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Hyperspectral Anomaly Detection Based on
Adaptive Low-Rank Transformed Tensor
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Abstract— Hyperspectral anomaly detection, which is aimed at
distinguishing anomaly pixels from the surroundings in spatial
features and spectral characteristics, has attracted consider-
able attention due to its various applications. In this article,
we propose a novel hyperspectral anomaly detection algorithm
based on adaptive low-rank transform, in which the input
hyperspectral image (HSI) is divided into a background tensor,
an anomaly tensor, and a noise tensor. To take full advantage
of the spatial–spectral information, the background tensor is
represented as the product of a transformed tensor and a low-
rank matrix. The low-rank constraint is imposed on frontal
slices of the transformed tensor to depict the spatial–spectral
correlation of the HSI background. Besides, we initialize a matrix
with predefined size and then minimize its l2.1-norm to adaptively
derive an appropriate low-rank matrix. The anomaly tensor is
constrained with the l2.1.1-norm to depict the group sparsity of
anomalous pixels. We integrate all regularization terms and a
fidelity term into a non-convex problem and develop a proximal
alternating minimization (PAM) algorithm to solve it. Interest-
ingly, the sequence generated by the PAM algorithm is proven
to converge to a critical point. Experimental results conducted
on four widely used datasets demonstrate the superiority of the
proposed anomaly detector over several state-of-the-art methods.

Index Terms— Anomaly detection, group sparsity, hyperspec-
tral images (HSIs), low rank, tensor, transform.
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X Matrix.
X Tensor.
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�x�2

��
i x2

i .

Manuscript received 30 May 2022; revised 4 November 2022; accepted
9 January 2023. Date of publication 24 January 2023; date of current version
9 July 2024. This work was supported in part by the National Natural
Science Foundation of China under Grant 61871469 and Grant 61922013,
in part by the Youth Innovation Promotion Association CAS under Grant
CX2100060053, and in part by the Anhui Provincial Natural Science Foun-
dation under Grant 2208085J17. (Corresponding author: Jun Liu.)

Siyu Sun, Jun Liu, and Ziwei Zhang are with the Department of Elec-
tronic Engineering and Information Science, University of Science and Tech-
nology of China, Hefei 230027, China (e-mail: sunsiyu@mail.ustc.edu.cn;
junliu@ustc.edu.cn; zziwei@mail.ustc.edu.cn).

Wei Li is with the School of Information and Electronics, Beijing Institute
of Technology, Beijing 100081, China (e-mail: liwei089@ieee.org).

Digital Object Identifier 10.1109/TNNLS.2023.3236641

�X�2.1
�

i �X(:, i)�2.

�X�F

��
i j X2

i j .

�X�∗ Matrix nuclear norm.
�X�2.1.1

�
i j �X (i, j, :)�2.

�X�F

��
i jk X 2

i jk.

rank(X) Rank of X.
tr(X) Trace of X.

I. INTRODUCTION

HYPERSPECTRAL images (HSIs) consisting of hundreds
of contiguous and narrow bands record radiations from

various materials captured by hyperspectral imaging sensors,
which have attracted great attention in recent years. As 3-D
data, the HSI covers a wide range of wavelengths with
a high spectral resolution, which provides abundant spatial
information and precise spectral characteristics, and allows
for distinguishing subtle differences between objects. The
superiority of the HSI makes it widely used in military
and civilian fields [1], [2] and promotes various fundamental
researches, such as hyperspectral target detection [3], [4] and
hyperspectral anomaly detection [5], [6]. Hyperspectral target
detection is usually carried out in a supervised manner, which
means some prior knowledge of desired targets is necessary.
On the contrary, hyperspectral anomaly detection is imple-
mented without any prior information. On many occasions,
hyperspectral anomaly detection is more practical due to the
unavailable prior information of targets of interest.

Generally, the anomaly in HSIs is different from its local
background in spatial features and spectral characteristics and
distributed in the image with a very low probability. The
main task of hyperspectral anomaly detection is to suppress
background and highlight sparse anomalies. To achieve this,
various methods have been proposed. As a milestone, the well-
known Reed-Xiaoli (RX) detector [7] is a classical statistic-
based hyperspectral anomaly detector, which can be classified
into two versions, i.e., global RX (GRX) and local RX
(LRX) [8]. A very important assumption of the GRX is
that all the background pixels in HSI obey a multivariate
Gaussian distribution. Disregard of the sparse abnormal pixels,
the statistics of the Gaussian distribution, mean and covari-
ance, are estimated via all the pixels in the HSI. Then the
Mahalanobis distance between each pixel under test (PUT) and
the background is considered as the anomaly value. Compared
with the GRX, the LRX obtains an improved performance
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due to the utilization of a dual-window strategy. Specifically,
the pixels between the inner window and the outer window
centered on the PUT are exploited to estimate the statistics
of the local background. As a result, the local background of
each PUT replaces the entire HSI in measuring the anomaly
score. To better formulate the complicated background, various
variants of the RX detector have been proposed, such as kernel
RX (KRX) [9] and cluster KRX [10].

In addition to the statistic-based RX and its variants,
detectors based on low-rank and sparse matrix decomposition
(LRaSMD) have been proposed to take full advantage of
structural information of different components of the HSI, such
as the low-rank and piecewise smoothness properties of the
background and the sparsity of the anomaly. By virtue of the
robust principal analysis component (RPCA) algorithm [11],
the RPCA-RX was proposed in [12], in which the input HSI
was first divided into a low-rank matrix and a sparse matrix,
and then the RX was applied to the obtained sparse matrix.
Li et al. [13] exploited the truncated nuclear norm instead of
the nuclear norm in RPCA to better formulate the low-rank
background. Moreover, the total variation (TV) regularization
was used to depict the piecewise smoothness of the back-
ground. To obtain a robust separation of the superposition
of different components, the so-called “Go Decomposition”
(GoDec) algorithm [14] was proposed with the consideration
of Gaussian noise. By virtue of this GoDec algorithm, the
low-rank background, sparse anomaly, and dense noise were
effectively separated in [15] and [16]. In [16], six types of
RX detectors were proposed with different combinations of
the derived low-rank matrix and the sparse matrix. A more
robust method was proposed in [17] by exploiting the mixture
of Gaussian model to formulate the anomaly and complicated
noise of the HSI.

Considering different types of materials in an HSI, the
background is usually assumed to lie in a union of multiple
subspaces. The low-rank representation (LRR) [18] has been
widely used in hyperspectral anomaly detection [19], [20],
[21], [22]. The main idea of the LRR-based anomaly detectors
is that the background pixel can be well-approximated by a
linear combination of atoms of a given background dictio-
nary, while the anomalous pixel cannot and is treated as a
samplewise outlier. Usually, a low-rank constraint is imposed
on the representation coefficient matrix of the background.
To better describe the local structure of the background, some
other constraints are also incorporated into the LRR model,
such as l1-norm regularization [19] and TV regularization
[20], [21]. Qu et al. [23] found that the differences between
the abundance vectors of anomaly and background are more
distinguished, and then applied the LRR to the abundant matrix
of the HSI. The performances of the LRR-based anomaly
detectors are closely related to the background dictionary.
Various background construction methods have been proposed
to include the basis of different background materials as much
as possible while excluding the anomaly [24], [25], [26].

Although LRaSMD-based detectors and representation-
based detectors achieve considerable results, the operation of
unfolding a 3-D HSI into a matrix destroys the spatial structure
of the HSI and then degrades the detection performance.
Recently, the tensor has attracted more and more attentions

and has been widely used in HSI processing due to its
potential to preserve the spatial–spectral information of the
HSI, such as restoration [27], [28] and super-resolution [29],
[30], [31]. Different tensor decomposition models can be
applied in HSI processing, such as Tucker decomposition [32]
and CANDECOMP/PARAFAC (CP) decomposition [33].
To make full use of the inherent information of the HSI,
various improved versions based on the two decomposition
methods were proposed in [34] and [35]. The two models have
also been introduced for hyperspectral anomaly detection [36],
[37], [38], [39]. However, the performance of these detectors is
limited by the corresponding models of tensor decomposition.
For the Tucker decomposition, the unfolding operation is nec-
essary to obtain the individual correlation information of each
mode, which destroys the multidimensional structure and then
cannot give a comprehensive description of the spatial–spectral
information of the HSI. For the CP composition, the calcula-
tion of the CP rank is non-deterministic polynomial. To obtain
an approximate representation of a tensor and avoid the loss of
information caused by the unfolding operation, tensor–tensor
product (t-product) and tensor singular value decomposition
(t-SVD) were defined in [40]. Based on the t-product, Xu et al.
exploited the induced tensor tubal rank [41] and tensor nuclear
norm (TNN) [42] to capture the joint correlation between
different modes of the HSI background [43]. Sun et al. [44]
proposed a low average rank with a TV regularization anom-
aly detection (LARTVAD) method, where the background
is expressed as the product of a coefficient tensor and a
background dictionary, and a different TNN [45] constraint
is imposed on the coefficient tensor instead of the background
tensor.

The main idea of the TNN-based method is to integrate
the different dimensions of information into frontal slices
of the transformed tensor with the aid of the discrete Fourier
transform. In [46], a more general t-product and its induced
TNN based on any invertible linear transforms were proposed.
Moreover, a noninvertible framelet transform was exploited
to fuse multidimensional information [47]. However, these
transforms depend on predefined matrices, which cannot fully
describe the data-specific information. As a result, several
data-dependent transforms were proposed to solve this prob-
lem [48], [49], in which data-adaptive dictionaries were
learned. However, satisfactory performance can be achieved
when the dictionary consists of a large number of atoms, which
increases the number of frontal slices of the transformed tensor
and then leads to additional computational costs. In this article,
by virtue of the transform, we propose a novel hyperspectral
anomaly method-based adaptive low-rank transformed tensor
(ALRTT). The joint correlation of the spatial and spectral
dimensions of the HSI background is formulated by imposing
the nuclear norm on frontal slices of the transformed tensor.
To directly use the strong spectral correlation, we express the
background as the product of the transformed tensor and a
low-rank matrix instead of the matrix with a large number of
columns. To adaptively obtain the low-rank matrix, we min-
imize the l2.1-norm of an initial matrix with an appropriate
number of columns. It is noted that the number of columns
of the initial matrix can be much less than the number of
bands of an HSI. For the anomaly tensor, we exploit the l2.1.1-
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norm to depict the group sparsity of anomalous pixels. All the
regularization terms and the fidelity term are integrated into a
non-convex problem, and a proximal alternating minimization
(PAM) algorithm is exploited to optimize it. Finally, the
anomaly detection map is derived from the anomaly tensor.

The main contributions of this work can be summarized as
follows.

1) We develop a hyperspectral anomaly detection method
based on the tensor transform. The spatial information
and spectral information are integrated into frontal slices
of a transformed tensor. The spatial–spectral correlation
of the background is depicted by minimizing the nuclear
norm of each frontal slice of the transformed tensor.

2) The background tensor is expressed as the product of a
transformed tensor and a low-rank matrix. We develop
a method that can adaptively learn the low-rank matrix.
Compared with the traditional transform, the low-rank
matrix allows for directly describing the spectral correla-
tion of the background and improving the computational
efficiency.

3) We develop a PAM algorithm to solve the proposed
problem and give convergence analysis of the pro-
posed algorithm. Extensive experiments are conducted
on several datasets, and the result demonstrates that the
proposed anomaly detector outperforms its counterparts.

The rest of this article is organized as follows. Some nota-
tions and definitions are introduced in Section II. The proposed
ALRTT method including optimization procedure and conver-
gence analysis is presented in Section III. The experimental
results and discussions are provided in Section IV. Finally,
we conclude this article in Section V.

II. NOTATIONS

Some notations and the corresponding interpretations are
listed in Nomenclature. Besides, the l2.0-norm of A denoted
by �A�2.0 is the number of nonzero columns. The deriva-
tive of the function f is denoted by ∇ f , and the deriva-
tive of f with respect to X is represented by ∇X f . The
computational complexity is denoted by O(n) which is the
implementation requiring a number of ops proportional to n.
The mode-i unfolding operator of X ∈ R

n1×n2×n3 , denoted
by unfoldi(X ) = X(i) ∈ R

ni ×�3
k=1,k �=i nk , can be realized via

X(i)(li , j) = X (l1, l2, l3) with j = 1 + �3
k=1,k �=i (lk − 1)Jk

and Jk =�k−1
m=1,m �=i lm . The inverse operator of unfoldi (X ) is

X = foldi (X(i)). For an N-order tensor X ∈ R
n1×n2...×nN ,

its mode-k product with A ∈ R
J×nk can be calculated by

(X ×k A)i1,...,ik−1, j,ik+1,iN = �nk
ik=1 xi1,i2,...,iN a j,ik . The discrete

Fourier transform along the third mode of X is denoted by X̄ .
The block circulant matrix of X ∈ R

n1×n2×n3 is defined as
follows:

bcirc(X ) =

⎡
⎢⎢⎢⎣

X1 Xn3 · · · X2

X2 X1 · · · X3
...

...
. . .

...
Xn3 Xn3−1 · · · X1

⎤
⎥⎥⎥⎦ (1)

where Xi is the i th frontal slice of X .

Definition 1 (t-Product [40]): Given two three-order ten-
sors, X ∈ R

n1×n2×n3 and Y ∈ R
n2×n4×n3 , the t-product of

X and Y is a three-order tensor Z ∈ R
n1×n4×n3 , which is

calculated by

Z = X ∗ Y = fold3(bcirc(X ) · unfold3(Y)). (2)

Definition 2 (Identity Tensor [40]): The identity tensor
I ∈ R

n1×n1×n3 is the tensor whose first frontal slice is an
n1 × n1 identity matrix and other frontal slices are all zeros.

Definition 3 (Orthogonal Tensor [40]): The tensor Q is an
orthogonal tensor if

QT ∗ Q = Q ∗ QT = I. (3)

Definition 4 (f-Diagonal [40]): The tensor is f-diagonal if
each frontal slice of which is a diagonal matrix.

Theorem 1 (t-SVD [40]): A tensor X ∈ R
n1×n2×n3 can be

decomposed as

X = U ∗ S ∗ VT (4)

where U ∈ R
n1×n1×n3 and V ∈ R

n2×n2×n3 are two orthogonal
tensors, and S ∈ R

n1×n2×n3 is an f-diagonal tensor.
Definition 5 (Tensor Tubal Rank [42]): For a three-order

tensor X ∈ R
n1×n2×n3 with its t-SVD X = U ∗ S ∗ VT , the

tensor tubal rank of X is defined as the number of nonzero
tubes of S.

Definition 6 (TNN [42]): For tensor X ∈ R
n1×n2×n3 with its

t-SVD X = U ∗ S ∗ VT , the TNN of X is defined as

�X�tnn =
n3�

i=1

�X̄i�∗ (5)

where X̄i is the i th frontal slice of X̄ .

III. PROPOSED ANOMALY DETECTION ALGORITHM

A. Problem Formulation

An HSI consisting of b spectral bands with spatial size
h × w is denoted by a three-order tensor Y ∈ R

h×w×b.
Assume that the HSI is mixed with additive Gaussian noise
N ∈ R

h×w×b. Denoting the background tensor and anomaly
tensor by B ∈ R

h×w×b and S ∈ R
h×w×b, respectively, we can

express the observed data Y as

Y = B + S + N . (6)

In this article, we want to separate S and B from the observed
data Y under the contamination of N . To this end, we establish
the following detection model to make full use of the potential
information of the background and anomaly, which can be
written as

min
B,S

1

2
�Y − B − S�2

F + R1(B) + R2(S) (7)

where the first term (1/2)�Y − B − S�2
F is the fidelity item

to avoid greatly deviation of B + S from Y , and the second
term R1(B) and the third term R2(S) are the regularized
terms allowing for integrating the potential information of the
background and anomaly, respectively.
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Fig. 1. (a) False-color image of the SpecTIR dataset. (b) Singular values of
the unfolding matrices along different modes.

1) Spatial–Spectral Correlation: First, the HSI consisting
of a large number of contiguous and narrow bands contains a
lot of redundant information, which leads to a strong spectral
correlation of the background. Second, the image of each
band can be considered a gray image, and the background
is the low-rank major component. That is to say, the correla-
tion also exists in two spatial directions of the background.
As shown in Fig. 1, the singular values of the unfolding
matrices along different directions decrease very fast. As a
result, the hyperspectral background is considered to possess
the spatial–spectral correlation. Usually, the Tucker decom-
position can be exploited to depict this property. However,
the unfolding operation will destroy the multiway structure
of the three-order HSI. Therefore, we use transform to pre-
serve the structural integrity of the three-order background
and formulate the spatial–spectral correlation. Specifically, the
background tensor B can be written as

B = M ×3 A (8)

where A ∈ R
b×d and M ∈ R

h×w×d . With (8), the spatial
information and spectral information of the background are
fused into each frontal slice of M. Then the spatial–spectral

correlation can be characterized by taking
�d

i=1 �Mi�∗ as a
regularization, where Mi is the i th frontal slice of M.

2) Adaptive Low-Rank Transform: In most transform-
based applications, the matrix A is a predefined orthogonal
matrix [46], [50] or matrix with d � b [48], [49]. For
hyperspectral anomaly detection, however, such a matrix A
cannot directly describe the high spectral correlation of the
background as discussed earlier. Besides, a large d is not con-
ducive to the computational efficiency of anomaly detection,
because it is time-consuming to compute the nuclear norm.
For B = M×3 A, unfolding both sides of the equation along
the spectral direction gives the term

B(3) = AM(3) (9)

then we have rank(B(3)) ≤ rank(A). That is to say, if we
constrain A to be a low-rank matrix, then B(3) is also forced
to be low rank. It is noted that rank(A) ≤ �A�2.0, then we
can achieve the low-rank constraint by minimizing �A�2,0.
However, the minimization of �A�2,0 is an NP problem.
Therefore, we adopt a relaxation strategy and replace �A�2,0

with �A�2,1. To verify the low rankness of the background can
be well-depicted by minimizing �A�2,1, we give the following
proposition.

Proposition 1: For the problem

min �A�2.1

s.t. B(3) = AM(3) (10)

where rank(B(3)) = r , we have rank(A∗) = rank(B(3)), where
A∗ is an optimal solution of (10).

Proof: On one hand, we have rank(A∗) ≥ rank(B(3)) = r .
On the other hand, assume that rank(A∗) > r . It is noted
that B(3) = A∗M(3), which indicates span(B(3)) ⊆ span(A∗),
where span(·) denotes the column space. We can select r
columns from A∗ that are the basis of span(B(3)). Denoting
the selected columns by Ā, we can easily obtain an M̄(3)

with B(3) = ĀM̄(3). Then we have �Ā�2.1 < �A∗�2.1, which
means rank(A∗) > r is not true. Finally, we have rank(A∗) =
rank(B(3)).

For problem (10), we always have (1/c)�A�2.1 < �A�2.1

with c > 1. With the nuclear norm constraint imposed on
frontal slices of M, the nonzero column of A does not
tend to be arbitrarily small. Finally, the regularization on the
background tensor can be written as

R1(B) = R1(A,M) = λ�A�2,1 + β

d�
i=1

�Mi�∗ (11)

where λ and β are two regularized parameters. The utilization
of l2.1-norm on A has two main advantages. First, it enables
us to update each column of A in sequence. Second, the para-
meter d can be initialized with an appropriate value (d � b).
In the iterative process, all the elements of some columns of
A will become zero, and then a data-dependent matrix A can
be obtained.

3) Group Sparsity: The anomaly pixels usually occur with
a very low probability and are sample-specific sparse, which
is the so-called group sparsity. Then the regularization on the
anomaly tensor can be written as

R2(S) = γ �S�2.1.1 (12)

where γ is a regularization parameter. The norm �S�2.1.1 is
actually the sum of the l2-norm of all the tubes of S. To obtain
a small value of �S�2.1.1, the l2-norm of some tubes should
become zero, and then the value of all the elements in the
corresponding tubes should be zero, which leads to the group
sparsity of the anomaly tensor.

Finally, inserting (8), (9), and (12) into (7), we have the
anomaly detection model as

min
M,A,S

1

2
�Y − M ×3 A − S�2

F + λ�A�2.1 + β

d�
i=1

�Mi�∗

+ γ �S�2.1.1. (13)

B. Optimization

Note that (13) is a non-convex optimization problem. In this
section, we exploit the PAM algorithm to solve this problem.
The original problem is divided into three subproblems, i.e.,
M subproblem, A subproblem, and S subproblem. In each
iteration, we update one of the three variables with the other
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two fixed. The iterative process of the proposed ALRTT is as
follows.

1) M Subproblem: The objective function can be written
as

Mt+1 = arg min
M

1

2

��Y − M ×3 At − S t
��2

F

+ β

d�
i=1

�Mi �∗ + ρ

2
�M−Mt�2

F .

(14)

It is noted that

�Y − M ×3 A − S�2
F = �Y(3) − AM(3) − S(3)�2

F

= �Y(3)−
d�

i=1

ai mT
i −S(3)�2

F

(15)

where mi = vec(Mi) is the vectorization of Mi , and
ai is the i th column of A. We regard Mk’s as d
independent variables and update them by solving a
series of subproblems. Then, we have

Mt+1
1 , . . . , Mt+1

d

�
= arg min

M1,...,Md

1

2

�����Y(3)−
d�

i=1

at
i m

T
i −St

(3)

�����
2

F

+ β

d�
i=1

�Mi�∗ + ρ

2

d�
i=1

��Mi − Mt
i

��2
F
. (16)

Define

Xt
k = Y(3) − St

(3) −
k−1�
i=1

at
i

�
mt+1

i

�T −
d�

i=k+1

at
i

�
mt

i

�T
(17)

then, Mk’s subproblems can be written as

Mt+1
k = arg min

Mk

1

2

��Xt
k − at

kmT
k

��2

F
+ β�Mk�∗

+ ρ

2

��Mk − Mt
k

��2
F

= arg min
Mk

β�Mk�∗ + ρ

2
tr
�

MkMT
k − 2Mk

�
Mt

k

�T �

+ 1

2
tr
�

at
kmT

k mk
�
at

k

�T − 2
�
Xt

k

�T
at

kmT
k

�
. (18)

It is noted that tr(xyT ) = tr[vec−1(x)(vec−1(y))T ],
where vec−1(·) is the inverse operator of vec(·), then
we have

tr
�

at
kmT

k mk
�
at

k

�T − 2
�
Xt

k

�T
at

kmT
k

�
= �

at
k

�T
at

k tr
�

mT
k mk − 2

�
Xt

k

�T
at

kmT
k

�
= �

at
k

�T
at

k tr
�
MkMT

k

�− 2tr
�
vec−1

��
Xt

k

�T
at

k

�
MT

k

�
.

(19)

Inserting (19) into (18), we can obtain

Mt+1
k = arg min

Mk

β�Mk�∗ +
�
at

k

�T
at

k + ρ

2
tr
�
MkMT

k

�
− tr
�
vec−1

��
Xt

k

�T
at

k

�
MT

k + ρMt
kMT

k

�
= arg min

Mk

β�Mk�∗

+ τ

2
·
������Mk −

vec−1
��

Xt
k

�T
at

k

�
+ ρMt

k

τ

������
2

F

(20)

where

τ = �at
k

�T
at

k + ρ. (21)

Finally, Mt+1
k can be derived by

Mt+1
k = D β

τ

⎛
⎝vec−1

��
Xt

k

�T
at

k

�
+ ρMt

k

τ

⎞
⎠ (22)

where D(β/τ)(·) is the singular value thresholding
operator [51].

2) A Subproblem: The objective function can be written as

At+1 = arg min
A

1

2
�Y−Mt+1 ×3 A−S t�2

F + λ�A�2.1

+ ρ

2
�A − At�2

F .

(23)

We also update A by solving a series of ak’s subprob-
lems. We can rewrite (23) as

at+1
1 , . . . , at+1

d

�
= arg min

a1,...,ad

1

2

�����Y(3)−
d�

i=1

ai
�
mt+1

i

�T −St
(3)

�����
2

F

+ λ

d�
i=1

�ai�2 + ρ

2

d�
i=1

�ai − at
i �2

2. (24)

Define

Zt
k = Y(3) − St

(3) −
k−1�
i=1

at+1
i

�
mt+1

i

�T −
d�

i=k+1

at
i

�
mt+1

i

�T

(25)

then, we have

at+1
k = arg min

ak

1

2
�Zt

k − ak
�
mt+1

k

�T �2
F + λ�ak�2

+ ρ

2
�ak − at

k�2
2

= arg min
ak

λ�ak�2 + ρ

2
tr
�

akaT
k − 2ak

�
at

k

�T �

+ 1

2
tr
�

ak
�
mt+1

k

�T
mt+1

k aT
k − 2Zt

kmt+1
k aT

k

�

= arg min
ak

λ�ak�2 +
�
mt+1

k

�T
mt+1

k + ρ

2

×
�����ak − Zt

kmt+1
k + ρat

k�
mt+1

k

�T
mt+1

k + ρ

�����
2

2

. (26)
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Finally, (26) can be solved by

at+1
k

= soft2.1

�
Zt

kmt+1
k + ρat

k�
mt+1

k

�T
mt+1

k + ρ
,

λ�
mt+1

k

�T
mt+1

k + ρ

�

(27)

where

soft2.1(x, a) = max

�
1 − a

�x�2
, 0

�
· x. (28)

3) S Subproblem: The objective function can be written as

S t+1 = arg min
S

1

2
�Y − Mt+1 ×3 At+1 − S�2

F

+ γ �S�2.1.1 + ρ

2
�S − S t�2

F

= arg min
S

γ �S�2.1.1

+ 1+ρ

2

����S−Y−Mt+1×3 At+1+ρS t

1 + ρ

����
2

F

.

(29)

Define

S̃ t = Y − Mt+1 ×3 At+1 + ρS t

1 + ρ
(30)

we have

S t+1(i, j, :) = soft2.1

�
S̃ t (i, j, :), γ

1 + ρ

�
. (31)

The iteration is terminated as t reaches the predefined tmax.
Then the detection map can be calculated by

Ri j = �S(i, j, :)�2. (32)

The pseudocode for solving (13) is summarized in
Algorithm 1.

Algorithm 1: Optimization Procedure for Solving (13)
Input: tensor Y , tradeoff parameters β, λ, γ , proximal

parameter ρ, and d .
Initialization: M0, A0, S0, tmax.
1: for t = 1 to tmax do
2: Update M by (22);
3: Update A by (27);
4: Update S by (31).
5: end for
Output: obtain detection map with (32).

C. Complexity and Convergence Analysis

The computational complexity of updating M, A, and S
in each iteration is O(whbd2 + dwh min(w, h)), O(whbd2),
and O(dwhb), respectively. As a result, the computational
complexity of Algorithm 1 in each iteration is O(whbd2 +
dwh min(w, h)).

To prove the sequence {Mt , At ,S t } generated by
Algorithm 1 converges to a critical point of the objective
function, we define

f (M, A,S) = f0(M, A,S) + f1(M) + f2(A) + f3(S)

(33)

where ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

f0(M, A,S) = 1
2�Y − M ×3 A − S�2

F

f1(M) = β
�d

i=1 �Mi�∗
f2(A) = λ�A�2.1

f3(S) = γ �S�2.1.1.

(34)

Theorem 1: The sequence {Mt , At ,S t } generated by Algo-
rithm 1 converges to a critical point of (12) if the following
conditions are satisfied.

a) The sequence {Mt , At ,S t } is bounded.
b) The function f is a semi-algebraic function.
c) fi (·), i = 1, 2, 3 are proper and lower semi-continuous

function.
d) inf f > −∞, inf fi > −∞, i = 0, 1, 2, 3.
e) For variables M, A, and S, ∇M f0, ∇A f0, and ∇S f0 are

Lipschitz continuous with Lipschitz constants Lm , La ,
and Ls , respectively.

f) f0 has a continuous first-order derivative, and ∇ f0 is
Lipschitz continuous on any bounded set.

Proof: It is noted that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Mt+1 =
arg minM f0

�M, At ,S t
�+ f1(M) + ρ

2 �M − Mt�2
F

At+1 =
arg minA f0

�Mt+1, A,S t
�+ f2(A) + ρ

2 �A − At�2
F

S t+1 =
arg minS f0

�Mt+1, At+1,S� + f3(S) + ρ
2 �S − S t�2

F

(35)

then, we have⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

f0
�Mt+1, At ,S t

�+ f1
�Mt+1

�+ ρ
2 �Mt+1 − Mt�2

F

≤ f0
�Mt , At ,S t

�+ f1
�Mt

�
f0
�Mt+1, At+1,S t

�+ f2
�
At+1

�+ ρ
2 �At+1 − At�2

F

≤ f0
�Mt+1, At ,S t

�+ f2
�
At
�

f0
�Mt+1, At+1,S t+1

�+ f3
�S t+1

�+ ρ
2 �S t+1 − S t�2

F

≤ f0
�Mt+1, At+1,S t

�+ f3
�S t
�
.

(36)

Summing up the three inequalities in (36) gives the term

f
�Mt+1, At+1,S t+1

�+ ρ

2

��Mt+1 − Mt�2
F

+ �At+1 − At�2
F + �S t+1 − S t�2

F

� ≤ f
�Mt , At ,S t

�
.

(37)

Following (37), it is easy to obtain

f
�Mt+1, At+1,S t+1� ≤ f

�M0, A0,S0� < ∞. (38)

Then we have that f1(M), f2(A), and f3(S) are bounded.
Considering that λ, β, and γ are constants greater than
zero, we have the sequence {Mt , At ,S t } is bounded. Then
condition (a) holds.
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Note that f0 is a polynomial function, and hence a semi-
algebraic function. It is well-known that the l2-norm is a
semi-algebraic function, and the composition of semi-algebraic
functions is also a semi-algebraic function. Then, f2 and
f3 are semi-algebraic functions. Also, f1 is a semi-algebraic
function as the nuclear norm is a semi-algebraic function [52,
Proposition 4]. Finally, we know that f is a semi-algebraic
function. Condition (b) holds.

It is obvious that conditions (c) and (d) are satisfied.
Taking the derivative of f0 with respect to M leads to

∇M f0 = −2(Y − S) ×3 AT + 2M ×3
�
AT A

�
. (39)

Letting Lm = 2�A�2
F and considering A is bounded, we obtain

that ∇M f0 is Lm-Lipschitz continuous. Similarly, it is easy to
check ∇A f0 and ∇S f0 are Lipschitz continuous with Lipschitz
constants La = 2�M�2

F and Ls = 2, respectively. Then
condition (e) holds.

Note that f0 is a polynomial function, and hence has a con-
tinuous first-order derivative. We know that ∇ f0 is Lipschitz
continuous on any bounded set naturally holds according to
condition (e). Then condition (f) is satisfied. According to
[53, Th. 3.7], the sequence {Mt , At ,S t } generated by
Algorithm 1 converges to a critical point of (13). The proof
is completed.

IV. EXPERIMENTAL RESULTS

The experimental results conducted on four real datasets are
presented in this section. All the experiments are implemented
in MATLAB 2019a on a personal computer with an Intel Core
i7-4790k 4.00-GHz central processing unit, 16-GB memory,
and 64-bit Windows 10.

A. Datasets’ Description

Four real datasets are used to evaluate the performance of
the proposed anomaly detector. The first dataset was captured
by the Nuance Cri hyperspectral sensor [54]. It contains
400 × 400 pixels and 46 spectral channels. Several stones
in the grass are considered anomalies. The second dataset
is the Cuprite dataset, which was acquired by the Airborne
Visible/Infrared Imaging Spectrometer (AVIRIS) sensor [4].
A subarea with spatial size 250 × 191 is exploited in our
experiment, and each pixel in this image contains 188 bands.
Different types of minerals in the scene are anomalies. The
third dataset, the Los Angeles dataset, was collected by the
AVIRIS sensor [17]. The image contains 100 × 100 pixels
with 205 spectral channels. The fourth dataset consisting of
180 × 180 pixels and 120 bands was captured by the SpecTIR
hyperspectral airborne Rochester experiment [17]. The false-
color images and their corresponding ground-truth maps are
shown in Fig. 3.

B. Evaluation Metrics

Different types of widely used metrics are used in our
experiment to obtain comprehensive performance evaluations
of the proposed ALRTT. The first metric is the detection map,
which intuitively presents the detection results of different

detectors. The varying colors in the detection map mean
different detection values of pixels. The second metric is the
receiver operating characteristic (ROC) curve. In this article,
we use two types of ROC curves, i.e., a curve that is plotted
by the false alarm rate (FAR) and probability of detection
(PD) and a curve that is plotted by the detection threshold
and the FAR. The ROC curve associated with the FAR and
PD will be close to the upper left corner of the coordinate
axis if a detector has high detection probabilities. Meanwhile,
the ROC curve associated with the threshold and FAR will
be close to the lower left corner of the coordinate axis if
a detector is good at suppressing the background. The third
metric is the area under the ROC curve (AUC). Denote the
PD, FAR, and threshold by PD , PF , and τ , respectively, then
we can obtain three different AUC values, i.e., AUC(PD,PF ),
AUC(PD ,τ ), and AUC(PF ,τ ) [55]. And larger AUC(PD,PF ) and
AUC(PD ,τ ) indicate better performance of a detector, while
a lower AUC(PF ,τ ) means a better ability in suppressing the
background. Besides, we combine these three AUC values to
obtain another two measurements, i.e., AUCOD and AUCSNR,
which are calculated by

AUCOD = AUC(PD ,PF ) + AUC(PD ,τ ) − AUC(PF ,τ ) (40)

and

AUCSNR = AUC(PD,τ )

AUC(PF ,τ )
(41)

respectively. AUCOD and AUCSNR are two effective metrics
for evaluating the overall performance of a detector [55].
Higher values of AUC(PD,PF ) and AUC(PD,τ ) or a lower value
of AUC(PF ,τ ) lead to a higher value of AUCOD. AUCSNR

is similar to the signal-to-noise ratio (SNR). Higher values
of AUC(PD,PF ) and AUC(PD,τ ) indicate better performance of
a detector. The fourth metric is the separability map. The
detection result is first normalized to the range of [0, 1], and
then the distributions of detection values of the background
and anomaly are illustrated with the aid of boxes with different
colors and dotted lines. Specifically, the detection values of the
background or anomaly distributed in the range of [10%, 90%]
are presented by the box, and the detection values distributed
in the ranges of [0%, 10%] and [90%, 100%] are represented
by the dotted line at the bottom and the dotted line at the
top, respectively. The gap between the background box and
the anomaly box implies the ability of a detector to separate
the background and the anomaly. Finally, the running time of
all the detectors is given in Table II.

C. Experimental Setup

1) Initialization of the ALRTT: Tensor S0 is initialized by a
zero tensor. For a input tensor Y , the SVD of Y(3) is denoted
by Y(3) = U�VT , and then the tensor M0 and matrix A0 are
initialized by M0 = fold3(�1:d,1:d VT

:,1:d) and A0 = U:,1:d ,
respectively. The number tmax of iteration is related to the
efficiency of the ALRTT. To select a proper tmax, we plot
the values of the objective function (13) and AUC(PD,PF )

with an increasing number of iterations in Fig. 2. It is noted
that the values of the objective function are normalized by
the corresponding maximum for a visual purpose. As we
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TABLE I

AUC SCORES ON THE FOUR DATASETS

Fig. 2. (a) Values of the objective function with increasing number of
iterations. (b) Values of AUC(PD ,PF ) with increasing number of iterations.

can see, the values of the objective function decrease during
the iteration, and the values of AUC(PD,PF ) increase after a
certain number of iterations. A slight fluctuation appears on the
Cuprite dataset, but it can eventually return to the maximum.
As a result, considering the effectiveness and efficiency, tmax

is set to 50 in our experiments.
2) Methods in Comparison: Several different types of

hyperspectral anomaly detectors are used as comparisons
to obtain an explicit evaluation of the proposed method,
including GRX [7], RPCA-RX [12], tensor-decomposition-
based anomaly detector (TDAD) [37], graph and TV regular-
ized LRR (GTVLRR) [20], prior-based tensor approximation
(PTA) [13], sparse coding-inspired generative adversarial net-
work for hyperspectral anomaly detection (sparseHAD) [56],
robust graph auto-encoder (RGAE) detector [57], and LART-
VAD [44]. The parameters in these methods in our experiments
are set as the recommended parameters or tuned to optimal
within given sets according to the corresponding references.
For the RPCA-RX, the parameter λ is set to 1/ min(w, h).
For the GTVLRR, we set λ = 0.5, β = 0.2, and γ =
0.05 according to the suggestion [20]. Besides, two parameters
K and P associated with the background dictionary are set
to 15 and 20, respectively. For the PTA, we set α = 1,
τ = 1, and β = 0.01. The parameters μ and truncated

rank r are tuned according to reference [13]. The parameters
in LARTVAD are searched from given ranges in [44]. The
sparseHAD and RGAE are two deep-learning-based detec-
tors, and the parameters are also tuned to optimal according
to [56] and [57].

D. Performance

The experimental results on the four datasets are shown in
Figs. 3–6 and Table I.

1) Cri Dataset: Detection maps of the proposed ALRTT
and other methods on the Cri dataset are presented in the
first row of Fig. 3. As can be seen, GRX, RPCA-RX,
TDAD, RGAE, and sparseHAD filter the background well,
but the anomaly is also suppressed. The GTVLRR method
fails to separate the background and anomaly. The PTA,
LARTVAD, and ALRTT can clearly distinguish anomalies
from the background. In contrast, the ALRTT performs better
in detecting anomalies and suppressing the background, which
can be inferred from the ROC curves of (PD, PF ) and (PF , τ )
shown in Figs. 4(a) and 5(a), respectively. The ROC curve
of (PD, PF ) of the ALRTT is above that of other detectors,
while the ROC curve of (PF , τ ) of the ALRTT is below that
of the PTA and LARTVAD. Different AUC values of all the
methods are presented in Table I. The value of AUC(PD,PF )

of the ALRTT is 0.9809, which is much higher than those of
other methods. The AUC score of AUCOD of the ALRTT is
also the highest among all the detectors. The RGAE achieves
a highest value of AUCSNR due to a low value of (PF , τ ).
However, the response to the anomaly of the RGAE is very
low. The separability map on the Cri dataset is shown in
Fig. 6(a), where the methods for comparison fail to separate
the background boxes and anomaly boxes, while the proposed
ALRTT achieves a better separation.

2) Cuprite Dataset: For the Cuprite dataset, the GTVLRR
and RGAE methods fail to detect the anomaly. The GRX,
RPCA-RX, TDAD, PTA, and sparseHAD obtain very low
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Fig. 3. Detection maps of different methods on the four test datasets. The four datasets from top to bottom are Cri, Cuprite, Los Angeles, and SpecTIR
datasets. (a) False-color images. (b) Ground truth. (c) ALRTT. (d) LARTVAD. (e) sparseHAD. (f) RGAE. (g) PTA. (h) GTVLRR. (i) TDAD. (j) RPCA-RX.
(k) GRX.

Fig. 4. ROC curves of (PD, PF) with different spatial information on the four test datasets. (a) Cri. (b) Cuprite. (c) Los Angeles. (d) SpecTIR.

Fig. 5. ROC curves of (PF, τ ) with different spatial information on the four test datasets. (a) Cri. (b) Cuprite. (c) Los Angeles. (d) SpecTIR.

responses to the anomaly. The LARTVAD and proposed
ALRTT are able to locate the anomaly. The detection results of
LARTVAD are seriously contaminated by the background. For
the ALRTT, although some false alarms appear in the detection
map, the anomaly is well-detected and most of the back-
ground pixels are suppressed successfully. The AUC curves
of (PD, PF ) and (PF , τ ) are shown in Figs. 4(b) and 5(b),
respectively. It is obvious from Fig. 4(b) that ALRTT achieves
the highest PD in each FAR among all the methods, and it can
detect all the anomalies in a very low FAR. Besides, the AUC
curves of (PF , τ ) of ALRTT and PTA are always below than
others. As can be seen in Table I, ALRTT has the best AUC

values. Its value of AUC(PD,τ ) is 0.0037, which is much smaller
than that of other detectors. The ALRTT achieves the highest
AUCSNR, which means that the overall performance of ALRTT
on the Cuprite dataset is the best. The separability map on the
Cuprite dataset is shown in Fig. 6(b). As can be seen, both
PTA and ALRTT suppress the background in very small ranges
with small values, and ALRTT obtains a larger gap between
the background box and the anomaly, which indicates that it
has a better ability to separate the background and anomaly.

3) Los Angeles Dataset: The detection maps on the
Los Angeles dataset are displayed in the third row of Fig. 3.
The RGAE and sparseHAD perform well in suppressing the
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Fig. 6. Anomaly background separability maps of the four test datasets. (a) Cri. (b) Cuprite. (c) Los Angeles. (d) SpecTIR.

TABLE II

EXECUTION TIME OF DIFFERENT ALGORITHMS ON THE FOUR DATASETS (UNIT: S)

Fig. 7. Values of AUC(PD ,PF ) with varying parameters. (a) λ. (b) β. (c) γ . (d) ρ.

background and achieve values of AUC(PF ,τ ) of 6.0587 × 10−4

and 0.0017, respectively. However, most anomalous pixels are
also filtered. The GRX, RPCA-RX, TDAD, and GTVLRR are
able to locate all the anomalies but with low contrasts between
the background and the anomaly. The responses of anomalies
are similar in the detection maps of the PTA, LARTVAD,
and ALRTT, but the PTA is less effective in eliminating
the background. As shown in Fig. 4(c), the ROC curves of
(PD, PF ) of the PTA, LARTVAD, and ALRTT are close and
much higher than that of others. The AUC values are consistent
with the test result. The value of AUC(PD ,PF ) of the proposed
ALRTT is 0.9970, which is higher than those of other methods.
The RGAE achieves the highest AUCSNR due to the extremely
low AUC(PF ,τ ), but its AUCOD is very low because of poor
performance in locating the anomaly. The value of AUCOD of
the PTA is slightly higher than that of the ALRTT, but its value
of AUCSNR is much lower than that of the ALRTT, because
the ALRTT filters the background well. The separability map
on the Los Angeles dataset is presented in Fig. 6(c). The gaps
between the background boxes and the anomaly boxes of PTA
and ALRTT are about equal, where the normalized responses
of anomalies of PTA are slightly higher, while the normalized
responses of the background of ALRTT are slightly lower.

4) SpecTIR Dataset: For the SpecTIR dataset, as shown in
the fourth row of Fig. 3, the GRX, RPCA-RX, TDAD, and

RGAE cannot locate anomalies of small size. The detection
map of the PTA is seriously contaminated by the background.
The GTVLRR, sparseHAD, LARTVAD, and ALRTT succeed
to distinguish the anomaly, of which ALRTT performs best
in suppressing the background. In Fig. 4(d), LARTVAD and
ALRTT have similar ROC curves of (PD, PF ) and achieve
higher PDs. The ALRTT first achieves a PD of 100% with a
very low FAR of 0.1980%. Besides, as shown in Fig. 5(d), the
FARs of the ALRTT are always close to 0, which indicates
that the ALRTT performs well in suppressing the background.
For the AUC values, the LARTVAD achieves the same value
of AUC(PD,PF ) of 0.9998 as the proposed ALRTT, and its value
of AUCOD of 1.4244 is slightly higher than that of 1.4202 of
ALRTT. The value of AUCSNR of ALRTT is 0.0003, which is
much larger than that of others. The separability map on the
SpecTIR dataset is shown in Fig. 6(d). The LARTVAD and
ALRTT obtain satisfying separations. The background box of
ALRTT is compressed to a line in the separability map.

Table II lists the computing time of different methods on
the four test HSIs. As can be seen, the GRX detector has
the shortest running time. The proposed ALRTT is more
time-consuming than the TDAD and RPCA-RX methods.
Compared with LARTVAD, PTA, and GTVLRR, the ALRTT
method is more efficient. The transform is adopted in both
LARTVAD and the proposed ALRTT; however, the proposed
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Fig. 8. AUC values of (PD, PF) with different d.

TABLE III

PARAMETER SETTINGS ON THE FOUR DATASETS

ALRTT is more efficient due to direct utilization of the spectral
correlation of the background.

E. Parameter Tuning

The proposed ALRTT includes five parameters, i.e., three
regularized parameters λ, β, and γ , a proximal parameter ρ,
and the initial number of columns d of matrix A. To ana-
lyze the influence of parameters on ALRTT, the values of
AUC(PD,PF ) with varying parameters are illustrated in Fig. 7,
where one parameter is changed with other parameters fixed
in each subfigure. We change λ and β from 1 to 10 with
an interval of 1, from 10 to 100 with an interval of 10, and
from 100 to 1000 with an interval of 100. The parameters
γ and ρ are changed from 0.001 to 0.01 with an interval of
0.001, from 0.01 to 0.1 with an interval of 0.01, and from
0.1 to 1 with an interval of 0.1.

The parameter λ is the weight of the regularization on
matrix A. As can be seen in Fig. 7(a), the values of AUC(PD,PF )

of the Los Angeles and SpecTIR datasets are nonsensitive. The
values of AUC(PD,PF ) of the Cuprite dataset decrease when
λ > 1. A stable result is obtained on the Cri dataset when λ
varies from 4 to 100. For the parameter β shown in Fig. 7(b),
the results of three datasets except the Los Angeles dataset
are sensitive to β. In Fig. 7(c), the ALRTT first achieves
better performance with the increase in γ , and then cannot
work when γ is too large. Satisfactory performances of the
four datasets are available when γ = 0.1. The result of the
proximal parameter ρ is shown in Fig. 7(d). It is obvious that
the performance of ALRTT is nonsensitive to ρ. The parameter
d is searched from 2 to 20 with an interval of 2. As can be
seen in Fig. 8, the values of AUC(PD,PF ) of the Cuprite and
Los Angeles datasets increase first with the increase in d and
achieve maxima at d = 10 and d = 6, respectively. The results

of the Cri and SpecTIR datasets are stable under different
values of d . It is obvious that the performance of ALRTT
does not depend on the parameter d if d is large enough. It is
worth noting that the computational complexity of ALRTT is
related to d . A default setting of d can be selected as the largest
integer not exceeding 0.1b, which is denoted by d = 0.1b�.
For clarity, the parameter settings are listed in Table III.

V. CONCLUSION

In this article, the ALRTT method based on tensor transform
was proposed for hyperspectral anomaly detection. In the
proposed ALRTT, the HSI background is represented as the
product of a transformed tensor and a matrix. Each frontal slice
of the transformed tensor is considered to integrate the spatial
and spectral information of the background, which allows for
taking full advantage of the spatial–spectral correlation by
minimizing the nuclear norm of the frontal slices. Consid-
ering the strong spectral correlation of the HSI background,
we exploited a low-rank matrix instead of an orthogonal
matrix in the tensor transform to directly formulate the low-
rank property, which also greatly improves the computational
efficiency of the algorithm due to fewer frontal slices. Besides,
we imposed the l2.1-norm constraint to an initial matrix with
predefined size to adaptively derive an appropriate low-rank
matrix. The group sparsity of the anomaly was depicted
by the l2.1.1-norm imposing on the anomaly tensor. All the
regularization terms and the fidelity term were integrated into a
non-convex problem, which was solved by the PAM algorithm.
The computational complexity and convergence analysis were
given in this article. Finally, experimental results have demon-
strated the superiority of ALRTT over its counterparts. As for
future work, more spatial information can be integrated into
the proposed model, such as the piecewise smoothness and
nonlocal similarity.
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