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One-Step Persymmetric GLRT for Subspace Signals
Jun Liu , Senior Member, IEEE, Siyu Sun, and Weijian Liu , Member, IEEE

Abstract—We exploit persymmetric structures to design a gen-
eralized likelihood ratio test for detecting subspace signals in
homogeneous Gaussian clutter with unknown covariance matrix.
The subspace model is employed to account for mismatches in the
target steering vector. An exact but finite-sum expression for the
probability of false alarm of the proposed detector is derived, which
is verified using Monte Carlo simulations. This expression is irrele-
vant to the clutter covariance matrix, indicating that the proposed
detector exhibits a constant false alarm rate property against the
clutter covariance matrix. Numerical examples show that the pro-
posed detector has strong robustness to the target steering vector
mismatch.

Index Terms—Adaptive detection, persymmetry, subspace sig-
nal, constant false alarm rate, generalized likelihood ratio test.

I. INTRODUCTION

MULTICHANNEL radar target detection in Gaussian clut-
ter has been a topic of long-standing interest [1]–[7].

As customary, one often imposes a standard assumption that
a set of training (secondary) data is available for the estima-
tion of clutter covariance matrix. In radar applications, training
data are collected from the vicinity of the cell under test. Kelly
did pioneering work in [8], where he designed a generalized
likelihood ratio test (GLRT) detector for the adaptive detection
problem. Importantly, the GLRT detector has a constant false
alarm rate (CFAR) property against the clutter covariance ma-
trix. Note that this GLRT detector was designed using the one-
step method. Specifically, all the unknown parameters were esti-
mated by using both the test and training data together. Another
way to design an adaptive detector is the two-step approach,
where a test statistic is obtained in the first step by assuming
the clutter covariance matrix is known, and then the maximum
likelihood (ML) estimate of the clutter covariance matrix based
on the training data is employed to take the place of the true
clutter covariance matrix in the test statistic obtained in the first
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step. Using such a two-step method, Robey et al. developed an
adaptive matched filter (AMF) detector [9] which is computa-
tionally more efficient than Kelly’s GLRT detector. In addition,
the AMF also exhibits the CFAR property with respect to the
clutter covariance matrix.

Note that the GLRT in [8] and AMF in [9] were designed
for the case of rank-one signal where the target steering vector
is assumed known up to a scalar. In practice, there may exist
a mismatch in the target steering vector due to beam-pointing
errors and multipath [10]. To account for the uncertainty in the
target steering vector, a subspace model is widely used in open
literature [11]–[19]. More specifically, in the subspace model
the target signal is expressed as the product of a known full-
column-rank matrix and an unknown column vector. It means
that the target signal lies in an known subspace spanned by the
columns of a matrix, but its exact location is unknown since the
coordinate vector is unknown. More detailed explanations about
the subspace model can be found in [11], [12], [14].

In [14], several matched subspace detectors were developed
in Gaussian clutter, where the clutter covariance matrix is as-
sumed known. The authors in [20] designed a one-step GLRT
detector for detecting subspace signals when the clutter covari-
ance matrix is unknown. For ease of reference, this detector
is called SGLRT detector hereafter. The SGLRT detector was
also applied to polarimetric target detection [21]. A two-step
GLRT detector for subspace signal, also referred to as subspace
adaptive matched filter (SAMF), was proposed in [22], [23].
The analytical performance of the SGLRT and SAMF detectors
was provided in [23]. An adaptive subspace detector (ASD) was
proposed in [15] where a scaling factor was introduced for ac-
counting for the power mismatch between the test and training
data. The ASD was adopted for detecting stochastic subspace
signals in [16] and [17]. In [18], [19], several adaptive detectors
were designed for detecting double subspace signals.

As pointed out in a rule of thumb [24], the number of ho-
mogeneous training data is required to be about twice the data
dimension to achieve satisfactory performance. In practice, this
requirement on the training data size may be prohibitive due
to outliers and variations in terrain types. Note that all the
work mentioned above does not exploit clutter covariance ma-
trix structures (except Hermitian). Actually, one can exploit a
priori knowledge about the clutter covariance matrix structure
to alleviate the requirement on the number of training data.

In practice, Hermitian persymmetric structure exists in
clutter covariance matrix, when a radar receiver employs a
symmetrically spaced linear array and/or symmetrically spaced
pulse trains [25]–[32]. Hermitian persymmetry indicates that
the clutter covariance matrix is Hermitian about its principal
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diagonal, and persymmetric about its cross diagonal. Hereafter,
“persymmetric” always means “Hermitian persymmetric” for
brevity. It was proven in [33] that the exploitation of persym-
metry is to double the number of training data, and hence brings
in obvious performance gains.

In [34], Cai and Wang exploited the persymmetry to design a
GLRT detectors for rank-one signals in multiband radar. For ease
of reference, this detector is referred to as Cai-Wang’s GLRT.
The two-step GLRT detector exploiting persymmetry was pro-
vided for detecting rank-one signals in [35], [36], whose perfor-
mance was analyzed in [37]. The existing work on persymmetric
adaptive detection mostly focuses on the rank-one signal case. To
the best of our knowledge, very limited work is conducted on the
subspace signal detection by exploiting persymmetry. In [38],
the authors proposed a tunable detector for detecting subspace
signals by employing persymmetry. Approximate expressions
for the probability of false alarm and detection probability were
obtained in an intuitive way. This tunable detector involves a
two-step persymmetric GLRT detector for subspace signals as a
special case [38, eq. (14)]. However, a one-step GLRT exploiting
persymmetry for subspace signal detection has not been derived
yet.

In this paper1, we exploit persymmetry to propose a one-step
GLRT for subspace signal detection in Gaussian clutter with
unknown covariance matrix. Remarkably, an exact yet simple
expression for the probability of false alarm of the proposed
detector is derived, which indicates the constant false alarm rate
(CFAR) against the clutter covariance matrix. The theoretical
expression is verified using the standard Monte Carlo (MC)
simulation. Numerical examples are provided to illustrate
that the proposed detector exhibits strong robustness to the
mismatches in the target steering vector, at the price of a
performance loss in the matched case. It is worth noting that the
steering vector is assumed known in [28], [37], [39], whereas
we take into consideration the steering vector uncertainties, and

1Notation: Vectors (matrices) are denoted by boldface lower (upper) case
letters. Superscripts (·)T , (·)∗ and (·)† denote transpose, complex conjugate
and complex conjugate transpose, respectively. Cm×n and Rm×n are com-
plex and real matrix spaces of dimension m× n, respectively. In stands for
an identity matrix of n× n, and 0m×n represents a null matrix of dimen-
sion m× n. For notational simplicity, we sometimes drop the explicit in-
dexes in In and 0m×n if no confusion exists. The notation ∼ means “be
distributed as”, CN (µc,Rc) denotes a circularly symmetric, complex-valued
Gaussian distribution with mean µc and covariance matrix Rc, N (µr,Rr)
represents a real-valued Gaussian distribution with mean µr and covariance
matrix Rr , Wn(m,R) denotes the n-dimensional real-valued Wishart dis-
tribution with m degrees of freedom and scale matrix R. The n×m ma-
trix C = [c1, c2, . . . , cm] ∼ N (0n×m,R⊗ Im) means that the column vec-
tors cj are independent identically distributed (IID) as cj ∼ N (0n×1,R) for
j = 1, 2, . . . ,m. ⊗ is the Kronecker product. | · | represents the modulus of
a scalar and the determinant of a matrix, when the argument is a scalar and
matrix, respectively. Re and Im represent the real and imaginary parts of a
complex quantity, respectively. Fn,m is a real central F -distribution with n

and m degrees of freedom. χ2
n denotes a real central Chi-squared distribution

with n degrees of freedom, while χ′2
n (ζ) denotes a real non-central Chi-squared

distribution with n degrees of freedom and a non-centrality parameter ζ. Γ(·)
is the Gamma function, and Cm

n = n!
m!(n−m)!

is the binomial coefficient. Cm

and Rm denote m-dimensional complex and real vector spaces, respectively.
�·� denotes the smallest integer greater than or equal to a given number. tr(·)
denotes the trace of a matrix, and j =

√−1.

adopt a subspace model to propose the one-step GLRT detector
with improved robustness in this study.

The remainder of this paper is organized as follows. In
Section II, the data model is introduced, and the problem of
interest is formulated. The one-step GLRT is proposed by ex-
ploiting persymmetry in Section III. In Section IV, a finite-sum
expression for the probability of false alarm is derived. Numer-
ical examples are provided in Section V, and we make conclu-
sions in Section VI.

II. PROBLEM FORMULATION

Assume that the data under test are collected from N (tempo-
ral, spatial, or spatial-temporal) channels. We examine the prob-
lem of detecting the presence of a point-like target. The echoes
from the range cell under test, called primary or test data, are
denoted by

x = Σa+ n, (1)

whereΣ ∈ CN×q is a known target subspace matrix2,a ∈ Cq×1

is an unknown complex coordinate vector accounting for the
target reflectivity and channel propagation effects, and n de-
notes clutter in the range cell under test. Suppose that the clut-
ter n has a circularly symmetric, complex Gaussian distribu-
tion with zero mean and covariance matrix Rp ∈ CN×N , i.e.,
n ∼ CN (0,Rp).

As customary, a set of secondary (training) data {yk}Kk=1 free
of the target echoes is assumed available, i.e.,

yk = nk ∼ CN (0,Rp), (2)

for k = 1, 2, . . . ,K. Suppose further that the clutter n and nks
for k = 1, 2, . . . ,K are independent and identically distributed
(IID). In radar applications, these training data are collected from
the cells adjacent to the cell under test.

Let the valid hypothesis (H1) and null hypothesis (H0) be
that the target echoes are present and absent in the test data,
respectively. The target detection problem at hand can be cast to
the following binary hypothesis test

H0 :

{
x ∼ CN (0,Rp),

yk ∼ CN (0,Rp), k = 1, 2, . . . ,K,
(3a)

H1 :

{
x ∼ CN (Σa,Rp),

yk ∼ CN (0,Rp), k = 1, 2, . . . ,K,
(3b)

where a and Rp are both unknown. In the open literature, sev-
eral adaptive detectors have been developed for the above de-
tection problem (3), such as the SGLRT [20], [21], [44], SAMF
[22], [23], and ASD [15], [17]. Note that these existing subspace
detectors do not take into consideration any covariance matrix
structures (except Hermitian).

In practice, the covariance matrix Rp has a persymmetric
structure, when the receiver uses a symmetrically spaced linear

2The subspace target model is widely used for improving the robustness to
signal mismatch [12], [15], [20], [40]. In practice, we can construct the subspace
matrix Σ by using the nominal steering vector and the ones close to the nominal
steering vector [10], [41]–[43], to take into account the uncertainty in the target
steering vector.
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array and/or symmetrically spaced pulse trains [25], [34]. When
Rp is persymmetric, it satisfies

Rp = JR∗
pJ, (4)

where

J =

⎡
⎢⎢⎢⎢⎢⎣

0 0 · · · 0 1
0 0 · · · 1 0
...

...
...

...
...

0 1 · · · 0 0
1 0 · · · 0 0

⎤
⎥⎥⎥⎥⎥⎦
N×N

. (5)

We assume that the target subspace matrix Σ is persymmetric,
which means that Σ = JΣ∗. Note that this persymmetric as-
sumption on Σ is exploited for the derivations of robust GLRT
detector.

It has to be pointed out that the persymmetric structures im-
posed onRp andΣmake the detection problem considered here
different from that in [20]. Moreover, under the persymmetric
assumption, the authors in [38] examined the detection problem
(3) by first transforming the received data with a unitary matrix
such that the persymmetric matrices Σ and Rp become real-
valued. Then, a tunable detector was proposed, which includes
two important adaptive detectors as special cases: the PAMF and
persymmetric ASD designed with the two-step method. Approx-
imate expressions for the probability of false alarm and detection
probability were obtained in an intuitive way. It has to be em-
phasized that no detector is designed in [38] according to the
one-step method.

In the following, we propose a one-step GLRT detector by
exploiting the persymmetry. Moreover, an exact but finite-sum
expression for the probability of false alarm is derive. For math-
ematical tractability, we assume that K ≥ �N

2 � in the detection
problem (3). This is a more interesting and also practically mo-
tivated case. This constraint is much less restrictive than the one
(i.e., K ≥ N ) required in [20], [17], [15].

III. ONE-STEP GLRT

In this section, we incorporate the persymmetry to design the
GLRT detector according to the one-step method, namely,

Λ1 =
max{a,Rp} f1(x,y1, . . . ,yK)

max{Rp} f0(x,y1, . . . ,yK)

H1

≷
H0

λ1, (6)

where λ1 is a detection threshold, f1(x,y1, . . . ,yK) and
f0(x,y1, . . . ,yK) denote the joint probability density functions
(PDFs) of the primary and secondary data under H1 and H0,
respectively. Due to the independence among the primary and
secondary data, f1(x,y1, . . . ,yK) can be written as

f1(x,y1, . . . ,yK) =

{
1

πN |Rp| exp
[−tr(R−1

p T1)
]}K+1

,

(7)

where

T1 =
1

K + 1

[
(x−Σa) (x−Σa)† + R̃p

]
(8)

with R̃p =
∑K

k=1 yky
†
k. In addition, f0(x,y1, . . . ,yK) can be

expressed by

f0(x,y1, . . . ,yK) =

{
1

πN |Rp| exp
[−tr(R−1

p T0)
]}K+1

,

(9)

where

T0 =
1

K + 1

(
xx† + R̃p

)
. (10)

Using the persymmetry structure in the covariance matrix Rp,
we have

tr(R−1
p Tj) = tr[J(R∗

p)
−1JTj ]

= tr[(R∗
p)

−1JTjJ]

= tr[R−1
p JT∗

jJ], j = 0, 1.

(11)

As a result, (7) can be rewritten as

f1(x,y1, . . . ,yK) =

{
1

πN |Rp| exp
[−tr(R−1

p T1p)
]}K+1

,

(12)

where

T1p =
1

2
(T1 + JT∗

1J) . (13)

As derived in Appendix A, we have

T1p =
1

K + 1

[
(Xp −ΣA) (Xp −ΣA)† + R̂p

]
, (14)

where

R̂p =
1

2

(
R̃p + JR̃∗

pJ
)
∈ CN×N , (15)

Xp = [xe,xo] ∈ CN×2, (16)

and

A = [ae,ao] ∈ Cq×2, (17)

with {
xe =

1
2 (x+ Jx∗) ∈ CN×1,

xo = 1
2 (x− Jx∗) ∈ CN×1,

(18)

and {
ae =

1
2 (a+ a∗) = Re(a),

ao = 1
2 (a− a∗) = jIm(a).

(19)

Similarly,

f0(x,y1, . . . ,yK) =

{
1

πN |Rp| exp
[−tr(R−1

p T0p)
]}K+1

,

(20)

where

T0p =
1

K + 1

(
XpX

†
p + R̂p

)
. (21)

It is easy to check that{
max{Rp} f1(x,y1, . . . ,yK) =

[
(eπ)N |T1p|

]−(K+1)
,

max{Rp} f0(x,y1, . . . ,yK) =
[
(eπ)N |T0p|

]−(K+1)
.

(22)

As a result, the GLRT in (6) can be equivalently written as

Λ2 =
|T0p|

min{A} |T1p|
H1

≷
H0

λ2, (23)
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where λ2 is a detection threshold. The minimization of |T1p|
with respect to A can be achieved at

Â =
(
Σ†R̂−1

p Σ
)−1

Σ†R̂−1
p Xp. (24)

Hence, we have

min
{A}

|T1p| = 1

(K + 1)N
|R̂p|

∣∣I2 +X†
pPpXp

∣∣ , (25)

where

Pp = R̂−1
p − R̂−1

p Σ
(
Σ†R̂−1

p Σ
)−1

Σ†R̂−1
p ∈ CN×N . (26)

It is obvious from (10) that

|T0p| = 1

(K + 1)N
|R̂p|

∣∣∣I2 +X†
pR̂

−1
p Xp

∣∣∣ . (27)

Substituting (25) and (27) into (23), we derive the one-step per-
symmetric GLRT detector as

Λ =

∣∣∣I2 +X†
pR̂

−1
p Xp

∣∣∣∣∣∣I2 +X†
pPpXp

∣∣∣
H1

≷
H0

λ, (28)

where λ is a detection threshold. This detector is referred to as
one-step persymmetric GLRT (PGLRT) detector.

IV. THRESHOLD SETTING

To complete the construction of the detection scheme in (28),
we should provide a way to set the detection threshold λ for a
given probability of false alarm. To this end, we derive a finite-
sum expression for the probability of false alarm in the follow-
ing. At the end of this section, we will provide some discussions
on the detection probability.

A. Transformation From Complex Domain to Real Domain

For convenience of statistical analysis, we first transform all
quantities in the original data from the complex-valued domain
to the real-valued domain. Let us start by defining a unitary
matrix as

D =
1

2
[(IN + J) + j (IN − J)] ∈ CN×N . (29)

Using (16), (18) and (29), we have

DXp = [xer, jxor], (30)

where

xer = Dxe =
1

2
[(IN + J)Re(x)− (IN − J)Im(x)] ∈ RN×1,

(31)

and

xor = −jDxo

=
1

2
[(IN − J)Re(x) + (IN + J)Im(x)] ∈ RN×1. (32)

It is worth noting that xer and xor are now real-valued column
vectors of dimension N .

We proceed by defining another unitary matrix as

V2 =

[
1 0
0 −j

]
∈ C2×2. (33)

Now we use the two unitary matrices D and V2 to transform
all complex-valued quantities in (28) to be real-valued ones.
Specifically, we define

M � DR̂pD
† = Re(R̂p) + JIm(R̂p) ∈ RN×N , (34)

Ω � DΣ = Re(Σ)− Im(Σ) ∈ RN×q, (35)

X � DXpV2 = [xer,xor] ∈ RN×2. (36)

Then, the proposed one-step PGLRT detector in (28) can be
recast to

Λ =

∣∣∣I2 +V2X
†M−1XV†

2

∣∣∣∣∣∣I2 +V2X†PXV†
2

∣∣∣
=

∣∣I2 +XTM−1X
∣∣

|I2 +XTPX|
H1

≷
H0

λ,

(37)

where

P � DPpD
†

= M−1 −M−1Ω
(
ΩTM−1Ω

)−1
ΩTM−1 ∈ RN×N .

(38)

It is worth pointing out that all quantities in (37) are real-valued.
Next, we will perform statistical analysis on the proposed one-
step PGLRT detector in the real-valued domain.

B. Statistical Characterizations

First, the statistical properties of M and X are provided. As
derived in Appendix B, we have{

M ∼ WN (2K,R),

X ∼ N (0,R⊗ I2),
(39)

where R is defined in (B.7).
1) Equivalent Form of XTPX: Now we turn to obtain an

equivalent form of XTPX. To this end, we define

E � Ω(ΩTΩ)−1/2 ∈ RN×q, (40)

and hence

ETE = Iq. (41)

Therefore, we can construct anN × (N − q)matrixF such that{
FTE = 0(N−q)×q,

FTF = IN−q.
(42)

Define

U � [E,F] ∈ RN×N . (43)

Obviously, U is an orthogonal matrix, i.e., UUT = UTU =
IN .

Define {
X1 � ETX ∈ Rq×2,

X2 � FTX ∈ R(N−q)×2,
(44)

and then we have [
X1

X2

]
= UTX, (45)
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and

X = EX1 + FX2. (46)

Using (38) and the definition of E in (40), we obtain{
PE = 0N×q,

ETP = 0q×N ,
(47)

and

P = M−1 −M−1E
(
ETM−1E

)−1
ETM−1. (48)

Employing (46) and (47), we have

XTPX = XT
2 F

TPFX2. (49)

In the following, we make an transformation for the term
FTPF. Write

UTMU =

[
M11 M12

M21 M22

]
, (50)

where M11 ∈ Rq×q, M12 ∈ Rq×(N−q), M21 ∈ R(N−q)×q, and
M22 ∈ R(N−q)×(N−q). We note that

UTM−1U = (UTMU)−1

�
[
M̄11 M̄12

M̄21 M̄22

]
,

(51)

where M̄11 ∈ Rq×q, M̄12 ∈ Rq×(N−q), M̄21 ∈ R(N−q)×q, and
M̄22 ∈ R(N−q)×(N−q). According to the matrix inversion
lemma [45, p. 99, Theorem 8.5.11], we obtain

M−1
22 = M̄22 − M̄21M̄

−1
11 M̄12. (52)

Using (43), we have

UTM−1U =

[
ETM−1E ETM−1F

FTM−1E FTM−1F

]
. (53)

Combining (51) and (53), we obtain[
M̄11 M̄12

M̄21 M̄22

]
=

[
ETM−1E ETM−1F

FTM−1E FTM−1F

]
. (54)

Using (48), we have

FTPF = FTM−1F− FTM−1E
(
ETM−1E

)−1
ETM−1F

= M̄22 − M̄21M̄
−1
11 M̄12

= M−1
22 , (55)

where the second and third lines are obtained from (54) and (52),
respectively. Substituting (55) into (49) results in

XTPX = XT
2 M

−1
22X2, (56)

which is only relative to the 2-components of the data.
2) Equivalent Form of XTM−1X: Now we turn our atten-

tion to XTM−1X, which can be written as

XTM−1X = (UTX)T (UTM−1U)UTX

=
[
XT

1 ,X
T
2

] [M̄11 M̄12

M̄21 M̄22

] [
X1

X2

]

= ZTM̄11Z+XT
2 M

−1
22X2,

(57)

where the second and third lines are obtained using (45) and [46,
p. 135, eq. (A1-9)], respectively, and

Z � X1 −M12M
−1
22X2 ∈ Rq×2. (58)

3) Statistical Distribution of Λ: Taking (56) and (57) into
(37) produces

Λ =
|Δ+ ZTM̄11Z|

|Δ|

= |I2 +GTM̄11G|
H1

≷
H0

λ,

(59)

where

Δ � I2 +XT
2 M

−1
22X2 ∈ R2×2, (60)

and

G � ZΔ−1/2 ∈ Rq×2. (61)

Now we can rewrite (59) as

Λ =
|M̄11 +GGT |

|M̄11|
H1

≷
H0

λ, (62)

where M̄11 andG are independent, and their distributions under
H0 are given by (see the detailed derivations in Appendix C){

M̄11 ∼ Wq(2K −N + q, R̄−1
11 ),

G ∼ N (0, R̄−1
11 ⊗ I2),

(63)

with R̄11 defined in (C.4). According to [47, p. 305, Lemma
8.4.2],Λ−1 underH0 has the central Wilks’ Lambda distribution,
written as

Λ−1 ∼ Uq,2,2K+q−N , (64)

where Un,m,j denotes the central Wilks’ Lambda distribu-
tion with n, m and j being the number of dimensions, the
hypothesis degrees of freedom, and the error degrees of freedom,
respectively.

C. Probability of False Alarm

According to [47, p. 311, Theorem 8.4.6], we have

1−
√
Λ−1

√
Λ−1

∼ q

2K −N + 1
F2q,2(2K−N+1). (65)

As a result,
√
Λ− 1 ∼ χ2

2q

χ2
2(2K−N+1)

. (66)

Now we can equivalently write (62) as

t

τ

H1

≷
H0

√
λ− 1, (67)

where t and τ are independent real-valued random variables.
Under H0, these two random variables are distributed as{

t ∼ 1
2χ

2
2q,

τ ∼ 1
2χ

2
2(2K−N+1).

(68)

Similar to the derivation of the probability of false alarm in [17],
we can obtain an analytical expression for the probability of false
alarm as

PFA =

q∑
j=1

Cq−j
2K+q−N−j

(√
λ− 1

)q−j

λ− 2K+q+1−N−j
2 . (69)

It can be seen that the proposed one-step PGLRT detector ex-
hibits the CFAR property against the clutter covariance matrix,
since (69) is independent of the clutter covariance matrix.
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As to the detection probability of the proposed one-step
PGLRT detector, we cannot obtain an analytical expression for
it. This is because that the test statistic Λ under H1 is subject to
a noncentral Wilks’ Lambda distribution whose complementary
cumulative distribution function is quite complicated [48], if not
intractable.

V. NUMERICAL EXAMPLES

In this section, numerical simulations are provided to verify
the above theoretical results. Assume that a pulsed Doppler radar
is used, which transmits symmetrically spaced pulse trains. The
number of pulses in a coherent processing interval is N = 8.
The (i, j)th element of the clutter covariance matrix is chosen
as [R]i,j = σ20.9|i−j|, where σ2 is the clutter power. The target
coordinate vector is a = σa[1, 1, . . . , 1]

T , where σ2
a is the target

power. The signal-to-clutter ratio (SCR) in decibel is defined by
SCR = 10 log10

σ2
a

σ2 . The target subspace matrix Σ is chosen to
be

Σ = [p(fd,1),p(fd,2), . . . ,p(fd,q)], (70)

where fd,i is the i-th normalized Doppler frequency, and for
i = 1, 2, . . . , q,

p(fd,i) =
1√
N

[
e−j2πfd,i

(N−1)
2 , . . . , e−j2πfd,i

1
2 ,

ej2πfd,i
1
2 , . . . , ej2πfd,i

(N−1)
2

]T
,

(71)

for even N , and

p(fd,i) =
1√
N

[
e−j2πfd,i

(N−1)
2 , . . . , e−j2πfd,i ,

1, ej2πfd,i , . . . , ej2πfd,i
(N−1)

2

]T
,

(72)

for odd N . For comparison purposes, the conventional PAMF
[38, eq. (14)], and Cai-Wang’s GLRT [34, eq. (13)] are consid-
ered. Note that all these conventional adaptive detectors bear the
CFAR property against the clutter covariance matrix.

In Fig. 1, the probability of false alarm as a function of the
threshold λ is presented for two cases: q = 2 and q = 3. For
q = 2, we select fd,1 = 0.07 and fd,2 = 0.1, while for q = 3,
we choosefd,1 = 0.07,fd,2 = 0.1 andfd,3 = 0.13. The symbols
denote MC results, while the lines denote the theoretical results
using (69). As shown, the theoretical results are consistent with
the MC ones.

In the following simulations, the normalized Doppler fre-
quency in the nominal target steering vector (denoted by pt)
is chosen to be 0.1, i.e., pt = p(0.1). As suggested in [43], we
combine the nominal steering vector and its adjacent ones to span
the signal subspace. Specifically, we select q = 3, fd,1 = 0.07,
fd,2 = 0.1 and fd,3 = 0.13. Note that the true nominal target
steering vector (denoted by p̃t) may not be aligned with the
nominal one. The mismatch between the nominal and true tar-
get steering vectors is defined as

cos2 φ =
|p†

tR
−1p̃t|2

(p†
tR

−1pt)(p̃
†
tR

−1p̃t)
. (73)

Fig. 1. Probability of false alarm versus threshold. The line denotes the results
computed with the finite-sum expression (69), and the symbol stands for the MC
result.

Fig. 2. Receiver operating characteristic curves for K = N = 8, q = 3, and
SCR = 15 dB. (a) The mismatched case: cos2 φ = 0.7436; (b) The matched
case: cos2 φ = 1.

In Fig. 2, we plot the receiver operating characteristic (ROC)
curves forN = K = 8 and SCR= 15 dB. Due to the lack of ana-
lytical expression for the detection probability, we resort to MC
techniques to simulate the detection probability. We consider
the matched case with cos2 φ = 1, and the mismatched case
with cos2 φ = 0.7436 (the corresponding normalized Doppler
frequency of the target is 0.14).
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Fig. 3. Detection probability versus SCR for K = N = 8, q = 3 and PFA =
10−3. (a) The mismatched case: cos2 φ = 0.7436; (b) The matched case:
cos2 φ = 1.

It can be observed in Fig. 2 that the proposed detector and the
PAMF perform much better than the Cai-Wang’s GLRT detec-
tor in the mismatched case. This is because a subspace model
is exploited to improve robustness. Nevertheless, the proposed
detector and the PAMF have worse performance than the Cai-
Wang’s GLRT detector in the matched case. Their performance
loss in the matched case can be explained as the cost to achieve
improved robustness in the mismatched case. Another interest-
ing phenomenon is observed: our proposed detector outperforms
the PAMF detector, only when the probability of false alarm is
low (e.g.,PFA ≤ 10−4). It means that our proposed detector does
not always outperform the PAMF. This is as expected. In fact, no
uniformly most powerful invariant test exists for the detection
problem considered [5].

Fig. 3 plots the detection probability versus the SCR for K =
N = 8. The probability of false alarm is selected to be 10−3.
We can observe that the proposed detector and the PAMF detec-
tor have strong robustness in the mismatched case, but perform
worse than Cai-Wang’s GLRT detector in the matched case. In
addition, the proposed detector outperforms the PAMF detector
in the region of low or moderate SCRs. When the SCR is high, the
PAMF has slightly better performance than the proposed detec-
tor. These phenomena are consistent with those in [22] and [9].

In Fig. 4, we depict the detection probability as a func-
tion of K, where SCR = 15 dB and the probability of false
alarm is 10−3. It can be seen that compared with Cai-Wang’s
GLRT detector, the proposed detector is more robust to the tar-
get steering vector mismatch, but has a performance loss in
the matched case. In addition, our proposed detector outper-
forms the PAMF detector, when the training data size is small or
moderate.

Fig. 4. Detection probability versus K for N = 8, q = 3, SCR = 15 dB and
PFA = 10−3. (a) The mismatched case: cos2 φ = 0.7436; (b) The matched
case: cos2 φ = 1.

VI. CONCLUSIONS

The subspace signal detection problem has been considered
in homogeneous Gaussian clutter with unknown covariance
matrix. By exploiting persymmetry, we proposed the one-step
PGLRT detector according to the one-step method. We derived
an exact expression for the probability of false alarm, which can
facilitate the threshold setting. It is indicated that the proposed
one-step PGLRT detector has the CFAR property with respect
to the clutter covariance matrix. Numerical examples show that
compared to Cai-Wang’s GLRT in [34], our proposed one-step
PGLRT detector is more robust to the target steering vector mis-
match, but suffers from performance loss in the matched case.
It is also shown in the simulations that our proposed detector
slightly outperforms the PAMF detector in some cases (e.g.,
low probability of false alarm, low SNRs, or low training data
size).

APPENDIX A
DERIVATIONS OF (14)

Define{
T̃1 = (x−Σa) (x−Σa)† + R̃p,

T̃1p = (Xp −ΣA) (Xp −ΣA)† + R̂p.
(A.1)

Then, (14) holds true if the following equation is valid:

T̃1p =
1

2

(
T̃1 + JT̃∗

1J
)
, (A.2)

which is derived as follows. Using (A.1), we have

T̃1 + JT̃∗
1J = R̃p + JR̃∗

pJ+H, (A.3)
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where

H = (x−Σa)(x−Σa)† + J(x−Σa)∗(x−Σa)TJ

= xx† + Jx∗xTJ− (
xa†Σ† + Jx∗aTΣTJ

)
− (

Σax† + JΣ∗a∗xTJ
)

+
(
Σaa†Σ† + JΣ∗a∗aTΣTJ

)
.

(A.4)

It is easy to check that{
2XpX

†
p = xx† + Jx∗xTJ,

2ΣAA†Σ† = Σaa†Σ† + JΣ∗a∗aTΣTJ,
(A.5)

and {
2XpA

†Σ† = xa†Σ† + Jx∗aTΣTJ,

2ΣAX†
p = Σax† + JΣ∗a∗xTJ,

(A.6)

where Σ† = ΣTJ is used. Taking (A.5) and (A.6) into (A.4)
produces

H = 2 (Xp −ΣA) (Xp −ΣA)† . (A.7)

Substituting (A.7) into (A.3), and using (A.1), we obtain (A.2).
That is to say, (14) holds true.

APPENDIX B
DERIVATIONS OF (39)

Define Ỹ=[ye1, . . . ,yeK ,yo1, . . . ,yoK ] ∈ CN×2K , where{
yek � 1

2 (yk + Jy∗
k) ,

yok � 1
2 (yk − Jy∗

k) .
(B.1)

Define Y � DỸV2K , where

V2K =

[
IK 0

0 −jIK

]
∈ C2K×2K . (B.2)

Then, we have

Y = [yer1, . . . ,yerK ,yor1, . . . ,yorK ] ∈ RN×2K , (B.3)

where

yerk � Dyek

=
1

2
[(IN + J)Re(yk)− (IN − J)Im(yk)] ∈ RN×1,

(B.4)

and

york � − jDyok

=
1

2
[(IN − J)Re(yk) + (IN + J)Im(yk)] ∈ RN×1,

(B.5)

for k = 1, 2, . . . ,K. Moreover,{
yerk ∼ N (0,R),

york ∼ N (0,R),
(B.6)

where k = 1, 2, . . . ,K, they are independent of each other, and

R =
1

2
DRpD

† =
1

2
[Re(Rp) + JIm(Rp)] ∈ RN×N . (B.7)

That is to say, Y ∼ N (0,R⊗ I2K). According to [34, eq.
(B11)], we have

M = YYT . (B.8)

Thus,

M ∼ WN (2K,R). (B.9)

Similar to (B.6), we have{
xer ∼ N (0,R),

xor ∼ N (0,R).
(B.10)

It follows from (36) and (B.10) that under H0,

X ∼ N (0,R⊗ I2). (B.11)

Until now we have derived the distributions of M and X as
shown in (B.9) and (B.11), respectively. In summary, (39) holds
true.

APPENDIX C
DERIVATIONS OF (63)

Here we aim to derive the distributions of G and M̄11. Let us
begin by writing

UTRU =

[
R11 R12

R21 R22

]
(C.1)

and

UTR−1U =

[
R̄11 R̄12

R̄21 R̄22

]
, (C.2)

where R11 ∈ Rq×q, R12 ∈ Rq×(N−q), R21 ∈ R(N−q)×q, R22

∈ R(N−q)×(N−q), R̄11 ∈ Rq×q, R̄12 ∈ Rq×(N−q), R̄21 ∈
R(N−q)×q, and R̄22 ∈ R(N−q)×(N−q). It is straightforward to
show that [

R11 R12

R21 R22

]−1

=

[
R̄11 R̄12

R̄21 R̄22

]
, (C.3)

and

R̄−1
11 = R11 −R12R

−1
22R21. (C.4)

According to [47, p. 262, Theorem 7.3.6], we have

M̄11 ∼ Wq(2K −N + q, R̄−1
11 ). (C.5)

Define {
Y1 � ETY ∈ Rq×2K ,

Y2 � FTY ∈ R(N−q)×2K ,
(C.6)

and we have [
Y1

Y2

]
= UTY. (C.7)

Then,

UTMU = UTYYTU =

[
Y1Y

T
1 Y1Y

T
2

Y2Y
T
1 Y2Y

T
2

]
, (C.8)

where we have used (B.8) and (C.7). Comparing (50) and (C.8),
we can obtain that

M12 = Y1Y
T
2 , (C.9)

and

M22 = Y2Y
T
2 . (C.10)

Substituting (C.9) into (58) leads to

Z = X1 −Y1Y
T
2 M

−1
22X2. (C.11)
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Due to (B.11), the PDF of X can be written as

f(X) =
1

(2π)N |R| exp
[
−1

2
tr
(
XTR−1X

)]
. (C.12)

According to [45, p. 188, Theorem 13.3.8], we have

|R| = |R22||R11 −R12R
−1
22R21|

= |R22||R̄−1
11 |.

(C.13)

It follows from (45) that

XTR−1X =
[
XT

1 ,X
T
2

]
UTR−1U

[
X1

X2

]

=
[
XT

1 ,X
T
2

] [ R̄11 R̄12

R̄21 R̄22

] [
X1

X2

]

= (X1 − X̄1)
T R̄11(X1 − X̄1) +XT

2 R
−1
22X2,

(C.14)

where the second and third equations are obtained using
(C.2) and [46, p. 135, eq. (A1-9)], respectively, and X̄1 =
R12R

−1
22X2. Substituting (C.13) and (C.14) into (C.12) yields

f(X) = f(X1|X2)f(X2), (C.15)

where

f(X1|X2) =
exp

{− 1
2 tr

[
R̄11(X1 − X̄1)(X1 − X̄1)

T
]}

(2π)q|R̄−1
11 |

,

(C.16)

and

f(X2) =
1

(2π)N−q|R22| exp
[
−1

2
tr
(
R−1

22X2X
T
2

)]
. (C.17)

We fix temporarily the 2-components of the data. It can be
seen from (C.16) that the PDF of X1 conditioned on X2 is

X1 ∼ N (X̄1, R̄
−1
11 ⊗ I2). (C.18)

That means that the covariance matrix of X1 conditioned on the
2-components is

Cov2(X1) = R̄−1
11 ⊗ I2, (C.19)

where R̄−1
11 is given in (C.4). Similarly, we can derive the co-

variance matrix of Y1 conditioned on the 2-components as

Cov2(Y1) = R̄−1
11 ⊗ I2K . (C.20)

From (C.11), we can obtain the covariance matrix of Z condi-
tioned on the 2-components as

Cov2(Z) = Cov2(X1) + Cov2(Y1)Y
T
2 M

−1
22X2

= R̄−1
11 ⊗ I2 + R̄−1

11 ⊗ (XT
2 M

−1
22Y2Y

T
2 M

−1
22X2)

= R̄−1
11 ⊗ I2 + R̄−1

11 ⊗ (XT
2 M

−1
22X2)

= R̄−1
11 ⊗Δ,

(C.21)

where the third and last lines are obtained using (C.10) and (60),
respectively. Using (61) and (C.21), we can obtain that under
H0,

G ∼ N (0, R̄−1
11 ⊗ I2). (C.22)

Combining (C.5) and (C.22) achieves (63).
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