors, vol. 18, no. 2, p. 401, 2018.

[8] P. Hu, D. Cai, S. Wang, A. Yao, and Y. Chen, “Learning supervised
scoring ensemble for emotion recognition in the wild,” in Proceedings
of the 19th ACM International Conference on Multimodal Interaction.
ACM, 2017, pp. 553–560.

[9] Y. Fan, J. C. Lam, and V. O. Li, “Video-based emotion recognition
using deeply-supervised neural networks,” in Proceedings of the 2018
on International Conference on Multimodal Interaction. ACM, 2018,
pp. 584–588.

[10] D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri, “Learning
spatiotemporal features with 3d convolutional networks,” in Proceedings
of the IEEE international conference on computer vision, 2015, pp.
4489–4497.

[11] V. Vielzeuf, S. Pateux, and F. Jurie, “Temporal multimodal fusion for
video emotion classification in the wild,” in Proceedings of the 19th
ACM International Conference on Multimodal Interaction. ACM, 2017,
pp. 569–576.

[12] D. H. Kim, M. K. Lee, D. Y. Choi, and B. C. Song, “Multi-modal
emotion recognition using semi-supervised learning and multiple neural
networks in the wild,” in Proceedings of the 19th ACM International
Conference on Multimodal Interaction. ACM, 2017, pp. 529–535.

[13] F. Eyben, M. Wöllmer, and B. Schuller, “Opensmile: the munich
versatile and fast open-source audio feature extractor,” in Proceedings
of the 18th ACM international conference on Multimedia. ACM, 2010,
pp. 1459–1462.

[14] A. Satt, S. Rozenberg, and R. Hoory, “Efficient emotion recognition
from speech using deep learning on spectrograms,” Proc. Interspeech
2017, pp. 1089–1093, 2017.

[15] S. Mirsamadi, E. Barsoum, and C. Zhang, “Automatic speech emotion
recognition using recurrent neural networks with local attention,” in
Acoustics, Speech and Signal Processing (ICASSP), 2017 IEEE Inter-
national Conference on. IEEE, 2017, pp. 2227–2231.

[16] D. Tang, J. Zeng, and M. Li, “An end-to-end deep learning framework
with speech emotion recognition of atypical individuals,” Proc. Inter-
speech 2018, pp. 162–166, 2018.

[17] Y. Zhang, J. Du, Z. Wang, and J. Zhang, “Attention based fully
convolutional network for speech emotion recognition,” arXiv preprint
arXiv:1806.01506, 2018.

Deep Fusion: An Attention Guided Factorized Bilinear Pooling for Audio-video Emotion Recognition

paper N-19842.pdf- 7 -

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on August 16,2021 at 09:51:31 UTC from IEEE Xplore.  Restrictions apply. 



[18] J. B. Tenenbaum and W. T. Freeman, “Separating style and content with
bilinear models,” Neural computation, vol. 12, no. 6, pp. 1247–1283,
2000.

[19] T.-Y. Lin, A. RoyChowdhury, and S. Maji, “Bilinear cnn models for fine-
grained visual recognition,” in Proceedings of the IEEE International
Conference on Computer Vision, 2015, pp. 1449–1457.

[20] Z. Yu, J. Yu, J. Fan, and D. Tao, “Multi-modal factorized bilinear pooling
with co-attention learning for visual question answering,” in Proc. IEEE
Int. Conf. Comp. Vis, vol. 3, 2017.

[21] G. Trigeorgis, F. Ringeval, R. Brueckner, E. Marchi, M. A. Nicolaou,
B. Schuller, and S. Zafeiriou, “Adieu features? end-to-end speech
emotion recognition using a deep convolutional recurrent network,”
in Acoustics, Speech and Signal Processing (ICASSP), 2016 IEEE
International Conference on. IEEE, 2016, pp. 5200–5204.

[22] Z. Aldeneh and E. M. Provost, “Using regional saliency for speech emo-
tion recognition,” in Acoustics, Speech and Signal Processing (ICASSP),
2017 IEEE International Conference on. IEEE, 2017, pp. 2741–2745.

[23] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural infor-
mation processing systems, 2012, pp. 1097–1105.

[24] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[25] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[26] B. Knyazev, R. Shvetsov, N. Efremova, and A. Kuharenko, “Leveraging
large face recognition data for emotion classification,” in Automatic
Face & Gesture Recognition (FG 2018), 2018 13th IEEE International
Conference on. IEEE, 2018, pp. 692–696.

[27] D. E. King, “Dlib-ml: A machine learning toolkit,” Journal of Machine
Learning Research, vol. 10, no. Jul, pp. 1755–1758, 2009.

[28] P.-L. Carrier, A. Courville, I. J. Goodfellow, M. Mirza, and Y. Bengio,
“Fer-2013 face database,” Universit de Montral, 2013.

[29] O. M. Parkhi, A. Vedaldi, A. Zisserman et al., “Deep face recognition.”
in BMVC, vol. 1, no. 3, 2015, p. 6.

[30] Y. Li, N. Wang, J. Liu, and X. Hou, “Factorized bilinear models for
image recognition,” arXiv preprint, 2017.

[31] S. Rendle, “Factorization machines,” in Data Mining (ICDM), 2010
IEEE 10th International Conference on. IEEE, 2010, pp. 995–1000.

[32] C. Liu, T. Tang, K. Lv, and M. Wang, “Multi-feature based emotion
recognition for video clips,” in Proceedings of the 2018 on International
Conference on Multimodal Interaction. ACM, 2018, pp. 630–634.

[33] Y. Fan, X. Lu, D. Li, and Y. Liu, “Video-based emotion recognition
using cnn-rnn and c3d hybrid networks,” in Proceedings of the 18th
ACM International Conference on Multimodal Interaction. ACM, 2016,
pp. 445–450.

IJCNN 2019. International Joint Conference on Neural Networks. Budapest, Hungary. 14-19 July 2019

paper N-19842.pdf- 8 -

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on August 16,2021 at 09:51:31 UTC from IEEE Xplore.  Restrictions apply. 


