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Abstract—In contrast to the conventional minimum mean
square error (MMSE) based noise reduction techniques, we
propose a supervised method to enhance speech by means of
finding a mapping function between noisy and clean speech
signals based on deep neural networks (DNNs). In order to be
able to handle a wide range of additive noises in real-world
situations, a large training set that encompasses many possible
combinations of speech and noise types, is first designed. A DNN
architecture is then employed as a nonlinear regression function
to ensure a powerful modeling capability. Several techniques
have also been proposed to improve the DNN-based speech
enhancement system, including global variance equalization to
alleviate the over-smoothing problem of the regression model,
and the dropout and noise-aware training strategies to further
improve the generalization capability of DNNs to unseen noise
conditions. Experimental results demonstrate that the proposed
framework can achieve significant improvements in both objec-
tive and subjective measures over the conventional MMSE based
technique. It is also interesting to observe that the proposed
DNN approach can well suppress highly non-stationary noise,
which is tough to handle in general. Furthermore, the resulting
DNN model, trained with artificial synthesized data, is also
effective in dealing with noisy speech data recorded in real-world
scenarios without the generation of the annoying musical artifact
commonly observed in conventional enhancement methods.

Index Terms—Speech enhancement, noise reduction, deep neu-
ral networks, global variance equalization, non-stationary noise,
noise aware training, dropout

I. INTRODUCTION

IN recent years, single-channel speech enhancement has
attracted a considerable amount of research attention be-

cause of the growing challenges in many important real-
world applications, including mobile speech communication,
hearing aids design and robust speech recognition [1]. The goal
of speech enhancement is to improve the intelligibility and
quality of a noisy speech signal degraded in adverse conditions
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[2]. However, the performance of speech enhancement in real
acoustic environments is not always satisfactory.

Numerous speech enhancement methods were developed
over the past several decades. Spectral subtraction [3] subtracts
an estimate of the short-term noise spectrum to produce an
estimated spectrum of the clean speech. In [4], the iterative
wiener filtering was presented using an all-pole model. A
common problem usually encountered in these conventional
methods (e.g., [3, 4]) is that the resulting enhanced speech
often suffers from an annoying artifact called “musical noise”
[5]. Another notable work was the minimum mean-square
error (MMSE) estimator introduced by Ephraim and Malah
[6]; their MMSE log-spectral amplitude estimator [7] could
result in much lower residual noise without further affecting
the speech quality. An optimally-modified log-spectral ampli-
tude (OM-LSA) speech estimator and a minima controlled
recursive averaging (MCRA) noise estimation approach were
also presented in [8, 9]. Although these traditional MMSE-
based methods are able to yield lower musical noise (e.g.,
[10, 11]), a trade-off in reducing speech distortion and residual
noise needs to be made due to the sophisticated statistical
properties of the interactions between speech and noise signals.
Most of these unsupervised methods are based on either the
additive nature of the background noise, or the statistical
properties of the speech and noise signals. However they often
fail to track non-stationary noise for real-world scenarios in
unexpected acoustic conditions.

Considering the complex process of noise corruption, a non-
linear model, like the neural networks, might be suitable for
modeling the mapping relationship between the noisy and
clean speech signals. Early work on using shallow neural
networks (SNNs) as nonlinear filters to predict the clean signal
in the time or frequency domain has been proposed (e.g., [12–
14]). In [15], the SNN with only one hidden layer using 160
neurons was proposed to estimate the instantaneous signal-to-
noise ratios (SNRs) on the amplitude modulation spectrograms
(AMS), and then the noise could be suppressed according to
the estimated SNRs of different channels. However, the SNR
was estimated in the limited frequency resolution with 15
channels and it was not efficient to suppress the noise type
with sharp spectral peaks. Furthermore, the small network size
can not fully learn the relationship between the noisy feature
and the target SNRs.

In addition, random initialization of the SNNs often suf-
fered from “apparent local minima or plateaus” [16], and the
problem would get even worse for architectures incorporating
more hidden layers [17]. A breakthrough for training deep
architectures came in 2006 when Hinton et al. [18, 19]
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proposed a greedy layer-wise unsupervised learning algorithm.
Each layer is pre-trained without supervision to learn a high
level representation of its input (or the output of its previous
layer). For the regression task, deep learning has been used in
several speech synthesis tasks [20, 21]. In [22, 23], stacked
denoising autoencoders (SDAs), as one type of the deep
models, were adopted to model the relationship between clean
and noisy features, and they only explored its performance on
a matching test set. Deep recurrent neural networks (DRNNs)
were also adopted in the feature enhancement for robust
speech recognition [24, 25]. The generalization capacity of
the DRNN was weak if it was trained on limited noise types
[24]. [25] focused on the speech recognition evaluation for
the domestic environment of CHiME corpus [26]. However,
a universal speech enhancer to any noise environments is the
goal in this paper.

Hence, one common problem observed for neural network
based speech enhancement algorithms is the degraded per-
formance in unseen noise conditions. A simple yet effective
method to cope with the unseen noise conditions is to in-
clude many different noise types in the training set [15, 27].
Speech enhancement was formulated as a binary classification
problem to estimate the ideal binary mask (IBM) in [27], and
demonstrated robustness to varying background noise by train-
ing in a wide range of acoustic conditions. However, due to the
binary nature of the IBM, as defined in computational auditory
scene analysis (CASA) [29], it offers limited improvements to
speech quality even though binary masking has been shown to
improve speech intelligibility. In [27], the frequency context
information of time-frequency units had not been explicitly
utilized in this classification-based speech separation frame-
work considering that the classifier was trained for each filter
channel separately. However, the following work presented in
[28] adopted a second DNN to capture the context information
to improve the separation performance. Another smoothed
ideal ratio mask (IRM) [30, 31] in the Mel frequency domain
was also estimated by DNNs for robust speech recognition
under seen noise types.

Recently in [32], we have proposed a regression DNN based
speech enhancement framework via training a deep and wide
neural network architecture using a large collection of hetero-
geneous training data with four noise types. It was found that
the annoying musical noise artifact could be greatly reduced
with the DNN-based algorithm and the enhanced speech also
showed an improved speech quality both in terms of objective
and subjective measures. The generalization capability of the
approach was also demonstrated for new speakers, and at
different SNR levels. Nonetheless the ability to handle unseen
noise environments was not extensively investigated.

In this study we extend the DNN-based speech enhancement
framework to handle adverse conditions and non-stationary
noise types in real-world situations. In traditional speech
enhancement techniques, the noise estimate is usually updated
by averaging the noisy speech power spectrum using time and
frequency dependent smoothing factors, which are adjusted
based on the estimated speech presence probability in indi-
vidual frequency bins (e.g., [8], [33]). Nonetheless, its noise
tracking capacity is limited for highly non-stationary noise

cases, and it tends to distort the speech component in mixed
signals if it is tuned for better noise reduction. In this work,
the acoustic context information, including the full frequency
band and context frame expanding, is well utilized to obtain
the enhanced speech with reduced discontinuity. Furthermore
to improve the generalization capability we include more than
100 different noise types in designing the training set for DNN
which proved to be quite effective in handling unseen noise
types, especially non-stationary noise components.

Three strategies are also proposed to further improve the
quality of enhanced speech and generalization capability of
DNNs. First, an equalization between the global variance
(GV) of the enhanced features and the reference clean speech
features is proposed to alleviate the over-smoothing issue in
DNN-based speech enhancement system. The second tech-
nique, called dropout, is a recently proposed strategy for
training neural networks on data sets where over-fitting may
be a concern [34]. While this method was not designed for
noise reduction, it was demonstrated [35] to be useful for
noise robust speech recognition and we successfully apply it
to a DNN as a regression model to produce a network that
has a good generalization ability to variabilities in the input.
Finally, noise aware training (NAT), first proposed in [35], is
adopted to improve performance.

The rest of the paper is organized as follows. We first
give an overview of our proposed speech enhancement system
in Section II. Section III elaborates the basic DNN training
procedure and several strategies for further improvements. A
series of experiments to assess the system performance are
presented in Section IV. Finally we summarize our findings
in Section V.

II. SYSTEM OVERVIEW
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Fig. 1. A block diagram of the proposed DNN-based speech enhancement
system.

A block diagram of the proposed speech enhancement
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framework is illustrated in Fig. 1. A DNN is adopted as the
mapping function from noisy to clean speech features. Our
baseline system [32] is constructed in two stages. In the train-
ing stage, a DNN-based regression model was trained using
the log-power spectral features from pairs of noisy and clean
speech data. The log-power spectral features is adopted [40]
since it is thought to offer perceptually relevant parameters
(e.g., [13], [14]). Therefore, short-time Fourier analysis is first
applied to the input signal, computing the discrete Fourier
transform (DFT) of each overlapping windowed frame. Then
the log-power spectra are calculated.

In the enhancement stage, the noisy speech features are
processed by the well-trained DNN model to predict the clean
speech features. After we obtain the estimated log-power
spectral features of clean speech, X̂ l(d), the reconstructed
spectrum X̂ f(d) is given by:

X̂ f(d) = exp{X̂ l(d)/2} exp{j 6 Y f(d)}. (1)

where 6 Y f(d) denotes dth dimension phase of the noisy
speech. Although phase information is important in human
speech recognition [39], here, phase was extracted directly
from the noisy signal considering that our ears are insensitive
to small phase distortions or global spectral shifts [14]. How-
ever, we also pointed that the clean and noisy phases are quite
different at low SNRs, unfortunately, it is harder to estimate
the phase. Hence, only an estimate of the magnitude of clean
speech is required here. A frame of speech signal, X̂

t
, can

now be derived from inverse DFT (IDFT) of the current frame
spectrum. Finally, an overlap-add method, as in [40], is used
to synthesize the waveform of the whole utterance. For the
sake of simplicity, we will omit the superscripts of Y t, Y l,
Y f, X̂ t, X̂ l and X̂ f in following sections.

Another two modules, namely noise estimation for noise-
aware training and post-processing with global variance e-
qualization, shown in the red dashed boxes of the system
block diagram in Fig. 1, are proposed to improve the overall
performance of the proposed DNN-based speech enhancement
system. The dropout training strategy is also adopted to
improve the generalization capacity of DNNs. Details of the
proposed improvements are presented in Sec. III next.

III. DNN-BASED SPEECH ENHANCEMENT

In the following subsections, we first describe the basic
DNN training procedure used in [32] and then propose several
techniques to improve the baseline DNN system so that the
quality of the enhanced speech in matched noise conditions
can be maintained while the generalization capability to un-
seen noise can be increased.

A. Basic DNN Training

The architecture adopted here is a feed-forward neural
network with many levels of non-linearities [51] allowing
them to represent a highly non-linear regression function that
maps noisy speech features to clean speech features. Note
that the features are all normalized to zero mean and unit
variance. The training of DNN as a regression model consists
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Fig. 2. Illustration of the basic DNN training procedure.

of an unsupervised pre-training part and a supervised fine-
tuning part as illustrated in Fig. 2. The type of the hidden
units is sigmoid, and the output unit is linear. To avoid
getting stuck in local minima when training deep networks
[17, 19, 42], we first pre-train a deep generative model with
the normalized log-power spectra of noisy speech by stacking
multiple restricted Boltzmann machines (RBMs) [16] as shown
in the dashed blue box of Fig. 2. Since the input feature
vectors are of real-valued in our DNNs, the first RBM in Fig.
2 is a Gaussian-Bernoulli RBM that has one visible layer of
Gaussian variables, connected to a hidden binary layer. Then
multiple Bernoulli-Bernoulli RBMs can be stacked on top of
the Gaussian-Bernoulli RBM. They are trained layer-by-layer
in an unsupervised greedy fashion to maximize the likelihood
over training samples [19]. During that procedure, an objective
criterion, called contrastive divergence (CD), is used to update
the parameters of each RBM [16, 18].

Then the back-propagation algorithm with the MMSE-based
object function between the normalized log-power spectral
features of the estimated and the reference clean speech is
adopted to train the DNN. In contrast to pre-training for
initializing the parameters in the first several hidden layers, the
fine-tuning part shown in Fig. 2 performs supervised training
of all the parameters in the network. The MMSE criterion
in the log-power spectral domain has shown a consistency
with the human auditory system [13]. A mini-batch stochastic
gradient descent algorithm is used to improve the following
error function,

Er =
1

N

N∑
n=1

‖X̂n(Yn+τn−τ ,W,b)− Xn‖22. (2)

where Er is the mean squared error, X̂n(Yn+τn−τ ,W,b) and
Xn denote the estimated and reference normalized log-spectral
features at sample index n, respectively, with N representing
the mini-batch size, Yn+τn−τ being the noisy log-spectral feature
vector where the window size of context is 2 ∗ τ + 1, (W,b)
denoting the weight and bias parameters to be learned. Then
the updated estimate of W` and b` in the `-th layer, with a
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learning rate λ, can be computed iteratively in the following:

∆(W`
n+1,b

`
n+1) = −λ ∂Er

∂(W`
n,b

`
n)

−κλ(W`
n,b

`
n) + ω∆(W`

n,b
`
n), 1 ≤ ` ≤ L+ 1.

(3)

where L denoted the total number of hidden layers and L+ 1
represented the output layer. κ is the weight decay coefficient.
And ω is the momentum.

During learning, a DNN is used to learn the mapping
function; no assumptions are made about the relationship of
noisy speech with clean speech. It can automatically learn the
complicated relationship to separate speech from the noisy
signals given the sufficient training samples. Furthermore, as
shown in Fig. 2, the DNN could capture the acoustic context
information along the time axis (using multiple frames of
noisy speech as input) and along the frequency axis (using
full-band spectrum information) by concatenating them into
a long input feature vector for DNN learning while the
independence assumption among different dimensions was a
common practice in the Gaussian mixture model to reduce
computation complexity as in [40].

B. Post-processing with Global Variance Equalization

One of the residual error problems, namely over-smoothing,
causes a muffling effect on the estimated clean speech when
compared with reference clean speech. An equalization be-
tween the global variance of the estimated and reference clean
speech features is proposed to alleviate this problem. Global
variance equalization here can be considered as a simple type
of histogram equalization (HEQ), which plays a key role in
density matching [53]. In [43], it is demonstrated that the use
of global variance information could significantly improve the
subjective score in a voice conversion task.

The global variance of the estimated clean speech features
is defined as:

GV (d) =
1

M

M∑
n=1

(X̂n(d)− 1

M

M∑
n=1

X̂n(d))2. (4)

where X̂n(d) is the d-th component of a DNN output vector
at the n-th frame and M is the total number of speech frames
in the training set. The global variance of the normalized
reference clean speech features can be calculated in a similar
way. Meanwhile, a dimension-independent global variance can
be computed as follows:

GV =
1

M ∗D

M∑
n=1

D∑
d=1

(X̂n(d)− 1

M ∗D

M∑
n=1

D∑
d=1

X̂n(d))2.

(5)

Fig. 3 shows the global variances of the estimated and
reference normalized log-power spectra of clean speech across
different frequency bins. It can be observed that the global
variances of the estimated clean speech features were smaller
than those of the reference clean speech features, indicating
that the spectra of estimated clean speech were smoothed.
Moreover, this over-smoothing problem would get even worse
for the lower SNR case. Fig. 4 presents the spectrograms of an
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Fig. 4. Spectrograms of an utterance tested with AWGN at 0dB SNR: for
the DNN estimated (left), the clean (middle) and the noisy (right) speech.

utterance with additive white Gaussian noise (AWGN) at SNR
= 0dB: DNN model trained with 104 noise types enhanced
(left), clean (middle) and noisy (right) speech. A severe over-
smoothing phenomenon could be observed. The formant peaks
were suppressed, especially in the high frequency band which
leads to muffled speech.

To address the over-smoothing problem, a global equaliza-
tion factor α(d) is defined as follows:

α(d) =

√
GVref (d)

GVest(d)
. (6)

Where GVref (d) and GVest(d) represented the d-th dimension
of the global variance of the reference features and the
estimation features, respectively. Furthermore, a dimension-
independent global equalization factor β can be defined as:

β =

√
GVref
GVest

. (7)

Where GVref and GVest represented the dimension-
independent global variance of the reference features and the
estimation features, respectively.

As the input features of the DNN were normalized to zero
mean and unit variance. The output of DNN X̂(d) should be
transformed back as follows:

X̂ ′(d) = X̂(d) ∗ v(d) +m(d), (8)

where m(d) and v(d) are the d-th component of the mean and
variance of the input noisy speech features, respectively. Then
the equalization factor η could be used to lift the variance of
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this reconstruction signal as the post-processing:

X̂ ′′(d) = X̂(d) ∗ η ∗ v(d) +m(d), (9)

where η could be replaced by α or β defined in Eqs. (6)-
(7). Since the DNN output X̂(d) was in the normalized log-
power spectrum domain, the multiplicative factor η (with its
options α and β) was just operated as a exponential factor in
the linear spectrum domain. And this exponential factor could
effectively sharpen the formant peaks of the recovered speech
and suppress the residual noise simultaneously, which could
significantly improve the overall listening quality demonstrat-
ed in Sec. IV.

C. Dropout Training

One of the challenges in designing DNN-based speech en-
hancement systems is to address possible mismatches between
the training and testing conditions, caused by different SNR
levels, speaker variabilities, noise types, etc. As for the first
two factors, we have partially tackled them in [32]. However
the mismatch in noise types is the most difficult one as there
are many kinds of complicated noise environments in the real
world. In this work, frame-wise DNN training fed with noisy
speech features with many different noise types might be a
possible solution.

To better address those mismatch issues, a strategy called
“dropout” [34] could also be adopted to further improve the
generalization capability of the DNN. In the DNN training,
dropout randomly omits a certain percentage (e.g., ρ) of
the neurons in the input and each hidden layer during each
presentation of the sample for each training sample, which
can be treated as model averaging to avoid the over-fitting
problem. This prevents complex co-adaptations wherein the
activations of multiple nodes are highly correlated [34]. Since
the frequency bins of each sample are randomly omitted, and
each higher-layer neuron also gets input from a random collec-
tion of the lower-layer neurons, it indeed destroys the specific
relationship in noisy speech by introducing perturbations.

This operation might cause the performance degradation for
matching noise types, while it could improve the robustness
in mismatched cases, especially for non-stationary noises not
seen in the training data. At the enhancement stage, the DNN
discounts all the weights involved in the dropout training by
(1−ρ), instead of using a random combination of the neurons
at each hidden layer [35].

D. Noise-aware Training (NAT)

In conventional speech enhancement, the noise and clean
speech spectra are dynamically estimated using previous infor-
mation under some model assumptions. For instance in OM-
LSA approach (e.g., [8, 9]), its noise estimate is obtained by
averaging previous several frames of power spectra of noisy
speech, using a time-varying frequency-dependent smoothing
parameter that is adjusted by the signal presence probability
[9]. However, the relationship between the clean speech and
noise signals is non-linear and complicated. It is therefore
difficult to estimate the clean speech spectra with simple model
assumptions, especially for non-stationary noises.

On the other hand, the noise information of each utterance
was not specifically utilized in the basic DNN training. To
enable this noise awareness, the DNN is fed with the noisy
speech samples augmented with an estimate of the noise. In
this way, the DNN can use additional on-line noise information
to better predict the clean speech. Also the estimated noise
could be regarded as a specific code for adaptation, like a
speaker code in speaker adaptation [37]. Here the input vector
of the DNN is similar to what was adopted in [35] with a
noise estimate appended:

Vn = [Yn−τ , ...,Yn−1,Yn,Yn+1, ...,Yn+τ , Ẑn] (10)

Ẑn =
1

T

T∑
t=1

Yt (11)

where Yn represents the log-power spectral feature vector of
the current noisy speech frame n, the window size of context
here is 2 ∗ τ + 1, and the noise Ẑn is fixed over the utterance
and estimated using the first T frames. Although this noise
estimator is simple and not always efficient in robust speech
recognition task [36], its effect in the speech enhancement
task is not evaluated. Furthermore, the dropout to the estimated
noise Ẑn spliced in the input layer of DNNs could compensate
for the possible variability of the noise spectrum in other
frames of the current utterance.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

In [32], only four noise types, namely AWGN, Babble,
Restaurant and Street, from the Aurora2 database [44] were
used as the noise signals for synthesizing the noisy speech
training samples. In this study we increased the number of
noise types to 104 with another 100 environmental noises
[49]1. The spectrograms of these 104 noise types were p-
resented in Fig. 5. The clean speech data was still derived
from the TIMIT database [45]. All 4620 utterances from the
training set of the TIMIT database were corrupted with the
abovementioned 104 noise types at six levels of SNR, i.e.,
20dB, 15dB, 10dB, 5dB, 0dB, and -5dB, to build a multi-
condition training set, consisting of pairs of clean and noisy
speech utterances. This resulted in a collection of about 2500
hours of noisy training data (including one condition of clean
training data) used to train the DNN.

We randomly select part of them to construct a 100-hour
subset and a 625-hour training subset. Another 200 randomly
selected utterances from the TIMIT test set were used to
construct the test set for each combination of noise types and
SNR levels. As we only conduct the evaluation of mismatched
noise types in this paper, 15 other unseen noise types2, from

1The 104 noise types for training are N1-N17: Crowd noise; N18-N29:
Machine noise; N30-N43: Alarm and siren; N44-N46: Traffic and car noise;
N47-N55: Animal sound; N56-N69: Water sound; N70-N78: Wind; N79-N82:
Bell; N83-N85: Cough; N86: Clap; N87: Snore; N88: Click; N88-N90: Laugh;
N91-N92: Yawn; N93: Cry; N94: Shower; N95: Tooth brushing; N96-N97:
Footsteps; N98: Door moving; N99-N100: Phone dialing. To compare with
the results of [32], N101: AWGN, N102: Babble, N103: Restaurant, N104:
Street, were also used.

2The 15 unseen environment noises for evaluation are Exhibition, Car,
Buccaneer1, Buccaneer2, Destroyer engine, Destroyer ops, F16, Factory1, HF
channel, Leopard, Machine gun, and Pink. The first two noises are from the
Aurora2 database and the others are collected from the NOISEX-92 corpus.
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the Aurora2 database [44] and the NOISEX-92 corpus [38],
were used for testing. It should be noted that most of the
following experiments were only evaluated on three typical
noise types, namely, Exhibition, Destroyer engine and HF
channel, and the overall evaluation on the whole 15 unseen
noise types was given in Sec. IV-D. An improved version
of OM-LSA [8, 9], denoted as LogMMSE, was used for
performance comparison with our DNN approach.

Fig. 5. Spectrograms of 104 noise types which were used as the noise signals
for synthesizing the noisy speech training samples.

All the clean speech and noise waveforms were down-
sampled to 8KHz. The frame length is 32 msec (256 samples)
while the frame shift is 16 msec (128 samples). Then the
dimension of the log-power spectral feature vector is 129.
Perceptual evaluation of speech quality (PESQ) [46], which
has a high correlation with subjective evaluation scores [46],
was mostly used as a compressive objective measure. PESQ is
calculated by comparing the enhanced speech with the clean
reference speech, and it ranges from -0.5 to 4.5. We will
only report limited evaluation results based on other objective
measures, such as Short-Time Objective Intelligibility (STOI)
score [47], segmental SNR (SSNR, in dB) [40] and log-
spectral distortion (LSD, in dB) [40]. All of them are obtained
by comparing the enhanced speech with the clean reference
speech. STOI is highly relevant to the human speech intelli-
gibility score ranging from 0 to 1. SSNR denotes the degree
noise reduction, while LSD represents the speech distortion.
Subjective measures such as analysis of spectrograms and
informal listening tests will also be conducted for comparison.

The number of epoch for the RBM pre-training in each layer
was 20. The learning rate of pre-training was set as 0.0005.
As for the fine-tuning of the baseline, the learning rate was
set to 0.1 for the first 10 epochs, then decreased by 10% after
each subsequent epoch. The momentum rate ω is set to 0.9.
The total number of epoch at this stage was 50. The mini-
batch size N was set to 128. The weight decay coefficient κ
in Eq. (3) was 0.00001. As for the back-propagation algorithm
improved by the dropout regularization, the corruption levels
are 0.1 for the input layer and and 0.2 at each hidden layer,
respectively. The learning rate of dropout was 1. The initial

momentum rate of dropout is 0.5 and then the rate increases to
0.9 in the first 10 epochs, after which it is kept as 0.9. The first
T = 6 frames of each utterance were used for a noise estimate
in NAT. Mean and variance normalization was applied to the
input and target feature vectors of the DNN, so the dynamic
range of the log-power spectra could be compressed to make
them amenable to the back-propagation training.

As in [32], the clean speech condition was specially treated.
Almost all speech enhancement methods have the side effect
on the detail of the clean speech spectra. Fortunately, this
has little impact on human listening. Nonetheless, to ensure
that the clean signal is not distorted, a detection operation
for clean speech condition, was conducted. It was easily
implemented according to the energy and zero-crossing rate
[48] information. With this simple step, better overall results
could be obtained. So the results of the clean condition are
omitted in the remainder of the paper.

In the followings, we first tuned the parameters of different
DNN configurations, compared the proposed normalized clean
Log-power spectra with the mask-based training targets and
verified the different initialization schemes. Then the evalua-
tions of the proposed strategies demonstrated their effective-
ness to improve the generalization capacity to unseen noises.
The suppression against highly non-stationary noise was also
found. Finally, overall performance comparisons on 15 unseen
noises and on real-world noises between the proposed method
and the LogMMSE method were given.

A. Evaluations of Different DNN Configurations for Unseen
Noise Environments

1) The number of noise types: In [32], we had trained a
DNN model using 100 hours of noisy speech data with only
four noise types, namely AWGN, Babble, Restaurant and Street
noises. To improve the generalization capability of the DNN
in mismatched noise conditions, we used additional 100 noise
types provided in [49] to train a DNN with the same amount
of training data and network configurations as in [32], namely,
11-frame expansion, 3 hidden layers, and 2048 hidden units
for each hidden layer. Table I lists a performance comparison
of different number of noise types using PESQ and LSD
measures on the test set at different SNR levels of three unseen
noise environments, namely Exhibition, Destroyer engine and
HF channel. It was clear that the model trained with 104
noise types could achieve a better performance under the same
amount of training data and DNN configurations. For example
for the difficult HF channel case shown in Table I , the average
LSD over six different SNR levels (from -5dB to 20dB) of
three unseen noise types was reduced from 6.90 to 5.73. And
the average PESQ was improved from 2.43 to 2.60.

2) The depth of DNN: In Table II, we compare average
PESQ results at different SNRs across the abovementioned
three unseen noise types using the conventional shallow neural
networks (SNNs) with only one hidden layer and DNNL. Here
L denoted the number of hidden layers. The chosen DNN
configurations were 11-frame expansion, 2048 hidden units in
each hidden layer, and 100 hours of training data with 104
noise types. Two types of SNNs, namely SNN1 with 512 hid-
den units and SNN2 with 6144 (=2048*3) hidden units, both
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TABLE I
PESQ AND LSD COMPARISON BETWEEN MODELS TRAINED WITH FOUR

NOISE TYPES AND 104 NOISE TYPES ON THE TEST SET AT DIFFERENT
SNRS OF THREE UNSEEN NOISE ENVIRONMENTS.

PESQ LSD
4 noise types 104 noise types 4 noise types 104 noise types

SNR20 3.23 3.39 2.72 2.30
SNR15 2.93 3.10 3.53 2.90
SNR10 2.53 2.80 4.99 4.08
SNR5 2.27 2.46 7.12 5.87
SNR0 1.92 2.10 9.89 8.23
SNR-5 1.59 1.74 13.14 11.00

Ave 2.43 2.60 6.90 5.73

with 11-frame input, were compared. SNN2 (PESQ=2.57) was
shown to be superior to SNN1 (PESQ=2.48), indicating that
the speech component could be separated more easily from its
mixed signal with wider hidden layer in the SNN. It was also
observed that DNNs with more than one hidden layer were
demonstrated to be more effective and DNN3 achieved the
best performance at PESQ=2.6. The improvement of DNN3

over SNN2 which had the same number of parameters with
the DNN3 indicated that deeper neural network architectures
had a better regression capability.

TABLE II
AVERAGE PESQ RESULTS AMONG SNNS AND DNNL ON THE TEST SET
AT DIFFERENT SNRS ACROSS THE SAME THREE UNSEEN NOISE TYPES.

Noisy SNN1 SNN2 DNN1 DNN2 DNN3 DNN4

SNR20 2.88 3.23 3.35 3.34 3.38 3.39 3.37
SNR15 2.55 2.97 3.06 3.06 3.10 3.10 3.09
SNR10 2.22 2.67 2.76 2.76 2.79 2.80 2.78
SNR5 1.90 2.35 2.44 2.43 2.46 2.46 2.44
SNR0 1.61 2.00 2.07 2.07 2.10 2.10 2.09
SNR-5 1.37 1.66 1.72 1.72 1.74 1.74 1.75

Ave 2.09 2.48 2.57 2.56 2.59 2.60 2.59

3) The length of acoustic context: In Fig. 6 we show the
average PESQ results on the test set at different SNRs across
the abovementioned three mismatched noise types using input
features with different size of context expansion, ranging from
1 to 13 frames at a selective frame number increment. Other
configurations of the DNN were 3 hidden layers, 2048 units
at each hidden layer, and 100 hours of training data with 104
noise types. We could see the longer context used (no more
than 11 frames), the better the performance. In addition, more
acoustic context information could reduce the discontinuity of
the estimated clean speech signals to obtain a better listening
quality. However using too many frames in context also
degraded the performance as irrelevant information with the
current frame was included.

4) The size of training set: Fig. 7 compares the average
PESQ results of different training set size with 104 noise types
on the test set across the three mismatched noise types at
different SNRs. DNNs were configured with 3 hidden layers,
2048 units in each hidden layer and 11-frame context expan-
sion. Poor results were obtained if the data size was only one
hour, indicating that sufficient training samples are critical to
obtain models with a good generalization capability. There was
a big jump of performance when the training set size increased
to 5 hours. The performance was improved monotonically
when the data size increased until to 100 hours. The DNN
trained with 625 hours data was slightly better than the DNN
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Fig. 6. Average PESQ results using different acoustic context on the test set
across three unseen noise types at different SNRs.
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Fig. 7. Average PESQ results using different training set size with 104 noise
types on the test set across three unseen noise types at different SNRs.

trained with 100 hours data. The reason is that only 4-hour
clean TIMIT corpus [45] data and limited noise samples were
used to construct the multi-condition training data. The data
redundancy will be more severe when increasing the training
data to 625 hours. We pointed out that the richness of the
clean speech samples and the noise samples are the two crucial
aspects to improve the generalization capacity of DNNs.

5) Comparing with the mask based training targets: The
ideal ratio mask (IRM) and the short-time Fourier transform
spectral mask (FFT-MASK) were well defined in [50]. And
they were demonstrated to be superior to other existing train-
ing targets [50], such as, ideal binary mask (IBM), target
binary mask (TBM), the short-time Fourier transform spectral
magnitude (FFT-MAG), etc. Following the practice in [50],
the output type of the DNN for predicting IRM is sigmoid,
while the output type for FFT-MASK is linear. Hence, Table
III presented the PESQ results among the proposed normalized
clean log-power spectra, denoted as (a), IRM, denoted as (b)
and FFT-MASK, denoted as (c) on the test set at different
SNRs of three unseen noise environments. The proposed
normalized clean Log-power spectra target was better than
IRM and FFT-MASK at all conditions in our experimental
setup. IRM and FFT-MASK got the almost the same per-
formance. It should be noted that the proposed clean Log-
power spectra normalized to mean zero and unit variance is
crucial, which is different from the FFT-MAG with the Log
compression followed by the percent normalization. And the
MVN is better than the percent normalization used in [50],
because the calculated mean and variance is more robust
than the minimum and maximum value used in the percent
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normalization. As for the IRM, it assumes the independence
between the noise and the speech in its testing phase, although
it can restrict the dynamical value range to [0, 1] in the training
phase. Another main difference is that a set of features, such
as, amplitude modulation spectrogram (AMS), mel-frequency
cepstral coefficients (MFCC), etc, were adopted as the input
of DNNs in [50]. However, the normalized noisy Log-power
spectra was directly used as the input in this paper to predict
the clean Log-power spectra.

TABLE III
PESQ RESULTS OF USING DIFFERENT TRAINING TARGETS: THE PROPOSED

NORMALIZED CLEAN LOG-POWER SPECTRA, DENOTED AS (A), IRM,
DENOTED AS (B) AND FFT-MASK, DENOTED AS (C) ON THE TEST SET AT

DIFFERENT SNRS OF THREE UNSEEN NOISE ENVIRONMENTS.

Exhibition Destroyer engine HF channel
(a) (b) (c) (a) (b) (c) (a) (b) (c)

SNR20 3.37 3.26 3.24 3.51 3.43 3.41 3.27 3.11 3.11
SNR15 3.09 2.96 2.96 3.27 3.14 3.16 2.95 2.77 2.79
SNR10 2.78 2.63 2.66 3.00 2.83 2.88 2.61 2.43 2.47
SNR5 2.41 2.27 2.30 2.69 2.50 2.57 2.28 2.10 2.14
SNR0 1.99 1.88 1.90 2.35 2.15 2.22 1.96 1.80 1.83
SNR-5 1.57 1.51 1.51 2.00 1.81 1.87 1.65 1.56 1.55

Ave 2.53 2.42 2.43 2.80 2.64 2.69 2.45 2.30 2.31

6) Comparing RBM pre-training with the random initializa-
tion: Table IV presented the PESQ, LSD and SSNR results
of using RBM pre-training with 100 hours training data and
random initialization on the test set at different SNRs of three
unseen noise environments. RBM pre-training was slightly
better than the random initialization at low SNR conditions
where the mapping function is more complicated. Noted that
the training data was 100 hours here. With more training data,
the back-propagation algorithm could not be stuck in the local
optimum. And the RBM pre-training will be more beneficial
when the training data is insufficient.

TABLE IV
PESQ, LSD AND SSNR RESULTS OF USING RBM PRE-TRAINING WITH

100 HOURS TRAINING DATA AND RANDOM INITIALIZATION ON THE TEST
SET AT DIFFERENT SNRS OF THREE UNSEEN NOISE ENVIRONMENTS.

RBM Random
PESQ LSD SSNR PESQ LSD SSNR

SNR20 3.39 2.30 8.42 3.40 2.27 8.44
SNR15 3.10 2.90 6.34 3.10 2.87 6.40
SNR10 2.80 4.08 3.86 2.79 4.08 3.85
SNR5 2.46 5.87 1.23 2.46 5.92 1.17
SNR0 2.10 8.23 -1.42 2.08 8.32 -1.50
SNR-5 1.74 11.00 -3.86 1.73 11.14 -3.96

Ave 2.60 5.73 2.43 2.59 5.77 2.40

B. Evaluation of the Three Proposed Strategies for Unseen
Noise Environments

As shown in Eqs. (6)-(7), two GV equalization factors were
proposed to sharpen the over-smoothed estimated clean speech
spectra. In Table V we compare the PESQ results of the DNN
baseline and GV equalization using factors, α and β, on the
test set at different SNRs of the three unseen noise environ-
ments. The performance of GV equalization outperformed the
DNN baseline, especially at high SNRs. Using the dimension-
independent factor β consistently outperformed that using the
dimension-dependent factor α indicates that the same scaling
factor could be used for each frequency bin. Nonetheless,

the values of the factor α of different bins were fluctuant,
especially at low (and high) frequencies. This might lead to
unreasonable stretch of the estimated speech spectra.

TABLE V
PESQ RESULTS OF THE DNN BASELINE AND GV EQUALIZATION USING

FACTOR α AND β ON THE TEST SET AT DIFFERENT SNRS OF THREE
UNSEEN NOISE ENVIRONMENTS.

Exhibition Destroyer engine HF channel
DNN α β DNN α β DNN α β

SNR20 3.37 3.50 3.53 3.51 3.62 3.67 3.27 3.41 3.41
SNR15 3.09 3.20 3.22 3.27 3.36 3.41 2.95 3.06 3.06
SNR10 2.78 2.86 2.87 3.00 3.08 3.13 2.61 2.69 2.70
SNR5 2.41 2.47 2.49 2.69 2.76 2.81 2.28 2.34 2.35
SNR0 1.99 2.03 2.05 2.35 2.42 2.46 1.96 2.00 2.02
SNR-5 1.57 1.58 1.61 2.00 2.06 2.11 1.65 1.70 1.72

Ave 2.54 2.61 2.63 2.80 2.88 2.93 2.45 2.53 2.54

TABLE VI
PESQ RESULTS OF THE DNN BASELINE AND USING NAT ON THE TEST

SET AT DIFFERENT SNRS OF THREE UNSEEN NOISE ENVIRONMENTS.

Exhibition Destroyer engine HF channel
DNN NAT DNN NAT DNN NAT

SNR20 3.37 3.43 3.51 3.59 3.27 3.27
SNR15 3.09 3.15 3.27 3.34 2.95 2.93
SNR10 2.78 2.84 3.00 3.06 2.61 2.61
SNR5 2.41 2.46 2.69 2.74 2.28 2.31
SNR0 1.99 2.03 2.35 2.39 1.96 2.03
SNR-5 1.57 1.60 2.00 2.04 1.65 1.74

Ave 2.54 2.59 2.80 2.86 2.45 2.48

Table VI presents the PESQ results of using NAT on the test
set at different SNRs of three unseen noise environments. The
DNN using NAT outperformed the DNN baseline at almost
all conditions, e.g., an average PSEQ improvement of 0.06 in
the Destroy engine noise.

In Table VII, we compare the PESQ results among the
noisy, denoted as (a), the LogMMSE enhanced, denoted as
(b), the DNN baseline enhanced, denoted as (c), the dropout
DNN enhanced, denoted as (d), the GV equalization DNN
enhanced, denoted as (e), the dropout and GV equalization
DNN enhanced, denoted as (f) and the jointly dropout, GV
equalization and NAT DNN enhanced, denoted as (g), on the
test set at different SNRs in three unseen noise environments.
The DNNs were trained by 100 hours of training data and 104
noise types, with 3 hidden layers, 2048 units in each hidden
layer, and 11-frame acoustic context. Compared with the DNN
baseline system where only the basic DNN training procedure
is applied, the system improved by dropout training indeed
showed better performances, with average PESQ going from
2.45 in column (c) to 2.53 in column (d) for HF channel noise,
especially at low SNRs, with PESQ going from 1.65 to 1.80
for SNR=-5dB in HF channel noise.

Meanwhile, GV equalization also achieved significant im-
provements over the DNN baseline, with average PESQ going
from 2.54 in column (c) to 2.63 in column (e) for Exhibition
noise, especially at high SNRs, with PESQ going from 3.37
to 3.53 for SNR=20dB in Exhibition noise. After jointly
improved by GV equalization and dropout, PESQ further
increased consistently, with average PESQ going from 2.54
in column (c) to 2.67 in column (f) for Exhibition noise, from
2.80 in column (c) to 2.90 in column (f) for Destroyer engine
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TABLE VII
PESQ COMPARISON ON THE TEST SET AT DIFFERENT SNRS OF UNSEEN NOISE ENVIRONMENTS, AMONG: (A) NOISY,(B) LOGMMSE APPROACH, (C)

DNN BASELINE, (D) DNN WITH DROPOUT, (E) DNN WITH GV EQUALIZATION, (F) DNN WITH DROPOUT AND GV EQUALIZATION, AND (G) DNN WITH
JOINT DROPOUT, GV EQUALIZATION AND NAT.

Exhibition Destroyer engine HF channel
(a) (b) (c) (d) (e) (f) (g) (a) (b) (c) (d) (e) (f) (g) (a) (b) (c) (d) (e) (f) (g)

SNR20 2.89 3.24 3.37 3.38 3.53 3.44 3.59 2.98 3.51 3.51 3.52 3.67 3.58 3.76 2.77 3.37 3.27 3.28 3.41 3.32 3.47
SNR15 2.55 2.91 3.09 3.12 3.22 3.18 3.31 2.66 3.21 3.27 3.29 3.41 3.36 3.53 2.43 3.08 2.95 2.98 3.06 3.02 3.15
SNR10 2.21 2.58 2.78 2.82 2.87 2.90 3.00 2.34 2.87 3.00 3.03 3.13 3.10 3.24 2.10 2.74 2.61 2.66 2.70 2.72 2.82
SNR5 1.87 2.15 2.41 2.47 2.49 2.55 2.63 2.04 2.49 2.69 2.73 2.81 2.80 2.91 1.78 2.33 2.28 2.37 2.35 2.43 2.52
SNR0 1.56 1.69 1.99 2.08 2.05 2.18 2.24 1.75 2.07 2.35 2.39 2.46 2.46 2.55 1.51 1.84 1.96 2.08 2.02 2.15 2.24
SNR-5 1.28 1.23 1.57 1.65 1.61 1.75 1.80 1.52 1.57 2.00 2.04 2.11 2.10 2.17 1.31 1.33 1.65 1.80 1.72 1.84 1.92

Ave 2.06 2.30 2.54 2.59 2.63 2.67 2.76 2.22 2.62 2.80 2.83 2.93 2.90 3.03 1.99 2.45 2.45 2.53 2.54 2.58 2.69

noise, and from 2.45 in column (c) to 2.58 in column (f) for
HF channel noise.

By incorporating NAT on top of dropout and GV equaliza-
tion the best average PESQ results were achieved in columns
(g) at all three unseen noise types. It is clear that the three
techniques were complementary by a PESQ comparison from
columns (c) to (g). Furthermore, the best DNN system signif-
icantly outperformed the LogMMSE method (achieving only
2.30, 2.62 and 2.45 of average PESQ in columns (b) for all
three noise types, respectively) at different SNR levels of all
noise conditions, especially at low SNRs for the noise type
with many non-stationary components, e.g., PESQ going from
1.69 in column (b) to 2.24 in column (g) under Exhibition
noise at SNR=0dB.

(a) noisy (b) LogMMSE 

(c) DNN baseline (d) +dropout 

(e) +GV (f) +dropout+GV 

(g) +dropout+GV+NAT clean 

Fig. 8. Spectrograms of an utterance tested with Exhibition noise at SNR
= 5dB. (a) noisy speech (PESQ=1.42), (b) LogMMSE (PESQ=1.83), (c)
DNN baseline (PESQ=1.87), (d) improved by dropout (PESQ=2.06), (e)
improved by GV equalization (PESQ=2.00), (f) improved by dropout and
GV (PESQ=2.13), (g) jointly improved by dropout, NAT and GV equalization
(PESQ=2.25), and the clean speech (PESQ=4.5).

The enhanced spectrograms from one noisy speech utter-
ance corrupted by Exhibition noise at SNR=5dB using differ-
ent techniques were shown in Fig. 8. First, the LogMMSE
method played a limited role in reducing the non-stationary
noise components and there was still a lot of scatter noise
in the enhanced spectrogram, as shown in the two circled
regions in Fig. 8(b). Second, although the non-stationary
noise components in the noisy spectra shown in Fig. 8(a)
disappeared after processing by DNN shown in Fig. 8(c),
some residual noise still existed, as the Exhibition noise was
unseen in the training set. By a comparison from Fig. 8(c) to
Fig. 8(g), we could observe that dropout and NAT techniques
could reduce this relatively stationary residue noise in Fig.
8(c). while the enhanced formant spectra could be brightened
using GV equalization. The final spectrogram enhanced by
DNN in Fig. 8(g) obviously seemed more noiseless than that
using LogMMSE in Fig. 8(b), with a reference clean speech
spectrogram at the bottom-right corner of Fig. 8.

C. Suppression against Non-stationary Noise
It was of a great interest to examine the effect of DNN

against non-stationary noise, which is quite common in real-
world noisy speech. Fig. 9 shows an utterance example cor-
rupted by Machine gun noise at SNR=-5dB. It was known
to be difficult for almost all of the conventional techniques
to track the sudden increases of noise power, or they are
overestimating the noise energy resulting in speech distortion
[41]. The LogMMSE method did not work under this burst
noise at all, achieving PESQ=1.86 which is almost the same
as the PESQ value of 1.85 for noisy speech. Even using the
training data with only four noise types, the trained DNN still
had a strong suppression ability against non-stationary noises,
achieving PESQ=2.14. Finally the DNN trained with 104 noise
types obtained a good effect in listening quality and with the
best PESQ value of 2.78. This demonstrated that using a DNN
model, with an adequate acoustic context (both in time and in
frequency) and trained with a large coverage of noise types,
can well deal with the unseen noise type, especially for the
non-stationary noise components.

Fig. 10 shows an utterance example corrupted in succession
by different noise types at several speech segments. These
noise types were Exhibition, Buccaneer2, F16, Leopard, and
Destroyer engine. The DNN-enhanced spectrogram shown in
Fig. 10(a) successfully removed most of the noises while the
LogMMSE-enhanced spectrogram shown in Fig. 10(b) failed
to remove most of them and even led to a worse PESQ than
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Fig. 9. Spectrograms of an utterance tested on Machine gun noise at SNR
= -5dB: with 104-noise DNN enhanced (upper left, PESQ=2.78), LogMMSE
enhanced (upper right, PESQ=1.86), 4-noise DNN enhanced (bottom left,
PESQ=2.14), and noisy speech (bottom right, PESQ=1.85).

(a) DNN enhanced 

(b) LogMMSE enhanced 

(d) clean 

(c) noisy 

Fig. 10. Spectrograms of an utterance corrupted in succession by different
noise types tested on changing noise environments at SNR = 5dB: (a) DNN
enhanced (PESQ=2.99), (b) the LogMMSE enhanced (PESQ=1.46), (c) noisy
(PESQ=2.05), and (d) clean speech (PESQ=4.50).

the noisy speech (PESQ going down from 2.05 to 1.46). This
was reasonable as the LogMMSE method predicted the noise
in a recursive averaging mode according to previous frames
and it was hard to track the potentially dramatic changes in
non-stationary noises. However, the DNN model processed
the noisy spectrum in a frame-by-frame manner, and the
relationship between the clean speech and noise had been
learned off-line. As handling non-stationary noises is still an
open research problem in speech enhancement, our study gives
a possible research direction to solve it.

D. Overall Evaluation

The overall evaluation results on the test set with the whole
15 unseen noise types1, among the LogMMSE, the DNN
baseline with 100 hours of data, the improved DNN with
100 hours of data and the improved DNN with 625 hours

of data, are listed in Table VIII. All DNN configurations
were fixed at L = 3 hidden layers, 2048 units at each
hidden layer, and 11-frame input. The DNN baseline could
be improved effectively using the three proposed techniques
discussed in Section III. It is interesting to note that the best
average PSEQ of 3.15 was achieved with 625 hours of stereo
training data. A larger training set was shown to be slightly
better than the situation with a smaller training set of 100
hours (achieving an average PESQ of 3.12). Moreover, we
can see that the absolute PESQ gained between our best DNN
system and LogMMSE system (0.37) was even comparable
to that between LogMMSE system and unprocessed noisy
speech system (0.38), which was believed to be a significant
improvement. Finally, by using more noise types and the
three proposed techniques, the PESQ improvements of the
proposed DNN approach over LogMMSE under unseen noise
types in Table VIII are also comparable to that under matched
noise types reported in [32]. Meanwhile, the STOI results to
represent the intelligibility of the enhanced speech were also
presented in Table IX. LogMMSE is slightly better than the
noisy with an average STOI improvement from 0.81 to 0.82.
The DNN baseline trained with 100 hours got 0.86 STOI score
on average. The proposed strategies could further improve the
performance. After trained with 625 hours data, the STOI
was improved to 0.88, especially at low SNRs. As for the
intelligent of the speech, we may care more about the low SNR
conditions. Although there is a little performance degradation
at SNR=20dB, an absolute 0.13 STOI improvement compared
with the LogMMSE method was obtained at SNR=-5dB. More
results and demos can be found at this website3.

TABLE VIII
AVERAGE PESQ RESULTS AMONG THE LOGMMSE, THE DNN BASELINE

WITH 100 HOURS DATA, THE IMPROVED DNN WITH 100 HOURS DATA
AND THE IMPROVED DNN WITH 625 HOURS DATA ON THE TEST SET AT

DIFFERENT SNRS ACROSS THE WHOLE 15 UNSEEN NOISE TYPES.

Noisy LogMMSE 100h-baseline 100h-impr 625h-impr
SNR20 3.21 3.60 3.62 3.77 3.80
SNR15 2.89 3.33 3.39 3.58 3.60
SNR10 2.57 3.02 3.13 3.33 3.36
SNR5 2.24 2.66 2.85 3.05 3.08
SNR0 1.91 2.25 2.52 2.71 2.74
SNR-5 1.61 1.80 2.16 2.31 2.31

Ave 2.40 2.78 2.94 3.12 3.15

TABLE IX
AVERAGE STOI RESULTS AMONG THE LOGMMSE, THE DNN BASELINE

WITH 100 HOURS DATA, THE IMPROVED DNN WITH 100 HOURS DATA
AND THE IMPROVED DNN WITH 625 HOURS DATA ON THE TEST SET AT

DIFFERENT SNRS ACROSS THE WHOLE 15 UNSEEN NOISE TYPES.

Noisy LogMMSE 100h-baseline 100h-impr 625h-impr
SNR20 0.97 0.97 0.96 0.96 0.96
SNR15 0.93 0.94 0.95 0.95 0.95
SNR10 0.88 0.89 0.92 0.92 0.93
SNR5 0.80 0.81 0.87 0.88 0.89
SNR0 0.70 0.70 0.79 0.81 0.82
SNR-5 0.60 0.58 0.70 0.71 0.71

Ave 0.81 0.82 0.86 0.87 0.88

3http://home.ustc.edu.cn/˜xuyong62/demo/SE DNN taslp.html.

http://home.ustc.edu.cn/~xuyong62/demo/SE_DNN_taslp.html
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E. Evaluation for Real-world Noise Environments

Table X shows the informal subjective preference evaluation
comparison between DNN enhanced and LogMMSE enhanced
speech for 32 real-world noisy utterances (22 spoken in
English, and others spoken in other languages), which were
collected from some movies, lectures, or recorded directly by
the authors. They were assigned to ten subjects (five Chinese
males and five Chinese females.) for listening preference
choices. An average of 78% of the subjects preferred DNN
enhanced speech. For testing on English which is the same
language as in the TIMIT utterances used for training, the
preference score was 81%, higher than the score of 75% for
those utterances in different languages. Although DNNs did
well in cross-language testing, more research is needed to
bridge this performance gap.

TABLE X
SUBJECTIVE PREFERENCE EVALUATION COMPARISON BETWEEN THE

DNN ENHANCED AND LOGMMSE ENHANCED SPEECH OF 32
REAL-WORLD NOISY UTTERANCES IN ENGLISH OR OTHER LANGUAGES.

English Others Ave
DNN 81% 75% 78%

LogMMSE 19% 25% 22%

Finally to illustrate the speech quality obtained with real-
world noisy utterances we present testing results for an
utterance extracted from the famous movie Forrest Gump
and spoken by the well-known actor Tom Hanks playing
the title role. In Fig. 11 the spectrograms corresponding to
the best DNN model, the LogMMSE and the noisy speech
are shown. It was observed that the DNN model could still
well handle the particular noisy condition. Compared to the
LogMMSE-enhanced speech shown in the middle panel, the
DNN-enhanced speech (shown in the left panel) was seen
to suppress non-stationary noise more and resulted in less
residual noise.

Fig. 11. Spectrograms of a noisy utterance extracted from the movie Forrest
Gump with: improved DNN (left), LogMMSE (middle) and noisy speech
(right).

V. CONCLUSION

In this paper, a DNN-based framework for speech enhance-
ment is proposed. Among the various DNN configurations, a
large training set is crucial to learn the rich structure of the
mapping function between noisy and clean speech features.
It was found that the application of more acoustic context
information improves the system performance and makes
the enhanced speech less discontinuous. Moreover, multi-
condition training with many kinds of noise types can achieve
a good generalization capability to unseen noise environments.

By doing so, the proposed DNN framework is also powerful
to cope with non-stationary noises in real-world environments.
An over-smoothing problem in speech quality was found in the
MMSE-optimized DNNs and one proposed post-processing
technique, called GV equalization, was effective in brightening
the formant spectra of the enhanced speech signals. Two
improved training techniques were further adopted to reduce
the residual noise and increase the performance. Compared
with the LogMMSE method, significant improvements were
achieved across different unseen noise conditions. Another in-
teresting observation was that the proposed DNN-based speech
enhancement system is quite effective for dealing with real-
world noisy speech in different languages and across different
recording conditions not observed during DNN training.

It should be noted that only the TIMIT corpus was used
to construct the clean speech training set in the current study.
Such a small amount of data cannot be expected to attain a
good coverage of different acoustic conditions, such as speaker
and language variabilities. In future studies, we would increase
the speech diversity by first incorporating clean speech data
from a rich collection of materials covering more languages
and speakers. Second, there are many factors in designing the
training set. We would utilize principles in experimental design
[54, 55] for multi-factor analysis to alleviate the requirement
of a huge amount of training data and still maintain a good
generalization capability of the DNN model. Third, some other
features, such as Gammatone filterbank power spectra [50],
Multi-resolution cochleagram feature [56], will be adopted as
in [50] to enrich the input information to DNNs. Finally, a
dynamic noise adaptation scheme will also be investigated for
the purpose of improving tracking of non-stationary noises.
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