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Abstract—In this paper, four adaptive radar architectures for
target detection in heterogeneous Gaussian environments are de-
vised. The first architecture relies on a cyclic optimization ex-
ploiting the Maximum Likelihood Approach in the original data
domain, whereas the second detector is a function of transformed
data which are normalized with respect to their energy and
with the unknown parameters estimated through an Expectation-
Maximization-based alternate procedure. The remaining two ar-
chitectures are obtained by suitably combining the estimation
procedures and the detector structures previously devised. Per-
formance analysis, conducted on both simulated and measured
data, highlights that the architecture working in the transformed
domain guarantees the constant false alarm rate property with
respect to the interference power variations and a limited detection
loss with respect to the other detectors, whose detection thresholds
nevertheless are very sensitive to the interference power.

Index Terms—Adaptive detection, constant false alarm
rate, cyclic optimization, expectation maximization, gaussian
interference, heterogeneous environment, likelihood ratio test,
radar.

I. INTRODUCTION

LAST-GENERATION radar systems are provided with a
considerable abundance of computation power, which was

inconceivable a few decades ago. As a consequence, more and
more sophisticated processing schemes are being incorporated
into radar systems as corroborated by the novel architectures
which continuously appear in the open literature. Such architec-
tures provide enhanced performances at the price of an increased
computational load [1]–[6]. A common issue concerning the
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design of these architectures is related to the statistical as-
sumptions for the interference affecting the set of data to be
processed, which consists of the range Cell Under Test (CUT)
and an additional cluster of data, obtained collecting echoes in
proximity of the CUT and used for estimation purposes. For
instance, in the case of Gaussian interference, the additional
cluster of data, also known as secondary data set, is assumed to
share the same spectral properties of the interference as that in the
CUT. This situation is referred to as homogeneous environment,
which is widespread in the radar community [1]–[3], [7]–[10]
and represents the “entry-level” interference model in the design
of adaptive decision schemes. Under the homogeneous environ-
ment, secondary data are exploited to obtain reliable estimates
of either the interference covariance matrix (raw space-time
data processing) or the interference power (after space and/or
time beamforming) [11]. Then, such estimates are plugged into
decision statistics to achieve adaptivity and, more importantly,
the Constant False Alarm Rate (CFAR) property. It is relevant
to underline that the detection performance strongly depends on
the estimation quality of the unknown interference parameters,
which, in turn, is tied to the amount of secondary data (or,
more precisely, to the available information carried by them).
However, the presence of inhomogeneities in the secondary data
generates a severe performance degradation for those architec-
tures designed under the homogeneous environment [12] and
the CFAR property is no longer ensured. Indeed, secondary data
are often contaminated by power variations over range, clutter
discretes, and other outliers, which drastically reduce the number
of homogeneous secondary data. Furthermore, in target-rich
environments structured echoes in secondary data can overnull
the signal of interest and result in missed detections [13].

In the open literature, there exists a plethora of approaches to
cope with small volumes of homogeneous training samples. For
instance, the knowledge-aided paradigm represents an effective
means to obtain reliable estimates in sample-starved scenarios.
It consists in accounting for the available a priori information
at the design stage [6], [14], [15]. Alternatively, ad hoc decision
rules can be designed by forcing the same properties as the
Generalized Likelihood Ratio Test [16] or using the expected-
likelihood [17]. Other widely used techniques consist in the
regularization (or shrinkage) of the sample covariance matrix
towards a given matrix [18]–[21] or in detecting and suppressing
the outliers in order to make the training set homogeneous [22]–
[27]. Finally, the homogeneous model can be suitably extended
to account for heterogeneous data. Among the frequently used
assumptions to depict a non-homogeneous scenario there is the
Partially Homogeneous Environment (PHE), where both the
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CUT and secondary data share the same interference covariance
matrix structure but different interference power levels [28].
Though keeping a relative mathematical tractability, the PHE
leads to an increased robustness to inhomogeneities since the
assumed difference in power level accounts for terrain type
variations, height profile, and shadowing which may appear in
practice [29]. Additionally, the PHE subsumes the homogeneous
environment as a special case.

In this paper, we address the problem of detecting point-like
targets in heterogeneous scenarios by extending the PHE to
account for interference power variations between consecutive
samples. Specifically, for each range bin, the system collects
the echoes due to the transmission of a coherent burst of
pulses. Such echoes are characterized by different interference
power levels (nonstationary random process) leading to a “Fully-
Heterogeneous” Gaussian Environment (denoted in the follow-
ing by the acronym HE). Under these assumptions, we design
four adaptive architectures which do not use secondary data
and that represent different ways of solving the same detection
problem.

The first architecture is devised in the original data domain
exploiting the Likelihood Ratio Test (LRT) where the unknown
target and interference parameters are estimated resorting to a
cyclic optimization based upon the Maximum Likelihood Ap-
proach (MLA). This alternating estimation approach is dictated
by the fact that the straightforward application of the MLA is a
difficult task for the estimation problem at hand. Moreover, it is
important to underline that in this case the CFAR property cannot
be a priori predicted and an analysis is required to ascertain the
sensitivity of the detection threshold to the interference power
variations. On the other hand, the second proposed architecture
relies on transformed data. The line of reasoning behind this
transformation resides in the fact that the joint probability den-
sity function (pdf) of the modulus and phase of a complex normal
random variable (rv) with zero mean and variance σ2 > 0 (i.e.,
the data distribution under the null hypothesis) is given by the
product between the pdf of a Rayleigh rv with parameter σ2/2
by that of a rv uniformly distributed between 0 and 2π [30] that,
clearly, does not depend on σ2. As a consequence, normalizing
the considered complex normal random variable with respect
to its modulus leads to a distribution independent of σ2. With
this remark in mind, the original data can be transformed in
order to get rid of the dependence on the variance at least under
H0 paving the way for the design of CFAR decision rules.
Remarkably, this idea can be framed in a more general context
by invoking the Invariance Principle [31] and the so-called
Directional Statistics [32] in order to also account for normalized
random variables with nonzero mean.

To be more definite, the Invariance Principle allows us to
prove that data normalized with respect to their energy repre-
sent a Maximal Invariant Statistic (MIS) which is functionally
independent of scaling factors (namely, of the interference power
levels) under the noise-only hypothesis. As a consequence, any
decision rule based upon the MIS is invariant to interference
power variations ensuring the CFAR property with respect to
the latter. In addition, the distribution of the normalized data
under the target-plus-noise hypothesis is obtained by exploiting
the directional statistics and, in the specific case, the Angular
Gaussian distribution. In this framework, we devise a decision
scheme based upon the LRT, which represents the main technical

novelty of this paper (at least to the best of the authors’ knowl-
edge). Specifically, note that in this case a cyclic estimation
procedure based upon MLA (as in the previous case) cannot
be applied as under the alternative hypothesis the pdf of the
normalized data has an expression that is very difficult to handle
from a mathematical point of view. For this reason, we still use
an alternating optimization procedure but we replace the MLA
with the Expectation Maximization (EM) algorithm [33] spe-
cialized for the exponential family, since it is a simple iterative
algorithm that provides closed-form updates for the parameter
estimates at each step and reaches at least a local stationary
point. However, the application of the EM algorithm requires
the presence of hidden data. To this end, we disregard that
original data (referred to in the EM framework as complete data)
are available and fictitiously assume that only normalized data
can be processed whereas data norms are the hidden variables.
Remarkably, we expect that the architecture developed under
the above framework, by virtue of the Invariance Principle,
guarantees the CFAR property with respect to the interference
power level. Finally, the third and fourth decision schemes,
referred to as cross architectures, are obtained by combining the
estimates provided by the MLA-based cyclic procedure with the
LRT of the transformed data and the estimates provided by the
EM-based alternating procedure with the LRT of the original
data, respectively. It is clear that also for these architectures a
CFAR analysis is required to ascertain their sensitivity to the
interference power variations.

The numerical examples are built up resorting to simulated
and real recorded data. More precisely, the nominal behavior of
the proposed architectures is investigated over simulated data
which adhere to the design assumptions. This analysis confirms
the expected behavior in terms of CFARness of the second archi-
tecture. On the other hand, the remaining detectors using original
data are very sensitive to the interference power variations, even
though two of them ensure better detection performance than
the invariant detector. Finally, the results observed for simulated
data are corroborated by testing the proposed architectures on
data collected in winter 1998 using the McMaster IPIX radar in
Grimsby, on the shore of Lake Ontario, between Toronto and
Niagara Falls [34].

The remainder of this paper is organized as follows. In
the next section, we formulate the detection problem in both
the original data domain and invariant domain. In Section III,
we describe the procedures to estimate the unknown param-
eters and devise the LRT-based adaptive architectures, while
Section IV contains illustrative examples. Finally, in Sec-
tion V, we draw the conclusions and point out future research
tracks. Some mathematical derivations are confined to the
appendices.

A. Notation

In the sequel, vectors and matrices are denoted by boldface
lower-case and upper-case letters, respectively. Symbol (·)T
denotes transpose. For a generic vector x, symbol ‖x‖ indicates
its Euclidean norm. R is the set of real numbers, RN×M is
the Euclidean space of (N ×M)-dimensional real matrices (or
vectors if M = 1), RN×M

+ is the set of (N ×M)-dimensional
real matrices (or vectors if M = 1) whose entries are greater
than or equal to zero, and C is the set of complex numbers. If x
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is a generic N -dimensional vector then diag (x) is N ×N -
dimensional diagonal matrix whose nonzero entries are the
elements of x. Symbols Γ(·) and � denote the Eulerian Gamma
function and the element-wise Hadamard product, respectively.
Symbols Re{z} and Im{z} indicate the real and imaginary
parts of the complex number z, respectively. IN stands for the
N ×N identity matrix, while 0 is the null vector or matrix of
proper dimensions. Let x and y be two random vectors, then
E[x|y] and Var[x|y] are the conditional expectation and the
conditional variance ofx giveny, respectively. Finally, we write
x ∼ CNN (m,M) if x is a complex circular N -dimensional
normal vector with mean m and positive definite covariance
matrix M , x ∼ NN (m,M) if x is an N -dimensional normal
vector with mean m and positive definite covariance matrix m,
x ∼ U(a, b) is x is a random uniform variable ranging in the
interval [a, b].

II. PROBLEM FORMULATION

Let us consider a radar system that transmits a coherent
burst of K pulses to sense the surrounding environment. The
backscattered signal impinging the radar undergoes a baseband
down-conversion and a filtering matched to the transmitted pulse
waveform. Then, the output of the matched filter is suitably
sampled in order to form the range bins. In the case where
the system is equipped with N spatial channels, the samples
from each channel are combined using suitable weights in a
digital beamformer [7], [35]. Summarizing, for each range bin,
K complex samples are available (slow-time), which result
from the superposition between an interference component and
a possible useful signal component. When the former is sta-
tionary over the range and/or time dimension, a set of training
samples (secondary data) in proximity to that under test can be
exploited to come up with adaptive decision schemes capable of
ensuring the CFAR property [1]–[3], [7]. However, in practice
there exist situations where the conventional approach based
upon the secondary data set might fail due to the presence
of interference power variations over range (fast-time) and
pulses (slow-time), clutter discretes, and other outliers. As a
consequence, interference within secondary data is no longer
representative of that in the CUT and architectures designed for
the homogeneous environment exhibit a significant performance
degradation. More importantly, the CFAR property is no longer
ensured [12].

To face with the above situations, in what follows, we focus on
the HE and assume that, at the design level, interference affecting
the K samples exhibits different power levels. Specifically, let
us denote by x1, . . . , xK ∈ C the complex returns (at the output
of the beamformer) representative of the CUT and focus on the
problem of deciding whether or not they contain useful signal
components, which can be formulated in terms of the following
hypothesis test{

H0: xk ∼ CN1(0, 2σ
2
k), k = 1, . . . ,K,

H1: xk ∼ CN1(α, 2σ
2
k), k = 1, . . . ,K,

(1)

where1 σ2
k ≥ C0 > 0, k = 1, . . . ,K, is the power of the inter-

ference affecting the echo associated with the kth transmitted

1The factor 2 is used to simplify the notation.

pulse; α ∈ C accounts for target response and channel effects;2

xks are assumed statistically independent. As for C0, it is a
positive constant that accounts for the minimum allowable power
level of the interference. This lower bound has been introduced
for regularization purposes. As a matter of fact, note that the
number of unknown parameters in (1) is K + 2, namely σ2

k,
k = 1, . . . ,K, Re{α}, and Im{α}, whereas the number of
available data is 2K, i.e., Re{xk} and Im{xk}, k = 1 . . . ,K.
Even though 2K > K + 2whenK > 2, the problem of estimat-
ing σ2

k is ill-conditioned due to the small amount of data sharing
the sameσ2

k. Thus, a prospective estimator ofσ2
k should exhibit a

significant variance that can be limited by forcing the mentioned
lower bound. Finally, in practice C0 could be set according to
the level of the system internal noise, which can be estimated
by collecting noisy samples when the antenna is disengaged by
means of a switch (or circulator) device.

Problem (1) can be recast in terms of 2-dimensional Gaussian
vectors whose entries are the real and imaginary parts of the
complex samples, namely

xk = [Re{xk}, Im{xk}]T ∈ R2×1, k = 1, . . . ,K, (2)

which, by definition, obey the 2-variate Gaussian distribution
with mean 0 and m = [Re{α}, Im{α}]T under H0 and H1,
respectively. The covariance matrix is σ2

kI2 under both hypothe-
ses (this is a straightforward consequence of the definition of
complex circular Gaussian random variable). It follows that (1)
is equivalent to{

H0:xk ∼ N2

(
0, σ2

kI2

)
, k = 1, . . . ,K,

H1:xk ∼ N2

(
m, σ2

kI2

)
, k = 1, . . . ,K,

(3)

and the pdf of xk under Hi, i = 0, 1, is given by

fx,i(xk; im, σ2
k) =

1

2πσ2
k

exp

{
−‖xk − im‖2

2σ2
k

}
. (4)

The design of CFAR decision rules for the above problem,
where data experience interference power variations, might
represent a difficult task. For this reason, we transform data
in order to remove the dependence of data distribution on σ2

ks
under H0. In fact, as stated in Section I, normalizing a zero-
mean complex normal rv with respect to its modulus makes
the resulting distribution independent of its variance. However,
under H1, due to the nonzero mean, it is more suitable to
frame the next developments in the context of the Directional
Statistics [32]. Such statistics can be obtained by transforming
xk, k = 1, . . . ,K, into unit-norm vectors. As a consequence,
any decision statistic, which is a function of the transformed
data, naturally gets the CFAR property with respect to σ2

ks. This
behavior can be formally explained in the context of the Theory
of Invariance [31], which requires the identification of a suitable
group of transformations. More precisely, let us define the set of
vectors C = {c ∈ RK×1

+ } along with the composition operator
“◦” defined as ∀c1, c2 ∈ C : c1 ◦ c2 = c1 � c2. Then, it is not
difficult to show that G = (C, ◦) constitutes a group, since it
satisfies the following elementary axioms
� G is closed with respect to the operation defined in the last

equation;

2Note that the behavior of target and channel is assumed stationary in time.
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� ∀c1, c2, and c3 ∈ G: [c1 ◦ c2] ◦ c3 = c1 ◦ [c2 ◦ c3] (asso-
ciative property);

� there exists a unique cI ∈ G such that ∀c ∈ G: cI ◦ c =
c ◦ cI = c (existence of the identity element);

� ∀c ∈ G, there exists c−1 ∈ G such that c−1 ◦ c = c ◦
c−1 = cI (existence of the inverse element).

Besides, it is evident that this group preserves the fam-
ily of distributions and modifies the scaling factors un-
der the action G(·, . . . , ·) defined as G(x1, . . . ,xK) =
[c(1)x1, . . . , c(K)xK ]. Thus, exploiting the Principle of Invari-
ance, we can replace the original data vectors with a suitable
function of them, namely the MIS, which is functionally invari-
ant to the considered group of transformations. As a result, under
H0 the statistical dependence on σ2

i is removed. In Appendix A
it is shown that a MIS with respect to G is given by

T (x1, . . . ,xK) = [z1, . . . ,zK ] , (5)

where zk = xk

‖xk‖ ∈ R2×1, k = 1, . . . ,K, which, evidently,

only depend on the direction of xk in R2×1.
Thus, in the invariant domain, the detection problem at hand

can be written as{
H0 : zk ∼ f0(zk), k = 1, . . . ,K,

H1 : zk ∼ f1(zk;m, σ2
k), k = 1, . . . ,K,

(6)

where vectors zk, k = 1, . . . ,K, obey the Angular Normal
Distribution [32] with pdfs: f0(zk) = 1/(2π) and (as shown
in Appendix A)

f1(zk;m, σ2
k) =

exp
{
−‖m‖2

2σ2
k

}
2π

⎡⎢⎢⎣1 +
zT
km

σk
Φ

(
zT
km

σk

)
ϕ

(
zT
km

σk

)
⎤⎥⎥⎦ ,
(7)

under H0 and H1, respectively. In (7), Φ(·) and ϕ(·) are the
Cumulative Distribution Function (CDF) and the pdf of a stan-
dard Gaussian random variable, respectively. Finally, note that
f1(zk;0, σk) = f0(zk) and, hence, the formal structure of the
detection problem at hand given by

H0 : m = 0, H1 : m 	= 0, (8)

remains unaltered.
Detectors designed in this domain are expected to ensure the

CFAR property as corroborated by the analysis presented in
Section IV.

III. DETECTOR DESIGN

In this section, we devise adaptive detection architectures for
problem (8) exploiting data from either the original domain, or
the invariant domain, or both domains. To this end, we resort to
the LRT where the unknown parameters under each hypothesis
are replaced by suitable estimates. Specifically, the architectures
operating in one domain are formed by coupling the LRT and
parameter estimates for the same domain, whereas those based
upon data from both domains, namely the cross architectures,
are built up by plugging the estimates obtained in one domain
into the LRT for the other domain and vice versa.

As for the design methodology, it is important to observe
that under the assumptions considered in Section II the plain

MLA approach does not represent a viable route towards the
estimation of the unknown parameters m and σ2 as it requires
to solve mathematically intractable equations in both domains
(at least to the best of authors’ knowledge). For this reason,
we resort to a cyclic optimization paradigm [36], which con-
sists in partitioning the parameter set into two suitable subsets
and, at each iteration, in estimating the parameters of a subset
assuming the other parameters known. In the original domain,
at each iteration of this procedure the application of the MLA
is practicable, while in the transformed domain the MLA still
leads to difficult equations. In order to cope with this drawback,
we resort to the EM approach [33], which, as already stated,
is an iterative algorithm providing closed-form updates for the
sought estimates. Now, the application of the EM algorithm
requires the presence of hidden variables in addition to observed
data. Therefore, we fictitiously assume that original data are no
longer available and, hence, that data norms represent the hidden
variables.

Finally, before proceeding with the decision rule designs,
for future reference, let us define X = [x1, . . . ,xK ], Z =
[z1, . . . ,zK ], and σ2 = [σ2

1 , . . . , σ
2
K ]T .

A. Original Data Domain

This subsection is devoted to the derivation of an adaptive
architecture whose decision statistic is a function of X . To
this end, the unknown parameters under H1 are estimated by
means of a procedure combining the ML approach with a cyclic
optimization method [36]. On the other hand, under H0, we
compute the ML estimate of σ2.

Let us begin with the expression of the LRT

Ψ1(X;m,σ2) =
fX,1(X;m,σ2)

fX,0(X;0,σ2)

H1
>
<
H0

η, (9)

where fX,1(X;m,σ2) =
∏K

k=1 fx,1(xk;m, σ2
k), fX,0(X; 0,

σ2) =
∏K

k=1 fx,0(xk; 0, σ2
k), η is the threshold3 to be set in

order to guarantee the required Probability of False Alarm (Pfa);
parameters m and σ2 have to be estimated from X in order to
make the above decision rule adaptive.

Under H0, the unknown parameters are estimated as follows

σ̂2
0 = arg max

σ2
k
≥C0

k=1,...,K

K∏
k=1

fx,0(xk;0, σ
2
k). (10)

Thus, setting to zero the first derivative of
∏K

k=1 fx,0(xk; 0, σ
2
k)

with respect to σ2
k and accounting for the constraint σ2

k ≥ C0,
we obtain that

σ̂2
0 =

⎡⎢⎢⎣
max{ 1

2‖x1‖2, C0}
...

max{ 1
2‖xK‖2, C0}

⎤⎥⎥⎦ =

⎡⎢⎢⎣
σ̂2
0,1
...

σ̂2
0,K

⎤⎥⎥⎦ . (11)

As for the estimation under H1, we proceed according to the
following rationale

1) assume that σ2 is known and compute the resulting ML
estimate of m;

3Hereafter, the generic detection threshold is denoted by η.
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2) replace m with the estimate obtained at the previous step
and derive the ML estimate ofσ2 with the constraint σ2

k ≥
C0, k = 1, . . . ,K;

3) repeat the above steps until a stopping criterion is satisfied.
As for the first step, it is not difficult to show that the ML

estimate of m when σ2 is equal to an initial value, σ̄2 say, has
the following expression

m̂ =

[
K∑

k=1

1

σ̄2
k

]−1 K∑
k=1

xk

σ̄2
k

, (12)

whereas the estimate of σ2 when m = m̂ (second step) is given
by

σ̂2
1 =

⎡⎢⎢⎣
max{ 1

2‖x1 − m̂‖2, C0}
...

max{ 1
2‖xK − m̂‖2, C0}

⎤⎥⎥⎦ =

⎡⎢⎢⎣
σ̂2
1,1
...

σ̂2
1,K

⎤⎥⎥⎦ . (13)

It is important to observe that C0 prevents (12) from diverging,
since there could exist an index k̃ such that xk̃ − m̂ ≈ 0.

Finally, the estimate updates terminate when a stopping cri-
terion is satisfied. Specifically, let us denote by m̂(n), (σ̂2

1)
(n),

m̂(n−1), and (σ̂2
1)

(n−1) the available estimates at the nth and
(n− 1)th iterations, respectively, then the alternating procedure
terminates when∣∣∣fX,1(X; m̂(n), (σ̂2

1)
(n))−fX,1(X; m̂(n−1), (σ̂2

1)
(n−1))

∣∣∣ < ε

(14)
or n ≥ Nco,1, where ε > 0 and Nco,1 is the maximum allow-
able number of iterations. The proposed iterative algorithm is
summarized in Algorithm 1 and the adaptive modification of
the LRT is given by

Ψ2(X) =
fX,1(X; m̂(n), (σ̂2

1)
(n))

fX,1(X;0, σ̂2
0)

H1
>
<
H0

η. (15)

The above architecture is referred to in what follows as Gaussian
Detector for Heterogeneous Environment (GD-HE).

B. Invariant Data Domain

In this subsection, the design is conducted by invoking the
Principle of Invariance and the LRT is function of transformed
data, namely

Λ1

(
Z;m,σ2

)
=

f1
(
Z;m,σ2

)
f0 (Z)

H1
>
<
H0

η, (16)

where f1(Z;m,σ2) =
∏K

k=1 f1(zk;m, σ2
k), f0(Z) =∏K

k=1 f0(zk). As stated at the beginning of this section,
in order to estimate m and σ2, we follow a cyclic procedure
where, at each step, the EM-Algorithm is exploited (in place of
the MLA) under the fictitious assumption thatzk, k = 1, . . . ,K,
represent the observed data, while missing data are the norms
of xk, k = 1, . . . ,K. Finally, we refer to xk, k = 1, . . . ,K, as
complete data. The considered procedure relies on the following
steps

1) assume that σ2 is known and estimate of m using the
EM-Algorithm;

2) replace m with the estimate obtained at the previous step
and estimate σ2 applying the EM-Algorithm for known
m;

3) repeat the above steps until a stopping criterion is satisfied.
1) First Step of the Cyclic Procedure: Let us assume that

σ2 is known and estimate m. To this end, observe that the
distribution of the complete data belongs to the exponential fam-
ily [31] and, hence, the EM-Algorithm simplifies. As a matter
of fact, with focus on the complete data, by the Fisher-Neyman
Factorization Theorem [37], a sufficient statistic for m is given
by t(X;σ) =

∑K
k=1

xk

σ2
k
=
∑K

k=1
bkzk

σ2
k

, where bk = ‖xk‖.
Then, the expectation step of the EM-Algorithm consists in

computing the conditional expectation of the sufficient statistic
given the observed data, namely

E[t(X;σ)|Z;m,σ2] =

K∑
k=1

E[bk|zk;m, σ2
k]zk

σ2
k

. (17)

In order to evaluate E[bk|zk;m, σ2], the conditional pdf of bk
given zk is required. To this end, exploiting the definition of
conditional pdf, we obtain

f(bk|zk;m, σ2
k) = f(bk, zk;m, σ2

k)/f(zk;m, σ2
k). (18)

The numerator of the last equation can be obtained by con-
sidering the pdf of xk and performing the following transfor-
mation xk,1 = bk cos(θk) and xk,2 = bk sin(θk), where xk =
[xk,1 xk,2]

T . The Jacobian of the transformation is bk and, hence,
the transformed pdf is given by

f
(
bk, zk;m, σ2

k

)
=

bk
2πσ2

k

exp

{
(bkzk −m)T (bkzk −m)

−2σ2
k

}

=
1

2πσ2
k

exp

{(
b2k + ‖m‖2 − 2bkm

Tzk

)
−2σ2

k

+ log (bk)

}
.

(19)

Finally, f(bk|zk;m, σ2
k) can be recast as

f(bk|zk;m, σ2
k)

= exp

{
− b2k
2σ2

k

+
bk
σ2
k

zT
km+ log (bk)− ξ

(
zT
km
)}

,

(20)

where

ξ
(
zT
km
)
= log

[
σ2
k + σkz

T
km

Φ
(
zT
km/σk

)
ϕ
(
zT
km/σk

)] . (21)

Note that the distribution of the random variable bk|zk be-
longs to the exponential family with natural scalar param-
eter pk = zT

km [31] since the pdf (20) can be rewritten
as [38] f(bk|zk;m, σ2

k) = exp{t(bk)pk − ξ(pk)}h(bk), where
t(bk) = bk/σ

2
k, h(bk) = exp{log(bk)− b2k/2σ

2
k}, and (see Ap-

pendix A for the proof)

ξ(pk) = log

{∫ +∞

0

exp{t(bk)pk}h(bk)dbk
}
. (22)
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Following the lead of [39] and [40], it is possible to show that

E[t(bk)|zk;m, σ2
k] =

d

dp
[ξ(p)]

∣∣∣∣
p=pk

(23)

and, hence, that

E[bk|zk;m, σ2
k] = σ2

k

{
d

dp
[ξ(p)]

}∣∣∣∣
p=pk

= zT
km+

σ2
kΦ(z

T
km/σk)

σkϕ(zT
km/σk) + zT

i mΦ(zT
km/σk)

= hk(m). (24)

Let us denote by m̂(n) an estimate of m at the nth EM
iteration, then the maximization step of the EM-Algorithm
specialized for the exponential family consists in solving the
equations [33, Section II]

E[t(X;σ);m,σ2] =
K∑

k=1

hk(m̂
(n))zk

σ2
k

⇒ m̂(n+1) =

[
K∑

k=1

1

σ2
k

]−1 K∑
k=1

hk(m̂
(n))zk

σ2
k

. (25)

Summarizing, the EM proposed algorithm starts from an ini-
tial estimate m̂(0) and, at each iteration, updates the estimate
according to equation (25). The iterations terminate when∣∣∣f1(Z; m̂(n),σ)− f1(Z; m̂(n−1),σ)

∣∣∣ < ε1 (26)

or n ≥ NEM,m, where ε1 > 0 and NEM,m is the maximum
allowable number of iterations for the EM-Algorithm.

2) Second Step of the Cyclic Procedure: This step provides
an estimate of σ2 assuming that m is known (for instance, it
can be equal to m̂(n)) and σ2

k ≥ C0, k = 1, . . . ,K. In this case,
a sufficient statistic for σ2 is given by

t(X) = [‖x1 −m‖2, . . . , ‖xK −m‖2]T

= [‖b1z1 −m‖2, . . . , ‖bKzK −m‖2]T (27)

and its conditional expectation given z can be written as

E[t(X)|Z;m,σ2] =

⎡⎢⎢⎣
E[‖x1 −m‖2|z1;m, σ2

1 ]
...

E[‖xK −m‖2|zK ;m, σ2
K ]

⎤⎥⎥⎦. (28)

Let us focus on the kth entry of the above vector and exploit (23)
and (24) to obtain that

E[‖xk −m‖2|zk;m, σ2
k]

= E[b2k|zk;m, σ2
k] + ‖m‖2 − 2pk σ2

k

{
d

dp
[ξ(p)]

}∣∣∣∣
p=pk

= Var[bk|zk;m, σ2
k] +

{
σ2
k

{
d

dp
[ξ(p)]

}∣∣∣∣
p=pk

}2

+ ‖m‖2

− 2pk σ2
k

{
d

dp
[ξ(p)]

}∣∣∣∣
p=pk

. (29)

Again, from the properties of the exponential family [39], [40],
it turns out that

Var[t(bk)|zk;m, σ2
k] =

1

(σ2
k)

2
Var[bk|zk;m, σ2

k]

=
d2

dp2
[ξ(p)]

∣∣∣∣
p=pk

=
1

σ2
k

+
ϕ(pk/σk)/σk

σkϕ(pk/σk) + pΦ(pk/σk)

−
[

Φ(pk/σk)

σkϕ(pk/σk) + pΦ(pk/σk)

]2
. (30)

Thus, replacing the above equation into (29), we obtain

that E[‖xk −m‖2|zk;m, σ2
k] =

2σ3
kϕ(pk/σk)

σkϕ(pk/σk)+pkΦ(pk/σk))
−

[pk]
2 + pk

σ2
kϕ(pk/σk)

σkϕ(pk/σk)+pkΦ(pk/σk))
+ ‖m‖2.

Now, let us denote by (σ̂2
k)

(n) an estimate of σ2
k

at the nth iteration of the EM-Algorithm and solve
with respect to σ2

k the following equation E[‖xk −
m‖2;m, σ2

k] =
2(σ

(n)
k )3ϕ(pk/σ

(n)
k )

σkϕ(pk/σ
(n)
k )+pkΦ(pk/σ

(n)
k ))

− [pk]
2 +

pk
(σ

(n)
k )2ϕ(pk/σ

(n)
k )

σ
(n)
k ϕ(pk/σ

(n)
k )+pkΦ(pk/σ

(n)
k ))

+ ‖m‖2 to come up with

(σ̃2
k)

(n+1) =
(σ

(n)
k )3ϕ(pk/σ

(n)
k )

σkϕ(pk/σ
(n)
k ) + pkΦ(pk/σ

(n)
k )

− [pk]
2

2

+
pk
2

(σ
(n)
k )2ϕ(pk/σ

(n)
k )

σ
(n)
k ϕ(pk/σ

(n)
k ) + pkΦ(pk/σ

(n)
k )

+
‖m‖2
2

.

(31)

In order to fulfill the constraint on σ2
k, which is required to

avoid numerical instability, we regularize the estimate of σ2

as (σ̂2
k)

(n+1) = max{(σ̃2
k)

(n+1), C0}. The stopping condition
for this step is given by∣∣f1(Z;m, (σ̂2)(n))− f1(Z;m, (σ̂2)(n−1))

∣∣ < ε2 (32)

orn ≥ NEM,σ with ε2 > 0 andNEM,m the maximum allowable
number of iterations, then the EM-Algorithm terminates.

Now, once (σ̂2)(n) is available, we can repeat the first step of
the cyclic procedure exploiting the above estimate as initial value
for σ2. Note that this estimation procedure is “doubly” iterative,
namely for each step of the cyclic procedure the EM algorithm is
executed. For this reason, the estimates ofm andσ2 are denoted
using a double superscript as m̂(n),(i) and (σ̂2)(n),(i), where n
indexes the EM iterations and i refers to the iterations of the
cyclic procedure.4 Finally, the entire procedure, summarized in
Algorithm 2, terminates when∣∣∣f1(Z; m̂(ni),(i), (σ̂2)(ni),(i))

−f1(Z; m̂(ni−1),(i−1), (σ̂2)(ni−1),(i−1))
∣∣∣ < ε3 (33)

or i ≥ Nco,2, where ε3 > 0, ni is the number of EM iterations
at the ith iteration of the cyclic procedure, and Nco,2 is the
maximum allowable number of iterations.

4Notice that in the derivations, the second index has been omitted in order not
to burden the notation.
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3) Likelihood Ratio Test: Finally, replacingm andσ2 in (16)
with the respective estimates provided by Algorithm 2 and taking
the logarithm, we obtain the following decision rule

Λ2(Z) = − ‖m̂‖2
K∑

k=1

1

2σ̂2
k

+
K∑

k=1

log

⎡⎢⎢⎣1 +
zT
k m̂

σ̂k
Φ

(
zT
k m̂

σ̂k

)
ϕ

(
zT
k m̂

σ̂k

)
⎤⎥⎥⎦ H1

>
<
H0

η, (34)

which will be referred to in the following as Angular-Gaussian
Detector (AGD).

C. Cross Architectures

As stated at the beginning of this section, two additional
architectures can be obtained by combining (9) with the esti-
mates provided by Algorithms 2 and (16) with the estimates
provided by Algorithm 1. These architectures are referred to
in the following as Cross GD-HE (C-GD-HE) and Cross AGD
(C-AGD), respectively.

Finally, we conclude this section by observing that the con-
ceived estimation procedures converge at least to a local station-
ary point. As a matter of fact, it is clear that at each iteration of
Algorithm 1, the likelihood increases [36]. As for the EM-based
cyclic procedure, since at each iteration the EM returns (at least)
a local stationary point, it is possible to obtain an increasing
sequence of likelihood values at each iteration of the cyclic
procedure that uses the EM algorithm.

IV. ILLUSTRATIVE EXAMPLES AND DISCUSSION

In this section, we investigate the behaviors of the proposed
decision schemes in terms of CFARness and detection perfor-
mance. Specifically, this study is conducted using simulated data
to assess the nominal behavior as well as real recorded data to
evaluate the effectiveness of the proposed architectures when the
operating scenario does not exactly match the design assump-
tions. Moreover, as preliminary step, a convergence analysis
of the estimation procedures is provided in order to justify the
parameter choices.

In the next numerical examples, the iterative estimation proce-
dure in the original domain starts by setting (σ̂2

1,i)
(0) = ‖xi‖2,

whereas the EM-based procedure in the invariant domain be-
gins from m̂(0),(0) = 1

K

∑K
i=1 xi and (σ̃2

i )
(0),(0) = 1

2‖xi −
m̂(0),(0)‖2.

A. Simulated Data

The analysis presented in this subsection first determines the
numbers of iterations for the estimation procedures required to
obtain satisfactory results. Then, it investigates to what extent
the Pfa is sensitive to variations of the interference parameters
when the thresholds are evaluated simulating white noise and
for a nominal value of the Pfa. Finally, given a preassigned
Pfa, the detection performance for different parameter settings
are studied. All the numerical examples in this subsection are
obtained by means of Monte Carlo counting techniques based

Fig. 1. LHS of (14) versus the number of iterations (Algorithm 1).

Fig. 2. Convergence curves for Algorithm 2: LHS of (26) versus the number
of iterations (a); LHS of (32) versus the number of iterations (b); LHS of (33)
versus the number of iterations (c).

upon 100/Pfa and 10000 independent trials to estimate the
thresholds (or the Pfa) and the Pd, respectively.

The interference power is defined as

σ2
k = Δuk + σ2

n, k = 1, . . . ,K, (35)

where σ2
n = 1 is the noise power, uk ∼ U(0, 1), k = 1, . . . ,K,

and Δ represents the heterogeneity level, namely the greater its
value, the more heterogeneous the interference. It is important
to underline that a noninformative prior is exploited for the
interference power. Finally, all the illustrative examples assume
Pfa = 10−2.

In order to select the number of iterations for the cyclic proce-
dures and EM algorithm, in Figs. 1–2, we plot the left-hand side
(LHS) of (14), (26), (32), and (33) versus the number of iterations
for K = 16 and Δ = 10. The two curves reported in the figures
are related to two different SNR values and are obtained by
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Fig. 3. (a) Estimated Pfa versus Δ assuming model (35); (b) Estimated Pfa

versus q; K = 16 and thresholds computed under white noise hypothesis to
ensure Pfa = 10−2.

Algorithm 1: Iterative Estimation of m and σ2 in the
Original Domain.

Input: C0, Nco,1, ε, X , and (σ2
1)

(0).

Output: m̂(n) and (σ̂2
1)

(n).
1: Set n = 0
2: Set n = n+ 1
3: Compute m̂(n) = [

∑K
k=1

1
(σ2

k)
(n−1) ]

−1
∑K

k=1
xk

(σ2
k)

(n−1)

4: Compute (σ̂2
1)

(n) = [max{ 1
2‖x1 −

m̂(n)‖2, C0}, . . . ,max{ 1
2‖xK − m̂(n)‖2, C0}]T

5: If the stopping criterion is not satisfied go to step 2
else go to step 6

6: Return m̂(n) and (σ̂2
1)

(n)

averaging over 104 Monte Carlo trials. In Fig. 1, we show the
behavior of the stopping criterion given by (14) for Algorithm 1.
Inspection of the figure highlights that a number of iterations
greater than 15 returns variations lower than 10−2. The next
figure concerns the convergence of Algorithm 2. Specifically,
Subfigure 2(a) considers the LHS of (26) where σ is replaced
with the aforementioned initial value. It can be observed that 20
iterations are enough to appreciate a variation of the compressed
likelihood less than 10−3. Now, we use this number of iterations
to obtain an initial estimate ofm, which is, then, used to analyze
the LHS of (32). The resulting curve is plotted in Subfigure 2(b),
where 20 iterations provide a variation of about 10−2. Finally,
the curves reported in the third subfigure refer to the cyclic
procedure of Algorithm 2 with NEM,m = NEM,σ = 20. The
subfigure points out that a number of iterations greater than or
equal to 15 can represent a good compromise between compu-
tational complexity and convergence issues. In a nutshell, in the
next illustrative examples, we assume Nco,1 = Nco,2 = 15 and
NEM,m = NEM,σ = 20.

In Fig. 3(a), we estimate the Pfa for the proposed detec-
tors as a function of Δ (heterogeneity level) when the detec-
tion thresholds are computed assuming homogeneous white
noise with power σ2

n, K = 16, and a nominal Pfa = 10−2.
As expected, the AGD ensures the CFAR property since the

Algorithm 2: Iterative Estimation of m and σ2 in the
Invariant Domain.

Input: NEM,m, NEM,σ , Nco,2, C0, ε1, ε2, ε3, zk,

k = 1, . . . ,K, m̂(0),(0), and (σ̃2)(0),(0).
Output: m̂ and σ̃.
1: Set i = 0 and σ̄2 = (σ̃2)(0),(0)

2: Set n = 0
3: Compute ∀k = 1, . . . ,K,

h
(n)
k = E[bk|zk; m̂

(n),(i), σ̄2] using (24) and

H(n) = diag (h
(n)
1 , . . . , h

(n)
K )

4: Compute m̂(n+1),(i) using (25)
5: Set n = n+ 1
6: if the stopping criterion for the EM-Algorithm is

satisfied go to step 7 else go to step 3
7: Set m̄ = m(n),(i)

8: Set n = 0 and p̄k = zT
k m̄

9: Compute (σ̃2
k)

(n+1),(i) using (31) and set
(σ̂2

k)
(n+1),(i) = max{(σ̃2

k)
(n+1),(i), C0}

10: Set n = n+ 1
11: if the stopping criterion for the EM-Algorithm is

satisfied set i = i+ 1 and go to step 12 else go to
step 9

12: if the stopping criterion for the cyclic procedure is not
satisfied set m(0),(i) = m̄,
σ̄2 = [(σ̂2

1)
(n),(i), . . . , (σ̂2

K)(n),(i)]T , and go to step 2,
else return m̂ = m̄ and
σ̂2 = [(σ̂2

1)
(n),(i), . . . , (σ̂2

K)(n),(i)]T

estimated Pfa is insensitive to the variations of Δ and is al-
most completely overlapped on the nominal Pfa. As for the
remaining detectors, the GD-HE exhibits a resulting Pfa which
is almost two orders of magnitude higher than the nominal
value (10−2), whereas the Pfa of C-AGD is close to 10−1.
Finally, the Pfa curve related to C-GD-HE experiences a de-
creasing behavior. In Fig. 3(b), we estimate the Pfa assuming
a specific distribution for the interference power, i.e., data are
modeled as compound-Gaussian random variables [41], [42],
namely xk =

√
τkgk, k = 1, . . . ,K, where gk ∼ CN1(0, 2σ

2
n)

and τk, k = 1, . . . ,K, follows the Gamma distribution whose

pdf is f(τk) =
τ b−1
k

βqΓ(q)
exp{−τk/β}with q > 0 andβ being the

shape and scale parameters, respectively. The considered setting
assumes q = 1/β to have a Gamma distribution with unit mean.
Observe that for large values of q, data distribution approaches
the Gaussian distribution. The Figure highlights that the Pfa

of the GD-HE, C-GD-HE, and C-AGD depends on the shape
parameter q. Specifically, for low values of q, the estimated Pfa

significantly deviates from the nominal value On the other hand,
as q increases, the environment tends to be homogeneous and,
hence, the Pfa of GD-HE, C-GD-HE, and C-AGD approaches
the nominal value 10−2. As for the AGD, the estimated Pfa is
very close to the nominal Pfa regardless of the shape parameter
value.

Summarizing, this analysis has corroborated that the AGD can
ensure the CFAR property with respect to the power level of the
interference in heterogeneous environments. On the contrary,
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Fig. 4. Pd versus SNR for the CD, ED, GD-HE, AGD, C-GD-HE, C-AGD,
and CHD assuming Δ = 10 and Pfa = 10−2.

the GD-HE, C-GD-HE, and C-AGD are not capable of maintain
the false alarm rate constant. The last behavior can be explained
by observing that the use of original data for estimation and/or
detection does not allow to get rid of the dependence on the inter-
ference power at least for the aforementioned decision schemes,
whereas the AGD takes advantage of the Invariance Principle
to preserve the Pfa. Therefore, the GD-HE, C-GD-HE, and
C-AGD do not exhibit usage flexibility; they could be possibly
exploited in conjunction with a clutter map and a lookup table
for the detection threshold selection.

Now, we focus on the detection performance of the devised
architectures assuming model (35) and Pfa = 10−2; the Signal-
to-Noise Ratio (SNR) is defined as SNR = ‖m‖2/σ2

n. For com-
parison purposes, we also report thePd curves of the Clairvoyant
Detector (CD) based upon the LRT, whose expression is5

−
K∑

k=1

‖xk −m‖2
σ2
k

+
K∑

k=1

‖xk‖2
σ2
k

H1
>
<
H0

η, (36)

the noncoherent linear detector or Energy Detector (ED) and the
coherent detector (CHD), whose expressions are

K∑
k=1

‖xk‖2
H1
>
<
H0

η and

∥∥∥∥∥
K∑

k=1

xk

∥∥∥∥∥
2 H1

>
<
H0

η, (37)

respectively.
In Fig. 4, we plot the Pd curves for Δ = 10 and different

values of K. The value of Δ corresponds to a moderate hetero-
geneity level and leads to a CNR of about 9 dB. From inspection

5Note that this decision scheme cannot be used in practice since it assumes
the perfect knowledge of m and σk .

Fig. 5. Pd versus SNR for the CD, ED, GD-HE, AGD, C-GD-HE, C-AGD,
and CHD assuming Δ = 50 and Pfa = 10−2.

of the subfigures it turns out that the GD-HE and C-AGD exhibit
better detection performances than the AGD, ED, CHD, and
C-GD-HE. The latter is not capable to achieve Pd = 1 for the
considered parameter setting and its Pd curves intersect those
of ED. The loss of the ED with respect to the AGD at Pd = 0.9
increases from about 4.5 dB for K = 16 to about 8 dB when
K = 64. The curves of the CHD are in between those of the
GD-HE and of the AGD with a gain over the latter that de-
creases as K increases (note that for K = 32, 64 the considered
curves are very close to each other). Moreover, the GD-HE and
C-AGD experience a gain in between 1.5 dB (for K = 16) and
2 dB (for K = 64) over the AGD (at Pd = 0.9). This hierarchy
can be explained by the fact that the AGD is built up over
normalized data and, hence, does not exploit all the available
information with an avoidable performance degradation due to a
lower estimation quality. However, such information loss allows
to gain the CFAR property as shown in the previous figures.
On the contrary, the GD-HE and C-AGD take advantage of
all the available information but, as already highlighted, they
do not guarantee the CFARness, which is of primary concern
in radar. In the next figure, we compare the performances of
the considered detectors assuming the same parameters as the
previous figures but for Δ = 50, which leads to a more severe
level of heterogeneity with respect to the previous examples,
since now the CNR increases to about 23 dB. Fluctuations of
this order of magnitude can be observed in Fig. 7 where clutter
power variations over the time for live-recorded data are shown.

Fig. 5 confirms the behavior observed in Fig. 4 with the dif-
ference that there exists an intersection between thePd curves of
the GD-HE (and C-AGD) with those of the AGD and CHD in the
high SNR region, where the latter slightly outperform the former.
Moreover, the curves of the AGD and CHD intersect each other
and the intersection point moves towards high SNR values as
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Fig. 6. Pd versus SNR for the CD, ED, GD-HE, AGD, C-GD-HE, C-AGD,
CHD, and CA-CHD assuming Δ = 0 (homogeneous environment) and Pfa =

10−2.

K grows leading to a situation where the AGD outperforms the
CHD with a gain of about 2 dB atPd = 0.9 for K = 64. The ED
detector provides poor performances with a loss atPd = 0.9with
respect to the AGD that increases to about 10 dB for K = 64,
whereas, for the considered simulating scenario, the maximum
Pd value achieved by the C-GD-HE is 0.4 for K = 64.

For completeness, in Fig. 6, we show the performance of the
new architectures when Δ = 0, namely under the homogeneous
environment. The curves of the cell-averaged coherent detector
(CA-CHD), whose statistic is ‖∑K

k=1 xk‖2/
∑K

k=1 ‖xk‖2, are
also reported. In this case, the CHD followed by the CA-CHD
overcome the other detectors (except for the CD) with the CHD
gaining about 0.5 dB with respect to the CA-CHD (the loss of
the latter is due to the CFAR behavior [7]). The AGD shares
almost the same performance as the ED for K = 16, but as K
becomes larger and larger, the relatedPd curves improve. In fact,
for K = 64 and Pd = 0.9, the AGD exhibits a loss of about 2
dB with respect to the C-AGD and a gain of more than 1 dB over
the GD-HE.

Thus, the analysis on simulated data has singled out the AGD
as an effective means to deal with heterogeneous data, since
it ensures reasonable detection performances and, at the same
time, retains the CFAR property, which is of primary importance
in radar.

B. Real Data

In this section, we present numerical examples based upon
live recorded data. To this end, we use the measurements which
have been recorded in winter 1998 using the McMaster IPIX
radar in Grimsby, on the shore of Lake Ontario, between Toronto

Fig. 7. Power variation over the pulse burst for some range bins.

Fig. 8. Pfa estimated from the 7th to the 15th range bin for AGD and GD-HE
over IPIX data assuming K = 16 and thresholds computed under white noise
hypothesis to ensure Pfa = 10−2.

and Niagara Falls. Specifically, we test the proposed algorithm
on dataset 85 for the HH polarization and in order to meet the
requirement on the noise power lower bound, we add 1 to data.
A detailed statistical analysis of the adopted real data has been
conducted in [43].

The first analysis focuses on the CFARness and consists in
estimating the Pfa when the thresholds have been set under the
white noise assumption with C0 = 1. Specifically, the nominal
Pfa is set to 10−2 and heterogeneous data are selected using
a sliding mechanism to generate 100/Pfa sets of possibly
uncorrelated samples (high pulse repetition intervals). Before
proceeding with the analysis, in Fig. 7, we provide a glimpse
of the data nature in terms of power variations for some pulse
bursts. The figure highlighted the presence of significant power
variations over the pulses confirming the heterogeneous nature
of data (other sets not considered here for brevity experience
an analogous behavior). The results of the CFAR analysis are
shown in Fig. 8. From the figure it turns out that the actual
Pfa of the AGD is very close to the nominal one confirming its
CFAR behavior. On the other hand, the Pfa of the remaining
architectures considerably deviates from the nominal value.
Specifically, the worst situation is experienced by the GD-HE,
whose Pfa values are always below 10−3. As for the C-AGD
and C-GD-HE, they exhibit Pfa values close to the nominal
at a few range indices. It is also important to notice that for
these architectures, the discrepancy with respect to the nominal
Pfa values can achieve several orders of magnitude with values
outside the range considered in Fig. 8.

Finally, in Fig. 9, we show the detection performance for
different values of K and for the 8th range bin. In this case, all
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Fig. 9. Pd versus SNR for the ED, GD-HE, AGD, C-GD-HE, C-AGD, and
CHD over IPIX data assuming Pfa = 10−2.

the considered decision schemes exploit a detection threshold
ensuring the same Pfa = 10−2 and evaluated over the real data.
The data set at each trial is obtained through a sliding window
as described for the CFAR analysis. The figure is somehow
reminiscent of the situation observed for synthetic data, where
the GD-HE and C-AGD share the same performance confirming
their superiority over the AGD with a gain that reduces to
about 1 dB for K = 32. The main difference with respect to
previous figures resides in the fact that the curves of the CHD
are very close to those of the GD-HE and C-AGD. However, it
is important to recall that such architectures do not provide a
CFAR behavior and, hence, setting their thresholds in practical
scenarios is not an easy task. Finally, the C-GD-HE continues
to exhibit very poor performance at least for the considered
parameter setting.

V. CONCLUSION

In this paper, four new detection architectures for heteroge-
neous Gaussian environments have been proposed and assessed.
Specifically, the first detector relies on original data and uses
the likelihood ratio as decision statistic where the unknown
target and interference parameters are estimated by means of
a cyclic optimization procedure. The second decision scheme
transfers data into the invariant domain and exploits normalized
data, which are functionally invariant of scaling factors, to build
up a CFAR decision scheme. Then, an alternating procedure
incorporating the EM-Algorithm is devised to estimate the
unknown parameters in the invariant domain. The remaining
architectures have been obtained by combining the estimation
procedure for the original data domain with the detector for
the invariant data domain and vice versa. The behavior of these
architectures has been first investigated resorting to simulated
data adhering the design assumptions and, then, they have been
tested on real recorded data. The analysis has singled out the
second decision scheme based upon normalized data as the
recommended solution for adaptive detection in heterogeneous

environments since it can guarantee the CFAR property and a
limited detetion loss with respect to the other architectures which
exploit estimates based upon all the available information carried
by data and whosePfa is very sensitive to the interference power
variations.

Finally, it would be of interest investigating the behavior of
the proposed architectures in the presence of a mismatch for
the noise power lower bound as well as extending the herein
presented approach to the case of coherent processing through
space-time data vectors sharing the same structure of the inter-
ference covariance matrix but different power levels.

APPENDIX A
MAXIMAL INVARIANT STATISTIC FOR SCALING

TRANSFORMATIONS

In this appendix, we prove that (5) is a MIS with respect to G.
To this end, we recall that T (·, . . . , ·) is said to be a MIS if and
only if⎧⎪⎨⎪⎩

T (x1, . . . ,xK) = T (G(x1, . . . ,xK)), ∀G ∈ G;

T (x1, . . . ,xK) = T (x̄1, . . . , x̄K) ⇒
∃Ḡ ∈ G : [x1, . . . ,xK ] = Ḡ[x̄1, . . . , x̄K ].

(38)

The first property is evident since T (c(1)x1, . . . , c(K)xK) =
T (x1, . . . ,xK), ∀c ∈ RK×1

+ . To prove the maximality, as-
sume that T (x1, . . . ,xK) = T (x̄1, . . . , x̄K) and let c̄ =

[ ‖x1‖
‖x̄1‖ , . . . ,

‖xK‖
‖x̄K‖ ]

T ∈ RK×1
+ . It follows that we can de-

fine the action Ḡ(x̄1, . . . , x̄K) = [c̄(1)x̄1, . . . , c̄(K)x̄K ] =
[x1, . . . ,xK ]. Thus, we have found Ḡ ∈ G which meets the
second requirement of (38) and the proof is complete.

APPENDIX B
DERIVATION OF (7)

Let us start the derivation by writing (3.5.48) of [32] with
Σ = σ2

i I , namely6

f1(zi;m, σi) =
1

2π
exp

{−‖m‖2
(2σ2

i )

}
+

zT
i m

σi
Φ

(
zT
i m

σi

)
× 1√

2π
exp

{
− (m1zi,2 −m2zi,1)

2

2σ2
i

}
,

(39)

where m = [m1 m2]
T and zi = [zi,1 zi,2]

T . Now, observe that

(m1zi,2 −m2zi,1)
2 = m2

1z
2
i,2 +m2

2z
2
i,1 − 2m1m2zi,1zi,2

= m2
1z

2
i,2 +m2

2z
2
i,1 − 2m1m2zi,1zi,2 + (zT

i m)2 − (zT
i m)2

= m2
1z

2
i,2 +m2

2z
2
i,1 +m2

1z
2
i,1 +m2

2z
2
i,2 − (zT

i m)2

= ‖m‖2 − (zT
i m)2. (40)

Replacing the above result in (39), we obtain (7) and the proof
is concluded.

6Recall that ‖zi‖ = 1.
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APPENDIX C
EXPRESSION OF ξ(p)

Focus on the logarithm argument of (22) and rewrite it as∫ +∞

0

exp{t(xk)pk}h(xk)dxk

=

∫ +∞

0

exp

{
xk

σ2
k

pk − x2
k

2σ2
k

}
xkdxk

= exp

{
p2k
2σ2

k

}∫ +∞

0

exp

{
− (xk − pk)

2

2σ2
k

}
xkdxk

= − exp

{
p2k
2σ2

k

}
σ2
k

∫ +∞

0

(pk − xk)/σ
2
k

exp {(xk − pk)2/2σ2
k}

dxk

+ pk

∫ +∞
0 exp

{
− (xk−pk)

2

2σ2
k

}
dxk

exp{−p2k/2σ
2
k}

= σ2
k + σkpk

Φ(pk/σk)

ϕ(pk/σk)
,

where the last equality concludes the proof.
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