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MSSF: A 4D Radar and Camera Fusion Framework
With Multi-Stage Sampling for 3D Object Detection

in Autonomous Driving
Hongsi Liu , Jun Liu , Senior Member, IEEE, Guangfeng Jiang , and Xin Jin , Member, IEEE

Abstract— As one of the automotive sensors that have emerged
in recent years, 4D millimeter-wave radar has a higher resolution
than conventional 3D radar and provides precise elevation
measurements. But its point clouds are still sparse and noisy,
making it challenging to meet the requirements of autonomous
driving. Camera, as another commonly used sensor, can capture
rich semantic information. As a result, the fusion of 4D radar and
camera can provide an affordable and robust perception solution
for autonomous driving systems. However, previous radar-camera
fusion methods have not yet been thoroughly investigated, result-
ing in a large performance gap compared to LiDAR-based
methods. Specifically, they ignore the feature-blurring problem
and do not deeply interact with image semantic information.
To this end, we present a simple but effective multi-stage sampling
fusion (MSSF) network based on 4D radar and camera. On the
one hand, we design a fusion block that can deeply interact point
cloud features with image features, and can be applied to com-
monly used single-modal backbones in a plug-and-play manner.
The fusion block encompasses two types, namely, simple feature
fusion (SFF) and multi-scale deformable feature fusion (MSDFF).
The SFF is easy to implement, while the MSDFF has stronger
fusion abilities. On the other hand, we propose a semantic-guided
head to perform foreground-background segmentation on voxels
with voxel feature re-weighting, further alleviating the problem
of feature blurring. Extensive experiments on the View-of-Delft
(VoD) and TJ4DRadset datasets demonstrate the effectiveness of
our MSSF. Notably, compared to state-of-the-art methods, MSSF
achieves a 7.0% and 4.0% improvement in 3D mean average
precision on the VoD and TJ4DRadSet datasets, respectively.
It even surpasses classical LiDAR-based methods on the VoD
dataset.

Index Terms— 3D object detection, 4D radar, camera, multi-
modal fusion, deep learning, autonomous driving.
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I. INTRODUCTION

AUTONOMOUS driving is a hot topic in both academia
and industry in recent years, and the research around it

can be mainly divided into three parts, namely perception,
planning & decision, and control [1]. Perception plays an
important role in autonomous driving. It covers a lot of
content, such as object detection [2], [3], [4], tracking [5],
[6], and segmentation [7], [8]. 3D object detection, as one
of the main tasks in perception, has attracted much attention
nowadays. Its purpose is to obtain the categories and 3D
bounding boxes of critical objects (e.g., cars and pedestrians)
in 3D scenes from sensor data. To achieve this, a wide variety
of sensors can be used, such as LiDAR, radar, and camera.

LiDAR can obtain high-precision point clouds of 3D scenes
which well reflect the geometric information of objects,
thereby achieving remarkable detection performance. How-
ever, it may be infeasible due to the high cost and susceptibility
to adverse weather conditions such as rain and fog.

Millimeter wave radar (refer to radar for convenience) is a
more common vehicle sensor [9] compared to LiDAR, with
the advantages of low price, slight influence by rain and fog,
and long detection range [10]. Before the emergence of 4D
radar, conventional 3D radar, which can measure distance,
azimuth, and Doppler, is primarily employed. Nevertheless, the
lack of elevation measurements limits the perception capability
of 3D radar. 4D radar addresses this limitation and offers
a high resolution [10]. As a result, it can provide relatively
dense three-dimensional point clouds like LiDAR, which is
increasingly being recognized as an affordable alternative to
LiDAR.

Although 4D radar point clouds share numerous similarities
with LiDAR point clouds, they are still sparse and noisy
due to the limited ranging and angle resolution, multipath
effects, and penetrability [10]. Hence, relying solely on 4D
radar point clouds for 3D object detection has limitations
in performance. However, there is substantial potential for
performance improvement through fusion with other sensors.
Meanwhile, it is worth noting that cameras are relatively
cheap and easy to deploy, which can provide rich semantic
information due to the high spatial resolution and ability to
perceive the color and texture of objects.

Considering the above factors, some recent works attempt
to integrate information from both radar and camera
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modalities. Some researchers [12], [13], [14] specifically
design the fusion strategy of 3D radar point clouds and images,
and have shown obvious improvement over single-modal base-
lines. As an increasing number of 4D radar datasets [15], [16],
[17], [18] are released, recent studies [19], [20] focus on the
fusion method for 4D radar and camera. RCFusion [19] adopts
orthographic feature transform (OFT) [21] to obtain image
bird’s eye view (BEV) feature maps and design an interactive
attention module to fuse the BEV feature maps of point clouds
and images. LXL [20] uses a depth-based sampling strategy to
lift image features to 3D space with the help of the predicted
radar occupancy.

Although existing 4D radar and camera fusion methods
achieve good performance, they are mostly based on the BEV
domain fusion framework designed for LiDAR-camera fusion,
without explicitly considering the characteristics of radar. Con-
sequently, the potential of radar-camera fusion has not been
fully explored, leading to a large performance gap compared
to LiDAR-based methods. Specifically, in contrast to the dense
point clouds produced by LiDAR, the 4D radar captures fewer
details in terms of geometry information. Hence, radar-camera
fusion places a greater reliance on image semantic informa-
tion compared to LiDAR-camera fusion. However, existing
methods only fuse radar and camera information on the
BEV, lacking sufficient feature interaction and neglecting the
characteristic that radar relies more on semantic information
from images.

Meanwhile, serious feature-blurring problems may arise
when projecting radar points onto the corresponding image for
feature sampling. In Fig. 1, we explain this problem through
visualization and statistics in the View-of-Delft (VoD) dataset.
We first provide the definitions of 2D foreground points, 3D
foreground points, and 3D blurred points, as illustrated in
Fig. 1(a). A radar point is a 2D foreground point when its
corresponding projection point falls within 2D instance masks,
because it can sample image features of foreground objects.
Further, if a 2D foreground point also falls within 3D ground
truth boxes, it is defined as a 3D foreground point, otherwise,
it is classified as a 3D blurred point. Fig. 1(b) and (c) show
the 2D foreground points of radar and LiDAR, respectively,
where the 3D foreground points are marked in green and the
3D blurred points in red. Additionally, as the VoD dataset
does not provide segmentation labels, we generate around
200 instance masks of each class with Segment Anything
Model (SAM) [11] as exemplified by the blue mask shown
in Fig. 1(b) and (c). Interestingly, in 3D object detection,
we mainly care about the 3D foreground points, and other
points should be regarded as the background points. However,
when sampling features on the image, all 2D foreground points
capture features of foreground objects, which may lead to false
alarms. We refer to this as the feature-blurring problem.

For quantitative analysis, we further calculate the ratio of
the number of 3D foreground points to the number of 2D fore-
ground points for each instance. The result after averaging all
instances of each class is shown in Fig. 1(d). It is observed that
radar has significantly lower ratios than LiDAR, especially for
the pedestrian and cyclist categories. As for the car category,
the gap between the two modalities is relatively small, due to

Fig. 1. An explanation of the feature-blurring problem. (a) elucidates the
definitions of 2D foreground points, 3D foreground points, and 3D blurred
points. (b) and (c) show the radar points and LiDAR points projected onto
the image, respectively. The blue mask is the instance segmentation generated
by SAM [11], the green points represent the 3D foreground points, and the
red points represent the 3D blurred points. (d) illustrates quantitatively by
averaging the ratio of the number of 3D foreground points to the number of
2D foreground points over around 200 instance masks for each class. “# 3D
fore. pts” represents the number of 3D foreground points, and “# 2D fore.
pts” represents the number of 2D foreground points.

the metal materials which weaken the penetration capability
of radar. This observation indicates that the feature-blurring
problem is severe under radar modality.

To address the above problems, we propose a simple but
effective multi-stage sampling fusion (MSSF) network based
on 4D radar and camera. We fuse point cloud and image fea-
tures more deeply in the backbone rather than using a separate
image BEV branch. In particular, two types of fusion blocks
based on image feature sampling are proposed to replace
the blocks in some commonly used 3D sparse backbones.
Through the deep interaction of point cloud features and image
features achieved by the fusion blocks, MSSF can well identify
3D foreground points, thereby alleviating the feature-blurring
problem. The cascading of multiple fusion blocks effectively
leverages image features, further enhancing detection per-
formance. Furthermore, we add a semantic-guided head to
explicitly help the network distinguish 3D foreground points.
Our approach can be easily applied to many single-modal 3D
object detection networks based on voxel or pillar.

Our contributions are summarized in five folds:

1) Taking into account the sparsity of 4D radar point clouds
and the feature-blurring problem, we propose a simple
but effective MSSF network. As an early attempt in the
field, it provides a strong baseline for later research.

2) We propose two general, plug-and-play voxel-image fea-
ture fusion blocks and insert them into some commonly
used 3D sparse networks in multiple stages to achieve
deep interaction between voxel and image features.
It has good scalability and can be traded off as needed.
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3) A semantic-guided head is proposed to further alleviate
the feature-blurring problem. On the one hand, the seg-
mentation loss guides the network to distinguish between
foreground and background points. On the other hand,
the segmentation scores are used to re-weight the voxel
features to play the role of attention.

4) We naturally extend our fusion methodology to
pillar-based networks by introducing learnable height
embeddings and lifting BEV features to voxels, which
achieves enhanced detection performance.

5) Experiments on the VoD and TJ4DRadset datasets show
that the proposed method outperforms state-of-the-art
radar-camera fusion methods by 7.0% mAP and 4.0%
mAP, respectively. In particular, for the car category
in the VoD dataset, our method achieves a substantial
increase of 18.6% AP compared to state-of-the-art meth-
ods. Notably, our MSSF even surpasses some classic
LiDAR-based models.

The remainder of this article is organized as follows.
Section II briefly reviews recent works on single-modal and
multi-modal 3D object detection. Section III introduces our
proposed model in detail. In Section IV, the experimental
setups and implementation details are introduced, and the
performance of our method is shown and analyzed. Finally,
our work is summarized in Section V.

II. RELATED WORK

A. 3D Object Detection Based on LiDAR/Radar Point Cloud

LiDAR-based 3D object detection methods can be divided
into [1] point-based [4], [22], pillar-based [2], and voxel-based
methods [3], [23] [24], etc., according to the representation of
point cloud during network processing. In [25], it is found
that the point-based methods are less effective for 3D object
detection under radar modality compared with pillar-based
and voxel-based methods. At present, the 3D object detec-
tion methods of radar point clouds are mostly improved
based on pillar-based methods. RPFA-Net [26] replaces the
pillar feature extractor in PointPillars [2] with its proposed
self-attention-based feature extraction layer, so that context
information can be better perceived when encoding pillar
features. RCFusion [19] believes that the Doppler and radar
cross section (RCS) information of 4D radar is important, and
codes the spatial, velocity, and RCS features separately when
extracting pillar features. SMURF [27] adds additional kernel
density estimation features to the backbone. Both MVFAN
[28] and MUFASA [29] leverage BEV and cylindrical coor-
dinate views simultaneously to better capture radar point
cloud features. RadarPillar [30] applies self-attention to pillar
features to enlarge the receptive field.

B. 3D Object Detection Based on LiDAR-Camera Fusion

LiDAR and camera fusion strategies can be mainly divided
into three categories, i.e., early fusion, middle fusion, and
late fusion [31]. In early fusion [32], [33], [34], [35], image
information is embedded into the point cloud in various ways
before the point cloud is input to the detection network,
which is direct to implementation but lacks deep interaction

with point cloud features and image features. For instance,
PointAugmenting [34] and MVX-Net [35] both sample image
features at a very early stage and adopt simple fusion strate-
gies. In addition, middle fusion is more effective and has
been studied more in recent years [36], [37], [38], [39],
[40], [41]. It realizes the interaction and fusion of point
cloud features and image features at the feature level. Among
these methods, we noted that LoGoNet [39] also projects
the centroids of non-empty voxels into the image and uses
multi-scale deformable cross-attention to fuse features. How-
ever, the features after fusion are only used for the refinement
of proposals. The detection results are limited by the quality
of proposals generated by the single-modal detector in the first
stage. Additionally, EPNet [40] and DeepInteraction [41] also
fuse image features through projection. The former emphasizes
point-level correspondence and mainly focuses on point-based
backbones. The latter operates on point cloud BEV and image
planes, and the correspondence between the two modalities is
relatively coarse. Compared with these methods, we establish
the correspondence between voxels of different resolutions and
images from fine to coarse. As for the late fusion methods [42]
which operate on the output of a LiDAR-based 3D object
detector and a camera-based 2D object detector. Insufficient
feature interactions limit the potential of such methods. The
existing research on LiDAR and camera fusion is of significant
reference value when studying radar and camera fusion, since
both 4D radar and LiDAR data can be presented in the form
of point clouds.

C. 3D Object Detection Based on Radar-Camera Fusion

Some studies have pioneered the fusion of 3D radar and
camera. CenterFusion [13] extends radar points into pillars,
which are associated with the proposals predicted from images
in the view frustum and assist in 3D attribute estimation.
CRAFT [14] employs the spatio-contextual fusion transformer
to refine image proposals by radar measurements. CRN [12]
adopts the BEV fusion framework and utilizes radar occupancy
map to assist image view transformation and BEV feature
fusion. Until recently, some 4D radar datasets [15], [16], [17],
[18] have been released, and there are relatively few studies
focusing on the fusion of 4D radar and camera. RCFusion
[19] employs OFT [21] along with its shared attention encoder
to generate image BEV feature maps. These feature maps
are then fused with radar BEV features in an attention-
based manner. LXL [20] utilizes a sampling-based method
to lift image features, in which the radar occupancy grid
predicted from the radar BEV feature map and the image
depth prediction are used to assist the image BEV features
generation. UniBEVFusion [43] proposes Radar Depth Lift-
Splat-Shoot, which incorporates additional radar data into the
depth prediction process.

These methods are mainly based on the BEV domain fusion
framework without explicitly considering the characteristics
of radar, resulting in a large performance gap compared to
LiDAR-based methods. The sparsity and noisiness of radar
point clouds, along with the ill-posed nature of image depth
estimation, can cause challenges in these methods when con-
verting image features to voxel or BEV features. In this study,
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Fig. 2. The overall architecture of our MSSF. The image branch extracts features from images to obtain multi-scale feature maps. The voxel-image fusion
backbone contains n fusion blocks and m ordinary blocks (abbreviated as “Block” in the figure), which absorb features from the image feature maps in
multiple stages through our proposed fusion blocks. The non-empty voxel features of the last layer fusion block are fed into the semantic-guided head for
foreground and background prediction, and the segmentation scores are utilized to weight the voxel features. The multi-scale features output by the last few
blocks are passed through the 3D neck to obtain the fused BEV feature map which is sent to the detection head to obtain the final detection results.

we propose a new fusion network. Specifically, we directly
adopt radar points to sample image features, rather than
doing explicit view transformation. By employing an effec-
tive multi-stage fusion strategy along with a semantic-guided
head, multi-scale image features are fully utilized to achieve
comprehensive and efficient fusion with point cloud features.
Even so, our network remains simple and compatible while
maintaining high performance.

III. PROPOSED METHOD

A. Overall Architecture

The overall network structure is shown in Fig. 2, which can
be divided into four parts: image branch, voxel-image fusion
backbone, semantic-guided head, and detection head.

1) The image branch is employed to extract multi-scale fea-
tures of images and encode image semantic information.
In our method, we have no restrictions on the specific
structure of the image branch.

2) The voxel-image fusion backbone is one of the key com-
ponents of the proposed method, which is responsible for
extracting point cloud features and deeply fusing with
image features output by the image branch. It consists of
a cascade of several proposed fusion blocks and ordinary
blocks. Through multi-stage fusion, point cloud features
are deeply interacted with image features. The 3D neck
aggregates the output of the last few blocks, obtaining
the fused BEV feature map which contains information
from both modalities.

3) The semantic-guided head performs foreground and
background segmentation on non-empty voxels with
explicit supervision, helping the network to perceive

3D foreground points and further alleviate the feature-
blurring problem. The segmentation scores are used to
re-weight the voxel features to play the role of attention.

4) The detection head utilizes the fused BEV feature map
to predict the 3D bounding box (center, size, and orien-
tation) and category of the object in the scene.

More details for each part are introduced in the following
subsections. Note that the fusion method introduced below
is based on the voxel-based implementation. A pillar-based
version is provided at the end of this section.

B. Image Branch

The image branch is employed to extract multi-scale seman-
tic features of the image, usually consisting of a backbone
and a neck. The backbone extracts image features, and the
neck fuses features with different receptive fields and sizes
output by the backbone in different stages. The input of
the image branch is an RGB image I ∈ RH×W×3, where
H and W represent the height and width of the image,
respectively. And the outputs are n I multi-scale feature maps
FI,i ∈ RHi ×Wi ×Ci , i = 1, 2, . . . , n I , where Hi , Wi and Ci
represent the height, width and channel dimensions of the
i-th level, respectively. In our model, we adopt a classic
configuration where the backbone is ResNet-50 [44] and the
neck is FPN [45].

C. Voxel-Image Fusion Backbone

Fig. 2 shows a general voxel-image fusion backbone archi-
tecture, which consists of n fusion blocks and m ordinary
blocks. For the input point cloud P ∈ RN×Cin , with N
points and Cin channels, a sparse tensor X is obtained after
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Fig. 3. Two types of fusion blocks. (a) shows the fusion block based on the SFF. The sparse tensor Xn with spatial shape (DV
n , H V

n , W V
n ) output by the

previous block is fed to a sparse convolution layer with stride 2. The centroid of each non-empty voxel (use the center instead if the centroid is not available)
is projected onto the image. Image features are then sampled from the multi-scale image feature maps through bilinear interpolation. After concatenation
and mapping, the sampled feature fimg is fused with the voxel feature fvox through FV I , obtaining f f use . The final output is obtained after several residual
blocks. (b) shows the fusion block based on the MSDFF. Unlike (a), for a non-empty voxel, the corresponding query q is first passed through two parallel
linear layers to obtain sampling offsets and weights. Image features are sampled from the multi-scale image feature maps according to the sampling offsets.
After the weighted summation and fusion operator, the fused feature f f use is obtained. Other processes are consistent with (a).

voxelization, which can be expressed as a collection of 3D
coordinates and non-empty voxel features, i.e., X = {FV , CV },
where FV ∈ RNV ×Cin represents the features of NV non-
empty voxels and CV ∈ RNV ×3 represents the coordinate of
these voxels. After obtaining X , it is passed through several
fusion blocks and ordinary blocks. Following VoxelNeXt [24],
we employ 6 blocks, i.e., n + m = 6.

1) Ordinary Block: An ordinary block is a stage in a
commonly used sparse backbone such as SECOND [23] and
VoxelNeXt [24], which is generally composed of a sparse con-
volution layer used for downsampling and several submanifold
convolution layers or residual blocks. The input of an ordinary
block is a sparse tensor Xin , and the output is another sparse
tensor Xout with the same or downsampled spatial shape.

2) General Fusion Block: As shown in Fig. 3, the fusion
block can be regarded as an extension of the ordinary block.
It provides an extra operation between the sparse convolution
layer and the residual blocks to retrieve multi-scale image
features provided by the image branch. Specifically, we first
compute the centroids of non-empty voxels in the sparse
tensor Xsc output by the sparse convolution. That is, for
the k-th non-empty voxel Vk with feature fvox,k , assuming
Pk = {p j }, p j ∈ R3, j = 1, · · · , |Pk | is the points located in
Vk , the centroid ck ∈ R3 can be obtained by

ck =
1

|Pk |

|Pk |∑
j=1

p j , (1)

where | · | represents taking the cardinality of a set. Note that
“non-empty voxel” refers to a voxel with non-zero features
in the sparse tensor, and its inferior may not necessarily
contain radar points which is due to the dilation effect of
sparse convolution [46]. Thus, for non-empty voxel Vk with
no internal points, i.e., |Pk | = 0, we use its center instead. For
convenience, we refer to them as centroid as well. We omit
the subscript k in the following, which defaults to a single
non-empty voxel.

The centroid of each non-empty voxel is then projected
onto the image according to the camera intrinsic matrix
Tintr ∈ R3×4 and the radar-to-camera coordinate transforma-
tion matrix Tr2c ∈ R4×4, which can be formulated as

c′

img = Tintr · Tr2c · c′, (2)

where c′
= [c; 1] ∈ R4 represents the homogeneous

coordinates of c. As a result, c′

img = [ud, vd, d]
T is

the homogeneous coordinate in the image coordinate sys-
tem where (u, v) and d denote the pixel index and the
corresponding depth, respectively. Given the pixel index
cimg = [u, v]

T , the normalized coordinate can be obtained
by c̃img = [u/W, v/H ]

T
∈ R[0,1]×[0,1].

After obtaining the projection points for each non-empty
voxel, image features are then retrieved from the multi-scale
image feature maps by operator E . Generally, the inputs of E
are the normalized coordinate c̃img , multi-scale image features
{FI,i }

n I
i=1, and other useful input like queries denoted as

u ∈ RCu . The output is the corresponding image feature
fimg ∈ RCimg , i.e.,

fimg = E(c̃img, {FI,i }
n I
i=1, u). (3)

The image feature is then fused with the corresponding voxel
feature fvox by operator FV I , obtaining the fused feature
f f use ∈ RC f use , that is

f f use = FV I (fimg, fvox ). (4)

The fused sparse tensor X f use containing both voxel and
image information can be constructed by simply replacing
fvox to f f use in Xsc. Finally, X f use is passed through the
residual block to further process and fuse neighborhood fea-
tures, obtaining the final output Xout . In our model, we let
Cimg = Cvox = C f use. Thus, the operators E and FV I do not
change the feature dimension of Xsc.

The above is a general strategy and no specific implemen-
tations of E and FV I are given. In this study, we propose two
implementations of the operator E , i.e., simple feature fusion
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(SFF) and multi-scale deformable feature fusion (MSDFF).
For FV I , we simply adopt addition, i.e.,

f f use = FV I (fimg, fvox ) = fimg + fvox . (5)

3) Fusion Block Based on the SFF: The detailed process of
the SFF is illustrated in Fig. 3(a). According to the normalized
image coordinate c̃img projected from the centroid c, we can
use bilinear interpolation to sample image features from the
multi-scale image feature maps. For the i-th level, we can
obtain the sampled feature fi

img by

fi
img = Sample(FI,i , c̃img), (6)

which can be accomplished using the “grid_sample” oper-
ation in Pytorch. The final image feature can be obtained by
concatenating image features from all levels, and applying a
linear project with batch normalization. The SFF operation is
defined as:

fimg = ESF F (c̃img, {FI,i }
n I
i=1)

= LinearBN(Cat({fi
img}

n I
i=1)). (7)

4) Fusion Block Based on the MSDFF: Simple feature
fusion can only focus on a single location for each projected
point, resulting in a limited receptive field. To utilize the
surrounding information of objects, increase the receptive
field, and further enhance the ability of the feature extraction
operator E , we propose multi-scale deformable feature fusion,
i.e., MSDFF, as shown in Fig. 3(b).

The MSDFF is based on multi-scale deformable cross-
attention [47] which can select different sample positions
and adjust the weight of sampled features according to the
corresponding query. The process can be divided into two
steps: query generation and deformable cross-attention.

a) Query generation: Extra queries are needed to guide
the sampling process, and the queries are expected to have rich
image and point cloud information to better select the desired
features on the image feature maps.

To meet this requirement, we add a query initialization
module before the first fusion block to get high-quality queries.
Specifically, for each reference point, we initialize the query
as follows

q = qini t = LinearBN(Cat({fvox , f1
img, p})), (8)

where p ∈ RN×3 is the normalized center coordinate of
the corresponding voxel. As can be seen from Eq. (8), the
initial query qini t combines information from three sources.
Among them, the voxel feature fvox provides radar information
like RCS and velocity. The normalized center coordinate p
indicates the position and distance of the corresponding voxel.
As for f1

img , it is obtained by sampling the image feature in FI,1
following Eq. (6). As a result, qini t contains rich information
from both modalities.

For the subsequent fusion block, we directly use fvox as the
query, since it already contains the previously fused image
information, which means q = fvox .

b) Deformable cross-attention: Guided by the query,
deformable cross-attention is employed for the sampling pro-
cess. For clarity, only single-head attention is considered
below. Suppose we have n I image feature maps and want
to sample ns features from each feature map for one query.
The query q is passed through two parallel linear layers to
obtain offsets {oi, j = (ox

i, j , oy
i, j )}, oi, j ∈ R2 and weights

{wi, j }, wi, j ∈ R, where i = 1, · · · , n I and j = 1, · · · , ns .
The offsets are then normalized by the width and height
of the corresponding image feature map, obtaining {õi, j =

(ox
i, j/Wi , oy

i, j/Hi )}. For the i-th feature map, the j-th nor-
malized sampling position c̃s

i, j is calculated according to the
reference point c̃img and the offset õi, j by

c̃s
i, j = c̃img + õi, j . (9)

Then, we sample features from the corresponding image
feature level by bilinear interpolation following Eq. (6) and
weighted summation is performed according to the normalized
weight {w̃i, j } = Softmax({wi, j }). After applying a linear
project with batch normalization, the image feature fimg is
obtained. To sum up, the MSDFF operation can be formulated
as:

fimg = EM SDF F (c̃img, {FI,i }
n I
i=1, q)

= LinearBN(
n I∑

i=1

ns∑
j=1

w̃i, j · Sample(FI,i , c̃s
i, j )). (10)

Through the above method, the point cloud features are
deeply interacted with the image features, so that the fused
features contain rich geometric and semantic information,
provided by the point clouds and images, respectively. These
features help the network distinguish 3D foreground points
and alleviate the feature-blurring problem.

D. Semantic-Guided Head

To better utilize the fused features and further mitigate the
feature-blurring problem, we apply the semantic-guided head
to the output of the last fusion block.

In particular, for each non-empty voxel, we pass its feature
f f use through a multi-layer perceptron (MLP) and obtain the
corresponding foreground score sseg to predict whether this
voxel is a foreground one, i.e.,

sseg = Sigmoid(MLP(f f use)). (11)

A foreground voxel is defined as a non-empty voxel whose
centroid is in a 3D ground truth bounding box. Otherwise,
we define it as a background voxel. Focal Loss [48] is used
for explicit supervision. When the score of each non-empty
voxel is obtained, the voxel features are further multiplied by
the score to guide the network to pay more attention to 3D
foreground points. The weighted feature is obtained by

f′f use = f f use · sseg. (12)

E. 3D Neck & Detection Head

It should be noted that we mainly focus on the voxel-image
fusion backbone, especially the fusion strategy. The 3D neck
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and the detection head are not limited to specific methods. For
our voxel version, we adopt the methodology of VoxelNeXt
[24]. The following is a brief introduction. Please refer to [24]
for more details.

Given the sparse tensor Xout,i = {FV,i , CV,i } output by
the block i , the 3D neck combines the non-empty voxels
contained in {Xout,4,Xout,5,Xout,6}. Specifically, taking CV,4
as a reference, the voxel coordinates CV,i , i > 4 is multiplied
by its downsampling stride relative to CV,4 to align the voxel
coordinates, e.g., C′

V,5 = {2×x, 2× y, 2× z|(x, y, z) ∈ CV,5}.
A new sparse tensor Xcomb can be constructed by Xcomb =

{∪
6
i=4FV,i , ∪

6
i=4C′

V,i }. All the features corresponding to the
same X and Y coordinates are added to obtain the output
BEV feature map.

The detection head of VoxelNeXt is a sparse version of
center head [49] and has lower computational costs [24].

F. Extend to Pillar

To facilitate the introduction of the proposed fusion module,
the descriptions above are based on the voxel-based backbone.
But our approach can be easily extended to lightweight yet
powerful pillar-based networks with slightly adaptation.

Fig. 4 presents the pillar version of our method. The
major difference from the voxel version is that, in the pillar
version, the intermediate features in the backbone are 2D BEV
features rather than 3D sparse tensors. This difference does not
affect the application of our fusion methodology. Specifically,
for pillar-based networks, the input point cloud is typically
pillarized before being fed into a BEV backbone with several
conventional blocks. We replace the first n blocks with our
fusion block, as shown in Fig. 4. For the BEV feature output by
a conventional block, the original point cloud can be voxelized
with the same X and Y-resolution. For any non-empty voxel
V with coordinates (x, y, z), we can index the feature from
the corresponding BEV feature map based on (x, y). This
feature can be directly lifted as the voxel’s feature. However,
to preserve height information, we introduce a learnable height
embedding. The final voxel feature fvox is obtained by adding
the corresponding BEV feature and the height embedding,
expressed as

fvox = BEV(x, y) + HeightEmb(z), (13)

where BEV(x, y) represents the BEV feature at (x, y), and
HeightEmb(z) represents the height embedding correspond-
ing to height z. In this way, the BEV feature is effectively
lifted into the non-empty voxels within 3D space. The SFF
and MSDFF described above can then be used to aggregate
features from images and fuse them into the non-empty voxels.
Then, the voxel features with identical (x, y) coordinates are
summed to produce the fused BEV feature. Similar to the
voxel-based version, we also employ a semantic-guided head
after the last fusion block. Finally, the fused BEV feature pass
through the remaining convolutional blocks, followed by the
2D neck and detection head, to produce the final detection
results.

Fig. 4. The pillar version of the proposed method.

G. Loss

Compared with the loss of the single-modal 3D object
detection network, our method includes an additional segmen-
tation loss in the semantic-guided head. Assuming Lseg is the
segmentation loss based on Focal Loss [48], and Ldet is the
detection loss corresponding to the single-modal method [2],
[24], which is generally composed of classification, location
and other losses depending on the specific method. The total
loss can be obtained by

L = α1Lseg + α2Ldet , (14)

where α1 and α2 are the weights used to balance these two
losses. In our model, we simply set α1 = α2 = 1.

IV. EXPERMENTS AND ANALYSIS

A. Dataset and Evaluation Metrics

1) Dataset: We use two datasets to evaluate our model, i.e.,
the VoD dataset [16] and the TJ4DRadset dataset [17]. Both
of them are oriented toward autonomous driving applications,
especially for 4D radar perception.

The VoD dataset has a total of 8682 frames, including
5139 frames in the training set, 1296 frames in the validation
set, and 2247 frames in the test set. Since the official eval-
uation system is not yet open, our comparison and ablation
experiments were completed on the validation set. The VoD
dataset is collected in the city of Delft (The Netherlands) and
covers campus, suburb and old-town scenarios. It provides
synchronized 4D radar, LiDAR, camera, and GPS/IMU data
with 3D annotations and tracking IDs. Moreover, the official
also provides radar point clouds accumulated from multiple
scans, which is implemented by compensating ego-motion.
Following previous works [20], [27], [50], we use the five-scan
radar points and consider three categories, i.e., car, pedestrian,
and cyclist.

The TJ4DRadset dataset was collected in Suzhou, China,
covering different road types, such as urban roads, elevated
roads and industrial zones. Compared with the VoD dataset,
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it contains more difficult scenarios, e.g., nighttime, glare,
under the bridge, and wrong camera focus, which are big
challenges for the camera. It has a total of 7746 frames,
of which 5706 frames are for training and 2040 frames for
testing. Its sensor configuration is similar to that in the VoD
dataset, but it only provides synchronized 4D radar and camera
data, with 3D annotations and tracking IDs up to now. For the
TJ4DRadset dataset, we adopt single-frame radar data without
accumulation and consider four categories, i.e., car, pedestrian,
cyclist, and truck.

2) Evaluation Metrics: Both the VoD and TJ4DRadSet
datasets use averaging precision (AP) as the main evaluation
metric.

For the VoD dataset, according to the official recommenda-
tions, two metrics are used, i.e., AP under the entire annotated
area (APEAA) and AP under the driving corridor (APDC).
The former means that all annotations are used for evaluation
regardless of range. The latter means that we only consider
annotations located in a specific area which is defined as
ADC = {(x, y, z)| − 4m < x < 4m, z < 25m} in camera
coordinates. When calculating AP, the intersection-over-union
(IoU) threshold is set to 0.25 for cyclists and pedestrians, and
0.5 for cars. The IoU threshold is used to determine positive
and negative samples.

For the TJ4DRadset dataset, 3D AP (AP3D) and BEV AP
(APBEV) are evaluated with a uniform range of 0-70m, and
the IoU thresholds are set in line with the VoD dataset, with
an IoU threshold of 0.5 for the additional truck category.

B. Implementation Details

We implement our model based on MMDetection3D [51]
framework which is an open-source 3D object detection tool-
box based on PyTorch. For the VoD dataset, following official
configurations, we set the point cloud range to {(x, y, z)|0m <

x < 51.2m, −25.6m < y < 25.6m, −3m < z < 2m}. We use
the radar point cloud accumulated over 5 scans as input. The
input feature is selected as

fVoD
in = [x, y, z, RC S, vr , vrc, t]T , (15)

where RC S represents the radar cross section reflecting the
reflection intensity of the object, vr is the relative radial
Doppler velocity, vrc is the absolute radial Doppler velocity,
and t is the time ID, indicating which scan it originates from.

For the TJ4DRadset dataset, as previous works [24], [49]
on KITTI [52], we use slightly different point cloud ranges
for the voxel-base and pillar-based methods, to make the
point cloud ranges divisible by the size of the voxel or pillar.
Specifically, for pillar-based methods, we set the point cloud
range to {(x, y, z)|0m < x < 69.12m, −39.68m < y <

39.68m, −4m < z < 2m}. For voxel-based methods, we set
the point cloud range to {(x, y, z)|0m < x < 70.4m,−40m <

y < 40m, −4m < z < 2m}. The input feature is selected as

fTJ4D
in = [x, y, z, vrc, Power ]

T , (16)

where vrc has the same definition as that in the VoD dataset,
Power is in dB scale and represents the signal-to-noise ratio
of the detection. It should be noted that the official public

data of the TJ4DRadset dataset only provide the relative
radial Doppler velocity vr and no IMU data. Following [50],
we use the method in [53] to estimate ego-motion to obtain
the absolute radial Doppler velocity vrc.

In both datasets, the voxel sizes are set to 0.05m, 0.05m
and 0.125m along the X-, Y- and Z-axis, respectively. The
pillar sizes are set to 0.16m, 0.16m along the X- and
Y-axis, respectively. We use the hybrid task cascade network
(HTC) [54] provided by MMDetection [55] to initialize the
image branch and freeze its parameters during training. The
HTC is pre-trained on COCO [56] and fine-tuned on nuImage
[57]. For PointPillars, predefined anchor boxes are needed.
As official settings, for the VoD dataset, the dimensions of
anchor boxes for the car, pedestrian, and cyclist categories
are (3.9m, 1.6m, 1.56m), (0.8m, 0.6m, 1.73m), and (1.76m,
0.6m, 1.73m), respectively. For the TJ4DRadset dataset, the
dimensions of anchor boxes for the car, pedestrian, cyclist,
and truck categories are (1.84m, 4.56m, 1.70m), (0.6m, 0.8m,
1.69m), (0.78m, 1.77m, 1.60m), and (2.66m, 10.76m, 3.47m),
respectively. For VoxelNeXt, compared with the original con-
figuration, the voxel features in our backbone need to contain
both point cloud and image information, so we double the
output feature dimensions of all blocks. By default, we adopt
the MSDFF-based fusion block and set n = 2. Other config-
urations show equally good performance, which is confirmed
in the ablation experiment section.

The network is trained on a single NVIDIA RTX
3090 graphic processing unit (GPU) by the AdamW optimizer
and one-cycle learning rate scheduler in an end-to-end manner.
The initial learning rate is set to 0.001. We use random flip,
random scaling and random rotation data augmentation for the
input point cloud, and no data augmentation is used for the
input image.

C. Experiment Results

Since there are relatively few models designed specif-
ically for 4D radar, we choose some methods originally
designed for LiDAR for comparison. In Table I and Table II,
PointPillars [2], CenterPoint [49], and VoxelNeXt [24] are
reproduced by us under the MMDetection3D framework.
Focals Conv [46] and PointAugmenting [34] are reproduced
according to the configuration in their official GitHub reposi-
tories with minimal changes to adapt to the 4D radar datasets.
Focals Conv marked with ‡ means using the same radar back-
bone as ours. Additionally, the detection results of PointPillars
based on LiDAR and ImVoxelNet [58] based on monocular
camera are also provided. For the VoD dataset, the inference
speed in frames per second (FPS) is measured. The FPS results
with ∗ and † represent the use of different GPUs and different
implementation frameworks, respectively.

For our method, multiple variants are given for comparison.
Among them, MSSF-PP and MSSF-V represent the multi-
modal versions of our method based on PointPillars and
VoxelNeXt, respectively, while MSSF-PP-R and MSSF-V-R
are the corresponding single-modal networks.

1) Results on VoD Dataset: In Table I, we report the results
on the validation set of the VoD dataset.
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TABLE I
DETECTION RESULTS ON VOD

TABLE II
DETECTION RESULTS ON TJ4DRADSET

a) The Characteristic of the Metrics: It can be seen that
the detection results of the cyclist class are consistently good
for all models, even outperforming the detection capabilities
of LiDAR. This is because most of the cyclists in the dataset
are in motion [16], and radar can measure the radial Doppler
velocity of the object. Hence, radar is more sensitive to moving
objects and can achieve good detection results even in a
single modal. In contrast, there are many stationary objects
in cars and pedestrians, which are not friendly to radar and
easily confused with noisy background points, leading to poor
detection results. Moreover, the difference between APEAA
and APDC reflects that radar has better detection performance
for close objects, as ones contain more detection points.
In addition, the detection results of ImVoxelNet [58] indicate
that despite high resolution and rich semantic information
provided by camera, the lack of depth information leads to
poor performance, especially for distant objects, as evidenced
by mAPDC being greater than mAPEAA.

b) Comparison with the state-of-the-art methods: The
experiment results also show that our methods outperform
the others in almost all metrics. Comparing MSSF-PP with
the latest strong published benchmark LXL [20], we achieved
significant improvements of 7.0% and 6.9% on mAPEAA and

mAPDC, respectively. For MSSF-V, there are also 3.7% and
8.4% improvements. The consistent improvements shown by
MSSF-PP and MSSF-V illustrate the versatility of our method.
Specifically, for the car category, MSSF-PP and MSSF-V out-
perform LXL by 18.6% and 10.2% under APEAA, respectively.
APDC also has a notably substantial improvement of 18.4%
and 16.9%, respectively, which is much higher than other
categories. The reason is that the number of radar points on
cars is relatively large, so there are more reference points
projected onto the image, and sufficient semantic information
can be captured. For the pedestrian category, there are also
improvements of 1.8% and 2.1% respectively on APEAA,
which shows the effectiveness of the proposed method. It is
worth noting that our method does not improve significantly on
the cyclist category, which we attribute to the fact that cyclists
are already easier to detect even in single-modal, as mentioned
in the above analysis. During the experiment, we also find
that cyclists and pedestrians are occasionally confused after
fusing image features. This is because bicycles are sometimes
confused with the background, and the riders above are likely
mistaken for pedestrians.

c) Comparison with the methods designed for lidar-
camera fusion: Our methods also demonstrate advantages
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when compared with Focals Conv [46] and PointAugmenting
[34] which are proposed in the context of the fusion of LiDAR
and camera. As for Focals Conv, MSSF-PP performs better
in all three categories, improving 21.0%, 2.6%, and 2.3%
under APEAA for cars, pedestrians, and cyclists, respectively.
Although Focals Conv explicitly classifies foreground and
background points which is similar to us, it mainly focuses on
its focal sparse convolution and only uses a shallow network
as the image backbone. The absorbed image features have
insufficient semantic expression capabilities. For PointAug-
menting, it uses DLA-34 [59] as the image backbone with
richer image features, but it only fuses image features in
the early stage without additional segmentation. Our method
still demonstrates better performance than PointAugmenting.
The above experiments reveal that the proposed fusion blocks
and fusion strategy can effectively absorb and utilize image
features.

d) Comparison with pointpillars under LiDAR modality:
We narrow the performance gap with LiDAR-based methods.
Compared to the classic PointPillars [2] model in the LiDAR
modality, we achieve superior performance both within the
entire annotated area (EAA) and driving corridor (DC), with
significantly lower costs. Specifically, we notably outperforms
PointPillars by 11.7% under APEAA for the cyclist category.
Although PointPillars exhibits a considerable advantage in
detecting cars, it is important to note that this is partly
attributed to the distinct installation positions of LiDAR (on
the roof) and 4D radar (behind the front bumper), which results
in a limited field of view of radar, especially when considering
the EAA.

e) Inference speed: As for the inference speed,
MSSF-PP and MSSF-V achieved 13.9 and 10.3 FPS, respec-
tively. A quasi-real-time detection speed is achieved with
significantly better performance than other methods, without
dedicated code optimization.

f) Visualization: Fig. 5 shows the visualization results
of MSSF-PP and MSSF-PP-R on the VoD dataset, indicating
that the proposed fusion strategy can make good use of two
modalities. Stationary and distant objects are weaknesses of
single-modal models. Our method can use image information
to reduce missed detections, e.g., for the cars in the opposite
lane on the left side shown in the first row. In addition,
when the object is far away or occluded (e.g., pedestrians at
a distance shown in the first and second rows), our model
can still use radar information for detection, showing certain
modal robustness. The fourth column demonstrates that our
model can distinguish 3D foreground points well, thus guiding
the network to focus on foreground objects without triggering
excessive false alarms caused by the feature-blurring problem.

2) Results on TJ4DRadSet Dataset: Compared with VoD,
TJ4DRadset is a more challenging dataset because it con-
tains complex scenes such as nighttime, under bridges, and
camera out-of-focus. In these scenarios, the image quality
degrades significantly. Object detection in these difficult sce-
narios requires good cooperation between different modalities.
In addition, TJ4DRadset has an additional truck category, and
the size of objects in this category varies greatly, further
increasing the difficulty of detection. Similar to Table I,

we present the results of the single-modal baseline, multi-
modal baseline, and our methods on the TJ4DRadset test set
in Table II.

a) The characteristic of the metrics: As can be seen from
the results, the AP is obviously lower than that of the VoD
dataset, indicating that the TJ4DRadSet is more challenging as
mentioned above. Note that, the pillar-based method has more
advantages in this dataset. The possible reason is that the 4D
radar used in the TJ4DRadset dataset is different from that in
VoD and there is no multi-frame accumulation. The resulting
point cloud distribution is different, which makes it hard for
the voxel-based method to effectively extract point cloud fea-
tures. This observation is consistent with [50]. In addition, for
cars and trucks with relatively large and various dimensions,
the anchor-free method is inferior to the anchor-based ones.
Moreover, compared to ImVoxelNet [58], radar-based methods
demonstrate significant advantages in detecting moving objects
(e.g., pedestrians and cyclists).

b) Comparison with other methods: Even if the image
quality is poor in some scenes, our method still achieves
significant improvements. Compared to the corresponding
single-modal baselines, the MSSF-PP and MSSF-V exhibit
improvements on mAP3D by 13.3% and 11.4%, respectively,
demonstrating the effectiveness of our proposed fusion net-
work. Furthermore, our MSSF-PP also outperforms the recent
state-of-the-art method UniBEVFusion [43] by 4.0% and 5.5%
on mAP3D and mAPBEV, respectively. In line with the results
observed on the VoD dataset, our method exhibits the largest
improvement in the car category. PointAugmenting [34] and
Focals Conv [46] do not show the advantages of multi-modal
methods due to the use of weak image features and simple
fusion strategies. These results indicate that our approach can
effectively leverage multimodal features and achieve better
performance, even in challenging and complex scenarios.

c) The impact of lighting conditions: To analyze the
impact of image quality on multi-modal methods in more
detail, following LXL, we classify the sequences in the
TJ4DRadset dataset according to different image degradations.
Specifically, we classify the sequence into dark, dazzle and
normal, accounting for approximately 15%, 25% and 60%
of the test set, respectively. Evaluations are conducted on
different image degradation sequences, and the results are
shown in Table III. It can be seen that in scenarios with
severe image degradation, e.g., dark and dazzle, MSSF-PP’s
improvements over MSSF-PP-R is relatively small (+10.5%
and +2.8% on mAPBEV). As the image quality improves
(i.e., normal scenario), the gain also increases (+15.6% on
mAPBEV). This conclusion is obvious because images cannot
provide accurate object information in bad scenarios. However,
it is worth noting that our method does not produce negative
gains due to image degradation, which shows that our fusion
method has a certain degree of robustness.

d) Visualization: Fig. 6 shows the visualization results
of MSSF-PP and MSSF-PP-R on the TJ4DRadSet dataset.
The three rows show the dark, normal and dazzle conditions.
Even when the image quality is severely degraded, our method
still shows robust detection results and is not affected by the
failure of image features. Under normal lighting conditions,
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Fig. 5. Visualization results on the VoD dataset (best viewed in color and zoom). Each row represents a frame. The first column shows the image, where the
orange boxes represent ground truth. The second column shows the detection results of MSSF-PP from the BEV perspective, where the green points are radar
points, the red crosses represent the self-vehicle position, the orange boxes represent ground truth bounding boxes and the cyan boxes represent predicted
bounding boxes. The third column is the detection results of the single-modal version MSSF-PP-R with the same meaning as the second column. The fourth
column shows the visualization results of the segmentation scores output by the semantic-guided head under BEV (darker colors indicate higher scores).

TABLE III
THE PERFORMANCE IN DIFFERENT SCENARIOS

our method steadily improves the performance of the single-
modal baseline, as shown in the second row. The fourth
column demonstrates the ability of our method to distinguish
3D foreground points, even under dark conditions.

3) The Plug-and-Play Capability of MSSF: To demonstrate
the plug-and-play capability of our method and validate the
effectiveness of the proposed fusion framework, we inte-
grate MSSF with three detection networks: CenterPoint [49],
SECOND [23], and VoxelNeXt-2D [24]. CenterPoint and
SECOND are representative voxel-based methods, while
VoxelNeXt-2D is the pillar version of VoxelNeXt [24].
Table IV summarizes the detection performance of these net-
works on the VoD validation set, both with and without MSSF.
The results highlight consistent and significant performance

TABLE IV
THE PLUG-AND-PLAY CAPABILITY OF MSSF

improvements across all networks after incorporating MSSF.
This demonstrates that our fusion block can effectively capture
and fuse image features into different detection networks,
leading to enhanced detection performance.

D. Ablation Experiments

To analyze and verify the effectiveness of the proposed
fusion network, we conduct detailed ablation experiments on
the VoD dataset. The following experiments are done based
on MSSF-V. In addition, the VoD dataset adopts 11-point
sampling when calculating AP. However, we find that the AP
calculated by 11-point sampling fluctuates more than that of
40-point sampling, especially when the recall rate is near the
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Fig. 6. Visualization results on the TJ4DRadset dataset. The content and meaning are consistent with Fig. 5.

sampling point. As a result, for better analysis, we present
the results in AP40, which is widely adopted in datasets like
KITTI [52], for some experiments below.

a) Effects of the Feature-Blurring Problem: We investi-
gate the mitigating effect of our model on the feature-blurring
problem and explore the impact of feature-blurring on detec-
tion performance. For analysis, we categorize the centroids
of non-empty voxels that are input to the semantic-guided
head into 2D foreground points, 3D foreground points, and
3D blurred points, following the definition in Fig. 1(a), where
the 2D instance masks in the definition are replaced by the
2D ground truth boxes. We further define the blur ratio as
rblur (τ ) =

nblur (τ )
n f ore2d

and the foreground recall as r f ore(τ ) =

n f ore3d (τ )

n f ore2d
, where n f ore2d is the number of 2D foreground

points, n f ore3d(τ ) and nblur (τ ) is the number of 3D fore-
ground points and the number of 3D blurred points above the
segmentation threshold τ , respectively. In Fig. 7(a) and (b),
we depict the curves of rblur (τ ) and r f ore(τ ) with respect
to τ , respectively. In the legend, “No Image” means no use
of image features in MSSF-V (equivalent to a radar-only
version with the semantic-guided head). “No Voxel” signifies
not using point cloud voxel features in MSSF-V, which means
the voxel feature fvox is excluded in the query initialization

TABLE V
EFFECTS OF THE FEATURE-BLURRING PROBLEM

Fig. 7. The blur ratio (lower is better) and foreground recall (higher is better)
curve with respect to the segmentation threshold τ .

(i.e., Eq. (8)) and the fusion operator (i.e., Eq. (5)). “Mask
Blur” denotes masking out the image features sampled from
3D blurred points using ground truth boxes. Corresponding
detection results are presented in Table V.
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TABLE VI
EFFECTS OF DIFFERENT FUSION BLOCKS AND # FUSION STAGES

As can be seen from Fig. 7(a), when there is only image
information (i.e., No Voxel), numerous 3D blurred points
contain image features of foreground objects without geo-
metric features. This makes them difficult to distinguish,
leading to a high blur ratio. In Table V, the corresponding
detection performance also drops significantly, especially for
pedestrians and cyclists. When only point cloud information
is available (i.e., No Image), the 3D blurred points are not
assigned incorrect image semantic features, eliminating the
feature-blurring problem and resulting in a low blur ratio.
However, sparse radar point clouds result in a weak representa-
tion of object geometric information, causing a decrease in the
model’s discriminative ability, and subsequently exhibiting low
foreground recall in Fig. 7(b) and poor detection performance
in Table V. In contrast, our multi-stage fusion structure enables
deep interaction between image and point cloud features,
resulting in the fused features with high discriminability. As a
result, we achieve both high foreground recall and low blur
ratio, mitigating the feature-blurring problem and resulting
better detection performance shown in Table V. When further
masking out the image features sampled from the blurred
points (i.e., Mask Blur), the blur ratio is minimized, leading to
a further improvement in detection performance. This indicates
that the feature-blurring problem has a substantive impact on
detection performance under radar modality.

b) Effects of Different Fusion Blocks and # Fusion
Stages: We conduct two groups of experiments to observe
the performance difference between the two proposed fusion
blocks and the impact of the number of fusion blocks. In the
first group, we adopt the MSDFF-based fusion block and
fix n + m = 6. The number of fusion blocks n increases
from 0 to 4. When n = 0, it degenerates into a single-modal
baseline. In the second group, we choose the fusion block
based on SFF, and the other experimental settings are the same
as those of the first group. The experiment results are shown
in Table VI. For better comparison, we also list the mAP
calculated at stricter IoU thresholds, i.e., mAPstr. In particular,
the IoU thresholds corresponding to the categories of cars,
pedestrians, and cyclists are 0.7, 0.5, and 0.5, respectively.

For the first group, the detection performance compared to
the baseline has been significantly improved, when only one
fusion block is used. When the number of fusion blocks grad-
ually increases, mAP does not increase significantly. On the
contrary, there is a slight decrease in AP for the cyclist

category. This is because the rich image features make it easy
for the network to mistake distant cyclists as pedestrians. For
cyclists who are far away or blocked, the bicycle is easily
confused with the background, and the rider above is easier
to detect. In addition, the deeper the block, the larger the cor-
responding voxel volume, causing the image features sampled
by its centroid no longer represent the entire voxel accurately,
especially when n = 4. However, it should be noticed that as n
increases, mAPstr improves. This result indicates that sufficient
image features and deep fusion can help object positioning.
This makes sense for radar, as radar point clouds lack accurate
geometric information of objects due to sparsity and noisiness.
Nevertheless, information like object orientation is easier to
perceive in images. More accurate object localization can be
achieved through deep interaction of voxel and image features.
Furthermore, as the fusion block has higher computational
costs than the ordinary block, FPS also decreases slightly, as n
increases. The decrease in FPS is slight thanks to the sparsity
of radar point clouds.

Interestingly, the improvement for the second group is not
as obvious as that in the first group when n = 1. This is
because the MSDFF has a stronger image feature extraction
ability than SFF. The MSDFF can adaptively focus on the
desired image features depending on the query. As n increases
(except n = 4), both mAP and mAPstr increase. In particular,
the improvement of mAPstr is obvious, which is consistent
with the first group. When n = 2, 3, it even surpasses the
first group under the EAA. This is because multi-stage feature
fusion drowns out the advantages of MSDFF. In addition,
the increase in voxel volume leads to unrepresentative image
features as mentioned above, which also weakens the effect
of MSDFF.

In summary, both groups of results illustrate the effective-
ness of the proposed multi-stage sampling, especially under
tighter IoU thresholds.

c) Effects of the Semantic-Guided Head: We analyze
the effect of two components in the semantic-guided head,
namely, the segmentation loss (SL) and the segmentation score
weighting (SW). Table VII shows the experimental results in
AP40 when n = 1 and n = 3. It is observed that when
the semantic-guided head is not used, that is, neither SL
nor SW is used, mAPEAA decreases by 2.1% and 1.3% for
n = 1 and 3, respectively. Despite this, the detection perfor-
mance without the semantic-guided head is still significantly
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TABLE VII
EFFECTS OF THE SEMANTIC-GUIDED HEAD

TABLE VIII
EFFECTS OF DIFFERENT FUSION LOCATIONS

Fig. 8. The structures of BR and AR.

better than the single-modal baselines. The reason is that the
classification loss in the detection head plays a similar role
to SL, which can help the model identify 3D foreground
points based on the fused BEV feature map with radar and
image information. When SL is added but SW is not used,
the detection performance is improved by 1.3% and 1.1%,
indicating that additional explicit supervision can promote
the network’s discrimination of foreground and background
points. However, only explicit supervision cannot effectively
utilize the segmentation results, and the predicted foreground
scores cannot be fed back to the network. After adding SL
and SW at the same time, the detection performance is further
improved. This shows that it is beneficial for the network to
explicitly perceive the foreground and background in radar
point clouds, when the feature-blurring problem is serious.

d) Effects of Different Fusion Locations: As can be
seen from Fig. 3, the fusion process occurs between sparse
convolution and residual blocks. The purpose of this design
is to further process the fused features and interact with
neighborhood features through residual blocks. In Table VIII,
we examine the impact of the fusion location, where “BR”
represents fusion before the residual block, which is the default
setting of our model, and “AR” represents fusion after the
residual block. These two structures are illustrated in Fig. 8.
It can be seen from Table VIII that the two fusion locations
have no obvious impact on the results. In particular, AR is
slightly inferior to BR. This is because the AR only has one
sparse convolution layer between two fusion operations, and
does not perform sufficient feature mapping and exchange to
better process the fused features.

e) Computational Requirements Analysis: Table IX
presents the floating-point operations per second (FLOPs),
parameter count, and inference speed of MSSF-PP, compared
with BEVFusion [38] and LXL [20]. Under the same hardware

TABLE IX
COMPUTATIONAL REQUIREMENTS

and input resolution, our method achieves higher inference
speed and comparable FLOPs while delivering significantly
better detection performance. Notably, the FLOPs of the BEV
pooling operation in BEVFusion are not included, despite its
non-negligible time cost, which reaches approximately 20ms
at our resolution. In contrast, our method does not involve
explicit view transformation but instead uses sampling, with
MSDFF requiring only about 2ms under the same conditions.

V. CONCLUSION

In this study, we proposed a simple but efficient 4D
radar and camera fusion network, namely MSSF, for 3D
object detection. Specifically, we designed two plug-and-play
fusion blocks to effectively utilize and fuse image features,
which alleviate the feature-blurring problem in image feature
sampling. Through the cascade of multiple fusion blocks,
the detection performance is further improved, especially in
terms of the localization accuracy of bounding boxes, which
is attributed to the deep interaction between voxel features
and image features. Moreover, we devised a semantic-guided
head to guide the network to explicitly perceive foreground
points, thereby further mitigating the feature-blurring problem
and enhancing performance. The effectiveness of our method
has been verified on the VoD and TJ4DRadset datasets,
significantly surpassing existing methods and achieving new
state-of-the-art performance. Notably, MSSF even outperforms
the classic LiDAR-based models.

Note that our MSSF provides a concise and effective
architecture based on the fusion of 4D radar and camera.
It can inspire subsequent work and remind upcoming efforts
to pay attention to the feature-blurring problem. Future work
may involve leveraging temporal information and the depth
information estimated from images for better matching radar
points and image pixels, thus eliminating feature blurring and
improving detection capabilities.
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