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Spatial Invariant Tensor Self-Representation Model
for Hyperspectral Anomaly Detection
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Abstract—With the development of hyperspectral imaging
technology, the hyperspectral anomaly has attracted consider-
able attention due to its significant role in many applications.
Hyperspectral images (HSIs) with two spatial dimensions and one
spectral dimension are intrinsically three-order tensors. However,
most of the existing anomaly detectors were designed after con-
verting the 3-D HSI data into a matrix, which destroys the
multidimension structure. To solve this problem, in this arti-
cle, we propose a spatial invariant tensor self-representation
(SITSR) hyperspectral anomaly detection algorithm, which is
derived based on the tensor–tensor product (t-product) to pre-
serve the multidimension structure and achieve a comprehensive
description of the global correlation of HSIs. Specifically, we
exploit the t-product to integrate spectral information and spa-
tial information, and the background image of each band is
represented as the sum of the t-product of all bands and
their corresponding coefficients. Considering the directionality
of the t-product, we utilize two tensor self-representation meth-
ods with different spatial modes to obtain a more balanced
and informative model. To depict the global correlation of the
background, we merge the unfolding matrices of two represen-
tative coefficients and constrain them to lie in a low-dimensional
subspace. Moreover, the group sparsity of anomaly is character-
ized by l2.1.1 norm regularization to promote the separation of
background and anomaly. Extensive experiments conducted on
several real HSI datasets demonstrate the superiority of SITSR
compared with state-of-the-art anomaly detectors.

Index Terms—Anomaly detection, group sparsity, hyperspec-
tral images (HSIs), tensor, tensor self-representation model.

I. INTRODUCTION

W ITH THE development of hyperspectral imaging tech-
nology, hyperspectral images (HSIs) consist of more

and more contiguous and narrow bands, which provide
abundant spectral information of materials. Compared with

Manuscript received 5 July 2022; revised 29 September 2022 and
6 November 2022; accepted 25 December 2022. Date of publication
18 January 2023; date of current version 17 April 2024. This work
was supported in part by the National Natural Science Foundation of
China under Grant 61871469 and Grant 61922013; in part by the Youth
Innovation Promotion Association CAS under Grant CX2100060053; and
in part by the Anhui Provincial Natural Science Foundation under Grant
2208085J17. This article was recommended by Associate Editor P. P. Angelov.
(Corresponding author: Jun Liu.)

Siyu Sun and Jun Liu are with the Department of Electronic Engineering
and Information Science, University of Science and Technology of China,
Hefei 230027, China (e-mail: sunsiyu@mail.ustc.edu.cn; junliu@ustc.edu.cn).

Wei Li is with the School of Information and Electronics, Beijing Institute
of Technology, Beijing 100081, China (e-mail: liwei089@ieee.org).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TCYB.2022.3233108.

Digital Object Identifier 10.1109/TCYB.2022.3233108

other optical images, such as panchromatic and multispec-
tral images, HSIs convey more precise spectral character-
istics of land covers due to their wider spectral range
and higher-spectral resolution, which bring great conve-
nience to distinguish ground objects. This superiority makes
the study of HSI become a topic, such as hyperspec-
tral classification [1], [2], [3] and hyperspectral target detec-
tion [4], [5], [6], [7]. Target detection aims to identify pixels
or subpixels with specific spectral signatures from input
images. Usually, target detection is performed in a super-
vised manner, which means target and background information
can be learned in advance from some available training sam-
ples. However, when there is no prior knowledge about target
spectra, the target detection needs to be performed in an unsu-
pervised manner, that is, anomaly detection. In recent years,
hyperspectral anomaly detection has attracted considerable
interest due to its significance in many applications, such as
mineral exploration, military surveillance, and environmental
surveillance [8], [9].

Anomalies in an HSI are referred to as pixels or subpix-
els whose spectral signatures and spatial features are different
from their surroundings. In the past decades, a variety of meth-
ods have been established to achieve anomaly detection. One
of the most famous detectors is the Reed–Xiaoli (RX) detec-
tor [10], which is considered as the milestone of anomaly
detection. Based on the assumption that the background in
an HSI obeys a multivariate Gaussian distribution, two ver-
sions of the RX detector were proposed, i.e., global RX (GRX)
and local RX (LRX). For the GRX detector, all the pixels in
an input image are used to estimate the mean and covari-
ance of background distribution, and then the anomaly score
is obtained by calculating the Mahalanobis distance between
each test pixel and the background. Different from the GRX
detector, a sliding dual window strategy is exploited in LRX to
estimate the statistics of the background around the test pixel.
In practice, the complicated background of a real scene cannot
be described only by a multivariate Gaussian distribution. As
a result, a lot of modified RX detectors have been developed,
such as weighted-RX [11] and kernel-RX [12].

Recently, low-rank and sparsity-matrix decomposition
(LRaSMD) has been successfully brought into hyperspectral
due to its capability to formulate and separate latent data
components. Li and Du [13] proposed an anomaly detec-
tion algorithm based on robust principal component analysis
(RPCA) [14], where the background and anomaly are mod-
eled by a low-rank matrix and a sparse matrix, respectively.
Then, the sparse matrix was used to detect anomalies based
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on the RX detector. Li et al. [15] proposed the prior-based
tensor approximation (PTA) for hyperspectral anomaly detec-
tion, where the total variation norm (TV) is exploited to
preserve the piecewise smoothness of the background. With
consideration of the dense noise in HSIs, a more adaptive
LRaSMD algorithm named go decomposition (GoDec) was
proposed in [16] and introduced in hyperspectral anomaly
detection [17], [18], [19]. To better describe the complicated
anomaly and noise, a mixture noise model is incorporated into
LRaSMD [20]. Considering that the HSI consists of types
of background materials, the low-rank representation (LRR)
model has been widely exploited in hyperspectral anomaly
detection to model its multiple subspace structure [21], [22],
[23], [24], [25], [26], [27]. The representation-based detec-
tors are derived under the assumption that the background
can be linearly represented among a candidate, while anomaly
cannot. Xu et al. [21] combined low-rank and sparse represen-
tation (LRASR) for hyperspectral anomaly detection. In [22],
an anomaly detection method based on graph and TV regu-
larized LRR (GTVLRR) was proposed. In [23] and [24], the
low-rank representative matrices were input into plug-and-play
denoisers to fully exploit their spatial information.

The hyperspectral data with a spectral dimension and
two spatial dimensions are intrinsically a three-order tensor.
However, the above methods are derived after converting the
cubic into a matrix, which destroys the information integrity
and leads to a decay of the detection performance. To tackle
this problem, different tensor decomposition methods have
been proposed, such as tensor train decomposition [28],
Tucker decomposition [29], and CANDECOMP/PARAFAC
(CP) decomposition [30], [31], which have been successfully
applied in super-resolution [32], denoising [33], complete [34],
and so on. For the CP decomposition, the calculation of CP
rank is NP-hard. The Tucker decomposition and CP decom-
position have also been used in anomaly detection [35], [36],
[37], [38], [39]. In [35] and [36], the major component in the
sense of Tucker decomposition was eliminated, and the minor
component was utilized to detect the anomaly. In [37], the
background was suppressed by minimizing the Tucker-based
nuclear norm. In [38], the CP decomposition is implemented
on a set of subtensors divided from the original HSI, and the
anomaly was extracted from the residual between the origi-
nal tensor and the reconstructed tensor. Recently, the tensor
singular value decomposition (t-SVD) model [40] based on
the tensor–tensor product (t-product) has become popular. The
t-SVD can be regarded as a generalization of matrix singular
value decomposition and allows for taking full advantage of
global information of HSIs. Based on the t-SVD, Lu et al.
defined a new tensor nuclear norm (tnn) induced by t-product
and extended RPCA to tensor RPCA (TRPCA) to recover a
low-tubal-rank tensor and a sparse tensor from their sum. By
virtue of the TRPCA, Xu et al. proposed a new framework,
where hyperspectral compressive sensing and anomaly were
implemented simultaneously. Besides, the tensor-based repre-
sentation has been investigated in several works [41], [42],
[43], [44]. In [41], [42], and [43], the tensor self-representation
model was exploited to obtain a robust depiction of the global
correlation of multidimensional data. Compared to the TPCA,

the tensor-based representation model is more robust and can
be utilized to recover the data drawn from a union of multiple
tensor subspaces [44].

In this article, to take full use of the spatial information
and spectral information of HSI, we propose a spatial invari-
ant tensor self-representation (SITSR) model for hyperspectral
anomaly detection. The HSI is treated as a three-order tensor
with a spectral dimension and two spatial dimensions, and each
frontal slice represents an image of a band. We first twist each
frontal slice into a lateral slice, and then the background image
of each band is represented as the sum of the t-product of all
bands and their corresponding representative coefficient inte-
grating spectral information and spatial information of a spatial
mode. However, the HSI contains two spatial modes, and dif-
ferent twists may lead to different results due to the different
spatial information included into the representative coefficient.
As a result, two different representative tensors obtained under
different twists of the HSI are exploited to achieve a more
balanced and informative description of the spatial correla-
tion, which indicates the self-representation model includes
different spatial modes and then is spatial invariant. Each lat-
eral slice of the representative tensor is considered as another
representation of the corresponding background image with
the integration of spectral information and spatial information.
Then, the obtained two different representative tensors are
connected under the assumption that their merged unfolding
matrix lies in a low-dimensional subspace. To facilitate the
separation of anomaly and background, we exploit the l2.1.1
norm regularization to characterize the group sparsity of the
anomaly.

The main contributions of this work can be summarized as
follows.

1) Based on the t-product, the proposed method is imple-
mented directly on the raw tensorial data, which pre-
serves the multiway structure of the HSI. With the aid of
the tensor self-representation model, SITSR effectively
integrates spectral information and spatial information
and takes full advantage of the global correlation.

2) We simultaneously utilize two self-representation meth-
ods with different spatial modes to build a more
balanced and informative model. The background is
suppressed well with the comprehensive utilization of
spatial information. Extensive experiments conducted
on several datasets indicate the superiority of SITSR
compared with several state-of-the-art detectors.

The remainder of this article is organized as follows. The
related work and some notations are introduced in Section II.
The proposed SITSR model, including optimization procedure,
is presented in Section III. The experimental results and dis-
cussions are provided in Section IV. Finally, we conclude this
article in Section V.

II. RELATED WORK AND PRELIMINARIES

A. Tensor Self-Representation Model

Considering a data matrix X ∈ R
n1×n2 , each column of

which is sampled from a union of multiple signal subspaces.
The LRR model aims to find the lowest-rank representation
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of X based on a given dictionary and segment each sample
into its corresponding subspace [45]. Specifically, the matrix
X can be written as X = DZ+E, where D is a dictionary, Z is
a coefficient matrix, and E is an error term designed for noise
or outliers. And then, the LRR was established by solving the
minimization problem as follows:

min ‖Z‖∗ + λ‖E‖l

s.t. X = DZ + E (1)

where λ is the tradeoff to balance the low-rank term and the
error term, and ‖·‖l is certain matrix norm, such as l1 norm to
characterize sparse noise or l2,1 norm to characterize sample-
specific corruptions. To obtain the lowest-rank representation
of the sample matrix, the dictionary matrix D should contain
the bases of all signal subspaces. A simple way is to select
the data matrix X itself as a dictionary, which is also named
self-representation model. Then, the objective function can be
written as

min ‖Z‖∗ + λ‖E‖l

s.t. X = XZ + E. (2)

However, this matrix-based representation is only suited
for two-way data. For multiway data, such as HSI, one has
to unfold the tensorial data into the matrix, which destroys
the multiway structure. In order to tackle this problem, the
tensor-based representation model has been used in several
works [41], [42], [43], [44]. For the observed multidimensional
data denoted by a tensor X ∈ R

n1×n2×n3 , it can be expressed
as X = X ∗ Z + E , where Z is a coefficient tensor, and
E is an error term. For different types of contamination, Z
and E can be derived by solving different problems. When
E is considered as a sparse term, the problem can be written
as [44]

min ‖Z‖tnn + λ‖E‖1

s.t. X = X ∗ Z + E (3)

where ‖·‖tnn denotes the tnn used to characterize the low-
average rank of the representative tensor Z [46]. For dense
noise, Z can be obtained by optimizing [41], [42], [43]

min ‖X − X ∗ Z‖2
F + R(Z) (4)

where R(Z) is used to constraint Z .
In this article, we exploit the tensor self-representation

model for hyperspectral anomaly detection, but with a differ-
ent optimization problem. We consider both sparse and dense
terms in the proposed model, and the sparse term is regarded
as the anomaly.

B. Tensor Notations

Some notations used in this article are listed in Table I.
The mode-i unfolding matrix of X ∈ R

n1×n2×n3 is denoted as

X(i) ∈ R
ni×∏3

k=1,k �=i nk with X(i)(li, j) = X (l1, l2, l3), where
j = 1 + ∑3

k=1,k �=i(lk − 1)Jk with Jk = ∏k−1
m=1,m�=i lm. The

mode-i fold tensor of X(i) ∈ R
ni×∏3

k=1,k �=i nk is X ∈ R
n1×n2×n3 .

For an N-order tensor X ∈ R
n1×n2...×nN , the k-mode prod-

uct of X with a matrix A ∈ R
J×nk can be calculated by

TABLE I
SOME NOTATIONS

(a) (b) (c)

Fig. 1. One frontal slice of X and its two different twists. (a) Frontal slice
of X . (b) Lateral slice of P1(X ). (c) Lateral slice of P2(X ).

(X ×k A)i1,...,ik−1,j,ik+1,iN = ∑nk
ik=1 xi1,i2,...,iN aj,ik . We use X̄

to denote the tensor obtained by taking the fast Fourier
transform along the third dimension of X ∈ R

n1×n2×n3 ,
i.e., X̄ = fft(X , [], 3), and the inverse operation is X =
ifft(X̄ , [], 3), where fft and ifft are MATLAB commands.
Besides, we define two twist manipulations, i.e., P1 and P2,
which twist a tensor X ∈ R

n1×n2×n3 into P1(X ) ∈ R
n1×n3×n2

and P2(X ) ∈ R
n2×n3×n1 , respectively. As we can see in

Fig. 1, Fig. 1(a) is the one frontal slice of X . Fig. 1(b) and
(c) are the corresponding lateral slices of P1(X ) and P2(X ),
respectively.

The block circulant matrix bcirc(X ) is defined as

bcirc(X ) =

⎡

⎢
⎢
⎢
⎣

X 1 X n3 · · · X 2

X 2 X 1 · · · X 3

...
...

. . .
...

X n3 X n3−1 · · · X 1.

⎤

⎥
⎥
⎥
⎦

. (5)

The block vectorizing operator unfold(X ) is defined as

unfold(X ) =

⎡

⎢
⎢
⎢
⎣

X 1

X 2

...

X n3

⎤

⎥
⎥
⎥
⎦

(6)

and its inverse operator is fold(unfold(X )) = X .
Definition 1 (t-product [40]): Given two three-order ten-

sors, X ∈ R
n1×n2×n3 and Y ∈ R

n2×n4×n3 , the t-product of
X and Y is a three-order tensor Z ∈ R

n1×n4×n3 , which is
calculated by

Z = X ∗ Y = fold(bcirc(X ) · unfold(Y)). (7)
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III. PROPOSED ANOMALY DETECTION ALGORITHM

A. Problem Formulation

We denote an HSI with spatial size w × h and spectral size
b by a tensor Y ∈ R

w×h×b. The observed tensor Y can be
written as

Y = X + A + N (8)

where X ∈ R
w×h×b is the background tensor, A ∈ R

w×h×b is
the anomaly tensor, and N ∈ R

w×h×b is the Gaussian noise.
In this article, we aim to distinguish the anomaly component
A and background component X from the given HSI data
Y with the contamination of the Gaussian noise N . This is
challenging due to a lack of prior information on background
pixels and anomaly pixels.

Fortunately, there are many different potential characteris-
tics between anomaly and background, which provide conve-
nience for anomaly detection. First, abnormal pixels occupy
only a small part of all pixels and have different spectral
curves and spatial features with background pixels. Second,
for the background pixels in an HSI, a large number of con-
tinuous bands lead to a strong spectral correlation. Besides,
just like most natural images, each band can be regarded as a
gray image and then possesses a strong spatial correlation. For
the sake of fully characterizing the inherent global correlation
of the HSI data, we exploit the tensor-based representation
model to formulate the background tensor with the aid of the
t-product, i.e.,

X1 = Y1 ∗ Z1 (9)

where X1 = P1(X ) ∈ R
w×b×h, Y1 = P1(Y) ∈ R

w×b×h, and
Z1 ∈ R

b×b×h is the representative tensor. According to (9),
we have

X1(:, j, :) = Y1 ∗ Z(:, j, :) =
b∑

i=1

Y1(:, i, :) ∗ Z(i, j, :) (10)

where Z(i, j, :) ∈ R
1×1×h is the (i, j)th tube of the tensor Z .

As we can see, each lateral slice X1(:, j, :) ∈ R
w×1×h, which

represents the background image of band j, is expressed as the
sum of the t-product of all lateral slices of Y1 and the cor-
responding representative tubes. This representation integrates
the spatial information and spectral information into the repre-
sentative coefficient. Define A1 = P1(A) ∈ R

w×b×h and N1 =
P1(N ) ∈ R

w×b×h, we obtain the tensor self-representation
model as follows:

Y1 = Y1 ∗ Z1 + A1 + N1. (11)

Compare to matrix-based representation, the tensor-based
representation gets rid of vectoring each band of three-order
HSI, and then better describes the correlation existing in dif-
ferent modes. Therefore, the representative tensor Z1 is more
informative. Similar to the background dictionary X in (2),
the original tensor data Y1 can be regarded as a tensorial
dictionary [44]. Although Y1 contains anomalous pixels, its
proportion is very small. The impact of anomalous pixels can
be ignored in the process of reconstructing the background
tensor with appropriate regularization imposed on Z1. With

Fig. 2. Tensor singular values of the reconstructed background of the
HYDICE and TIR datasets. (a) HYDICE. (b) TIR.

the tensor-self representation, each lateral slice Z1(:, j, :) can
be regarded as another representation of X1(:, j, :), which is
actually the twisted j-band background image. Therefore, the
lateral slices of Z1 have a strong correlation. To depict this
correlation, we assume that the mode-2 unfolding matrix Z1(2)

of Z1 lies in a low-dimensional subspace, i.e., Z1(2) = FC1,
where F ∈ R

b×r is an r-dimensional subspace and C1 ∈ R
r×bh

is a representative matrix. To obtain the representative ten-
sor Z1 and anomaly tensor A, we can optimize the following
problem:

min
1

2
‖Y1 − Y1 ∗ Z1 − A1‖2

F

+λ

2
‖Z1(2) − FC1‖2

F + β‖A‖2.1.1

s.t. FTF = Ir (12)

where λ and β are two regularization parameters, and ‖A‖2.1.1
is designed to account for the group sparsity of anomalous
pixels.

The constraint on Z1 is different from the most existing
tensor-based representation models, which exploits the tnn
to characterize the low-average rank of Z1 [43], [44]. Our
approach is mainly based on three considerations.

1) Benefiting from the calculation of the t-product, each
lateral slice of the representative tensor Z1 has inte-
grated spatial information and spectral information. As a
result, even though we only exploit the low-rank prop-
erty of mode-2 unfolding of the representative tensor
Z1, we have characterized the global correlation of the
background tensor. We plot the tensor singular values of
the reconstructed background of the HYDICE and TIR
datasets in Fig. 2. As we can see, most tensor singu-
lar values are very close to zero, which indicates that
the spatial–spectral correlation of the HSI background
is well formulated.

2) The average rank of Z1 is smaller than the rank of Z1(2).
That is to say, the low-rank constraint on Z1(2) is a
stronger condition, and the representative tensor satisfies
this more stringent restriction.

3) This representation is convenient for us to illustrate the
connection between different representative tensors cor-
responding to different spatial modes, which will be
introduced in the next section.

B. Spatial Invariant Representation

In the tensor-based representation (9), we first turn Y ∈
R

w×h×b into Y1 ∈ R
w×b×h, and then utilize t-product to
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integrate the spatial information along the third dimension of
Y1 and spectral information to represent the background ten-
sor. However, for an HSI Y , it has two spatial dimensions.
Correspondingly, there are two different ways to twist Y , i.e.,
Y1 = P1(Y) ∈ R

w×b×h and Y2 = P2(Y) ∈ R
h×b×w. Based

on Y1 and Y2, we have two different representations, which
can be written as

{
Y1 = Y1 ∗ Z1 + A1 + N1

Y2 = Y2 ∗ Z2 + A2 + N2
(13)

where A2 = P2(A) and N2 = P2(N ). When we only use
one of these two representations for anomaly detection, such
as problem (12), there are some drawbacks leading to a degen-
eration of detection performance. First, a single representation
cannot make full use of the spatial information of HSI. The
third dimensions of Y1 and Y2 are actually the second and first
dimensions of Y , respectively. That is to say, a single repre-
sentation only exploits the spatial information of one direction.
Second, the representation is spatial imbalance. The result
based on these two different representations will be differ-
ent due to the directional calculation of the t-product, which
is not intuitive.

To take full advantage of the spatial information of the
background, we develop a new model which exploits both
representations in (13). Then, we can obtain two different rep-
resentative tensors, i.e., Z1 ∈ R

b×b×h and Z2 ∈ R
b×b×w. As

we discussed earlier, the lateral slices of Z1 and Z2 are dif-
ferent representations of the corresponding frontal slice of X .
To describe the relation of the two representative tensors and
exploit the correlation, we merge the mode-2 unfolding matri-
ces of Z1 and Z2 into a matrix Z and constrain it to lie in a
low-dimensional subspace. Specifically, for Z = [Z1(2), Z2(2)],
where Z2(2) is the mode-2 unfolding matrix of Z2, we have
Z = FC = F[C1, C2] with C = [C1, C2] ∈ R

r×(bh+bw),
where C2 ∈ R

r×bw is a coefficient matrix of Z2(2). As a
result, we propose a more intuitive and informative model
as follows:

min
2∑

i=1

1

2
‖Yi − Yi ∗ Zi − Ai‖2

F

+λ

2
‖Z − FC‖2

F + β‖A‖2.1.1

s.t. FTF = Ir (14)

where the second term is exploited to depict the spectral corre-
lation and spatial correlation of the background, and the third
term is utilized to formulate the sparse anomaly pixels in the
HSI. Compared to the conventional matrix-based models, the
proposed model (14) is implemented directly on the raw tenso-
rial data, which preserves the structural integrity of the HSI.
Besides, we consider two spatial modes in the tensor self-
representation, which can take full advantage of the spatial
correlation. It is noted that A, A1, and A2 are different twists
of the same variable, but Z1 and Z2 are two different vari-
ables. Next, we introduce an alternating minimization method
to solve the problem (14).

C. Optimization

We exploit an alternating minimization algorithm to
optimize problem (14). In each step, we update one variable
with the others fixed. The iteration procedure is as follows.

1) Zi (i = 1, 2) Subproblems: The objective function can
be written as

min
Zi

1

2
‖Yi − Yi ∗ Zi − Ai‖2

F + λ

2
‖Zi(2) − FCi‖2

F. (15)

To solve the above problem, we first exploit a mode-2
fold operation to transfer the matrix Ci into a tensor Ci

(C1 ∈ R
b×r×h and C2 ∈ R

b×r×w). Define Bi = Ci ×2 F,
‖Zi(2)−FCi‖2

F can be rewritten as ‖Zi −Bi‖2
F . Then, we

transform (15) into the Fourier domain, for each frontal
slice, we have

min
Z̄v

i

1

2

∥
∥Ȳv

i − Ȳv
i Z̄v

i − Āv
i

∥
∥2

F + λ

2

∥
∥Z̄v

i − B̄v
i

∥
∥2

F. (16)

Taking the derivative of (16) with respect to Z̄v
i and

setting it to zero, we have

− (Ȳv
i

)†Ȳv
i + (Ȳv

i

)†Ȳv
i Z̄v

i + (Ȳv
i

)†Āv
i + λ

(Z̄v
i − B̄v

i

) = 0.

(17)

Then, we have

Z̄v
i =

[
λI + (Ȳv

i

)†Ȳv
i

]−1

×
[
λB̄v

i + (Ȳv
i

)†Ȳv
i − (Ȳv

i

)†Āv
i

]
. (18)

After getting all frontal slices of Z̄i, Zi can be calculated
by Zi = ifft(Z̄i, [], 3).

2) Ci (i = 1, 2) and F Subproblems: The objective function
can be written as

min ‖Z − FC‖2
F

s.t. FTF = Ir. (19)

Problem (19) can be efficiently solved by iteration as
in [47] and [48]. In this work, we exploit a different
method and directly obtain the optimal solution of (19)
by the SVD.
Proposition 1: Define

{J1 = minFT F=Ir,C ‖Z − FC‖2
F

J2 = minrank(E)=r ‖Z − E‖2
F

(20)

then, we have J1 = J2.
Proof: On the one hand, for the optimal (F∗, C∗), we
can easily find an E = F∗C∗ with rank(E) = r, which
indicates J2 ≤ J1. On the other hand, the singular
value decomposition of Z can be written as Z = USVT .
According to the Eckart–Young Theorem [49], we have
the optimal E∗ = U(:, 1:r)S(1 : r, 1 : r)V(:, 1 : r)T .
Then, we can find an F = U(:, 1 : r) and a C =
S(1 : r, 1 : r)V(:, 1 : r)T , and, thus, we have J1 ≤ J2.
Overall, we have J1 = J2. Then, we know that
(F = U(:, 1:r), C = S(1 : r, 1 : r)V(:, 1 : r)T) is one of
the optimal solutions of (19).
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Algorithm 1: Optimization Procedure for SITSR
Input: data tensor Y , tradeoff parameters β, λ, rank r.
Initialize: set the variables A, Z1, and Z2 as zero
tensors, k = 1, kmax = 100, ε0 = 10−6.
While (ε < ε0 or k ≤ kmax ) do

1) Update Z1 and Z2 by Eq. (15);
2) Update C1, C2, and F by Eq. (21);
3) Update A by Eq. (24);
4) Calculate ε by Eq. (26);
5) k = k + 1.

End while
Output: obtain detection map with (27).

Finally, we have
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

F = U(:, 1 : r)

C = S(1 : r, 1 : r)V(:, 1 : r)T

C1 = C(:, 1 : bh)

C2 = C(:, bh + 1 : bh + bw).

(21)

3) A Subproblem: The objective function can be written as

min
2∑

i=1

1

2

(
‖Yi − Yi ∗ Zi − Ai‖2

F

)
+ β‖A‖2.1.1. (22)

Define

Ã = 1

2
P−1

1 (Y1 − Y1 ∗ Z1) + 1

2
P−1

2 (Y2 − Y2 ∗ Z2)

(23)

where P−1
1 and P−1

2 are the inverse operators of P1 and
P2, respectively, then, we have

A(i, j, :) = soft2.1

(

Ã(i, j, :),
β

2

)

(24)

where

soft2.1(x, a) = max

(

1 − a

‖x‖2
, 0

)

· x. (25)

The iteration terminates when the number of iterations k
reaches a preselected kmax or the residual ε of Zi is smaller
than a preassigned value ε0. For clarity, we abuse the meaning
of superscript here and write Zi in k-iteration as Zk

i . And then,
ε can be calculated by

ε =
√∥

∥
∥Zk+1

1 − Zk
1

∥
∥
∥

F
+

√∥
∥
∥Zk+1

2 − Zk
2

∥
∥
∥

F
. (26)

Finally, the anomaly detection map R can be obtained by

R(i, j) = ‖A(i, j, :)‖2. (27)

And a pixel is considered as an anomaly pixel if its detec-
tion value R(i, j) > ξ , where ξ is a detection threshold.
The pseudocode for the proposed method is summarized in
Algorithm 1.

D. Computational Complexity Analysis

The computational complexity of Algorithm 1 includes the
following.

1) The complexity of computing the DFT and inverse
DFT of tensors with size b × b × h in updating Z1 is
O(b2h log h), and the complexity of computing Zv

1, (v =
1, . . . , h) is O(h(b3 + b2w)). Then, the cost of updating
Z1 is O(b2h log h + b2wh + b3h). Similarly, the cost of
updating Z2 is O(b2w log w + b2wh + b3w).

2) The computational cost of updating Ci and F mainly
comes from the singular value decomposition of Z,
which is O(b3(h + w)).

3) Updating A needs computing the t-product of tensors,
and its complexity is O(b2wh + bwh log h + b2h log h +
bwh log w + b2w log w).

4) Overall, the computational complexity of Algorithm 1
is O(k(b3h + b3w + b2wh + b2h log h + b2w log w +
bwh log h + bwh log w)).

IV. EXPERIMENTAL RESULTS

In this section, we exploit the four real hyperspectral data to
evaluate the performance of the proposed SITSR. Before we
input the data into the optimization procedure, we normalize
the data band by band. Details of these real data are given
below.

A. Dataset Description

The first dataset captures an urban area by the hyperspec-
tral digital imagery collection experiment (HYDICE) airborne
sensor [26], whose spatial resolution is about 1.56 m and spec-
tral wavelengths range from 400 to 2500 nm. The original data
has 307 × 307 pixels and 210 bands. A subarea of 80 × 100
is cropped from the original data for testing. After discard-
ing the water absorption and low-signal-to-noise bands, 175
bands are used in our experiment. The false-color image and
the corresponding ground-truth map are shown in the first row
of Fig. 3.

The second dataset, the Gainesville urban dataset, was
collected by the airborne visible/infrared imaging spectrom-
eter (AVIRIS) sensor [50]. The exploited image consists of
100 × 100 pixels. 191 bands are preserved after the removal
of several low-signal-to-noise and water absorption bands. The
false-color image and the corresponding ground-truth map are
displayed in the second row of Fig. 3.

The third dataset was captured by the SpecTIR hyper-
spectral airborne Rochester experiment (SHARE) [20]. The
spectral and spatial resolutions of this data are 5 nm and 1 m,
respectively. The experimental data contains 180 × 180 pixels
and 120 bands. The false-color image and ground-truth map
are shown in the third row of Fig. 3.

The fourth data was collected by the Nuance Cri hyperspec-
tral sensor [18]. The spectral resolution of this data is 10 nm.
The scene captures an area of 400×400 pixels and 46 spectral
channels with wavelengths ranging from 650 to 1100 nm. The
false-color image and its corresponding ground-truth map are
displayed in the fourth row of Fig. 3.



3126 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 54, NO. 5, MAY 2024

Fig. 3. Detection maps of different methods on the four test datasets. (a) False color. (b) Ground truth. (c) GRX. (d) RPCA-RX. (e) LRASR. (f) TPCA.
(g) TDAD. (h) GTVLRR. (i) PTA. (j) SITSR.

B. Methods in Comparison and Evaluation Metrics

1) Methods: We compare the proposed algorithm with
several types of anomaly detection methods. As a bench-
mark detector, the statistical-based GRX [10] is chosen
as the baseline. The RPCA-RX [13] and PTA [15] algo-
rithms are implemented based on the LRaSMD architecture,
in which the latter simultaneously exploits the TV regu-
larization. One parameter in the RPCA-RX method is set
as (1/wh). For the PTA detector, two critical parameters
need to be tuned. The truncated low-rank r is searched
from 0 to 20 and the penalty parameter μ is selected from
{10−4, 10−3, 10−2, 10−1, 1, 101, 102, 103, 104}. The regular-
ization parameters are set to the same values as [15], i.e.,
α = 1, τ = 1, and β = 0.01. The LRASR [18] and
GTVLRR [22] are two LRR-based anomaly detection meth-
ods, and the piecewise smoothness property is also considered
in the GTVLRR. The same dictionary construct method based
on k-means is exploited in both methods. The number of clus-
ters is set to 15 and 20 pixels are selected as atoms from each
cluster. Two regularization parameters β and λ in LRASR
are searched in the sets {0.001, 0.01, 0.1, 0.5, 1, 2, 3} and
{0.001, 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5}, respectively. Three
parameters in GTVLRR are also tuned to optimal, i.e., β and
λ are selected from {0.005, 0.05, 0.1, 0.3, 0.5, 0.7, 1}, and γ

is picked from {0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5}. Besides,
two tensor-based algorithms, TPCA [51] and TDAD [52], are
also exploited for comparisons.

2) Evaluation Metrics: To obtain a comprehensive
performance evaluation, we exploit several different met-
rics to evaluate the anomaly detectors. First, the detection
performance is intuitively presented with the aid of the
detection map. Different colors on the detection map indicate
the abnormal scores of pixels, and bright yellow represents
a high-abnormal score while dark blue means the opposite.
The target detection ability and background suppression

ability of the anomaly detectors can be visually reflected
by the detection map. The second metric is the receiver
operating characteristic (ROC) curve. The ROC curve shows
the change of the detection probability PD with the false
alarm probability PF, which can be calculated by

PD = ND

NA
, PF = NF

NB
(28)

where ND denotes the number of pixels correctly determined
as abnormal, NA is the total number of real abnormal pixels,
NF is the number of background pixels determined as abnormal
pixels, and NB represents the total number of true background
pixels. Besides, for the detection threshold τ , we also give the
ROC curve of (PF, τ ), which reflects the ability of a detector to
suppress background [53]. The third is the area under the ROC
curve (AUC). The AUC scores of the above two ROC curves
can quantitatively reflect the overall detection performance of
a detector.

C. Performance

The detection maps of different anomaly detectors on the
four test datasets are displayed in Fig. 3. The detection maps
of the HYDICE dataset are shown in the first row of Fig. 3.
As we can see, the GRX, RPCA-RX, TPCA, and TDAD
methods obtain low responses to abnormal pixels and the
detection results are slightly contaminated by the background.
Two LRR-based methods, LRASR and GTVLRR, have high
responses to abnormal pixels and the former has a stronger
ability to suppress the background. The PTA detector fails to
detect the anomaly and suppress the background. Compared
to the competitors, the proposed SITSR can detect anoma-
lies well and has a strong ability to suppress the background.
For the Gainesville dataset, as we can see in the second row
of Fig. 3, the results of GRX, TPCA, GTVLRR, and PTA
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(a) (b) (c) (d)

Fig. 4. ROC curves of (PD, PF) of different methods on the four test datasets. (a) HYDICE. (b) Gainesville. (c) TIR. (d) Cri.

(a) (b) (c) (d)

Fig. 5. ROC curves of (PF, τ ) of different methods on the four test datasets. (a) HYDICE. (b) Gainesville. (c) TIR. (d) Cri.

methods are seriously polluted by the background. The RPCA-
RX, LRASR, and TDAD algorithms are also influenced by the
background and have poor visual effects. By comparison, our
method performs well in detecting anomalies and suppress-
ing background. The detection maps of the TIR dataset are
presented in the third row of Fig. 3. In addition to the SITSR,
the compared algorithms are more or less disturbed by back-
ground and noise. A large amount of dense noise appears
on the detection map of the PTA method. Vertical stripes
decay the detection performances of the LRASR, TPCA, and
GTVLRR detectors. Besides, all detectors except the proposed
SITSR fail to suppress the band-shaped background. For the
Cri dataset shown in the fourth row of Fig. 3, the LRASR and
PTA methods successfully locate the anomaly but with severe
background interference. The GRX, RPCA-RX, TPCA, and
TDAD algorithms have a good ability to suppress background,
however, the response of the anomaly is not visually obvious.
The anomaly response of the GTVLRR detector is completely
submerged in the background and noise. By contrast, the
proposed SITSR can detect the anomaly while performing well
in eliminating the impact of the background.

The detection maps present the superiority of the proposed
SITSR in target detection or background suppression. As
shown in Figs. 4 and 5, we exploit two types of ROC curves to
further illustrate the detection performance of different meth-
ods. For the ROC curve of (PD, PF), the closer the curve
is to the upper-left corner, the better the overall detection
performance. For the HYDICE dataset shown in Fig. 4(a),
SITSR achieves higher values of PD than other methods at
small values of PF. For the Gainesville, TIR, and Cri datasets,
as we can see in Fig. 4(b)–(d), the ROC curve of SITSR is
always above others, which means SITSR reaches higher prob-
abilities of detection than its competitors at all values of PF.
The ROC curve of (PF, τ ) reflects the background suppression

Fig. 6. AUC values of (PD, PF) under different combinations of λ and β.
(a) HYDICE. (b) TIR.

ability of a detector and is considered to perform well if it is
close to the lower-left corner. The ROC curves shown in Fig. 5
are consistent with the detection map, which verifies the supe-
riority of SITSR in suppressing background due to the lowest
values of PF at different detection thresholds, especially, for
the HYDICE, Gainesville, and TIR datasets. For a quantitative
evaluation, the AUC values of (PD, PF) and (PF, τ ) are cal-
culated to directly compare the detection performance of all
detectors. As shown in Table II, SITSR obtains the highest-
AUC scores of (PD, PF) and lowest-AUC scores of (PF, τ ) on
all the test datasets.

The running time of all methods is presented in Table III.
As we can see, running the GRX detector costs the least time.
The GTVLRR is the most time-consuming. The proposed
SITSR is also time-consuming due to the high-computational
complexity of the tensor operation.

D. Parameter Tuning

Three parameters are related to the detection performance
of the proposed SITSR. Two regularization parameters
λ and β are used to balance the group sparse term
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TABLE II
AUC SCORES ON THE FOUR DATASETS

TABLE III
EXECUTION TIME OF DIFFERENT ALGORITHMS ON THE FOUR DATASETS (UNIT: SECONDS)

Fig. 7. AUC values of (PD, PF) with different rank r.

and low-rank term, respectively. A large parameter leads
to a small value of its corresponding term. In order
to better suppress the background and reach satisfac-
tory anomaly detection ability, parameters λ and β are
selected from the sets {1, 10, 100, 1000, 10000, 50000} and
{0.001, 0.005, 0.01, 0.05, 0.1, 0.2}, respectively. In Fig. 6, we
present the AUC values of (PD, PF) of the HYDICE and TIR
datasets under different combinations of λ and β. As we can
see, the detection performance of SITSR degenerates when λ

and β decrease simultaneously within the predefined parame-
ter ranges. But good performances of the HYDICE and TIR
datasets can be retained with large ranges of λ and β. To
obtain a satisfactory detection performance, λ and β need to
be adjusted individually for each dataset.

The other parameter is the rank r of the matrix Z, of which
each row is an another representation of the corresponding
band of the background. As a result, the value of r is rele-
vant to the complexity of the hyperspectral background. We
test the influence of r on the detection performance of SITSR
by varying it from 1 to 25. The AUC values of (PD, PF)

with different r on the test datasets are shown in Fig. 7. As
we can see, the detection performance of the HYDICE and

TABLE IV
PARAMETER SETTINGS ON THE FOUR DATASETS

Gainesville datasets improves first with the increase of r and
then tends to be stable. The detection performance of the TIR
dataset is always good with different r. The background pat-
tern of the Cri dataset is relatively simple, and the AUC value
reaches the highest when r = 1, then declines after r > 1.
In practice, the rank r can be set to a slightly larger value.
We list the specific parameter settings of the test datasets in
Table IV.

E. Ablation Study

1) Spatial Invariant Representation: Compared with the
tensor self-representation model with a single spatial mode,
the proposed SITSR is more informative with the consider-
ation of double spatial information. To verify the utility of
this alteration for hyperspectral anomaly detection, we design
additional experiments in which only one direction of spatial
information is exploited. Specifically, for the representation
Y1 = Y1 ∗ Z1 + A1 + N1, we conduct anomaly detection by
optimizing (12), and we name this model TSR-h. The other
representation Y2 = Y2 ∗ Z2 + A2 + N2 is implemented in
the same way and is named TSR-v. In order to achieve a
fair comparison, the parameters in TSR-h and TSR-v are res-
elected from the candidates. We present the ROC curves of
(PD, PF) and (PF, τ ) in Figs. 8 and 9, respectively. As we
can see in Fig. 8, under a single utilization of different spatial
information, the detection performance of TSR-h and TSR-v
with different false alarm probabilities has its own advan-
tages. However, when we combine the spatial information
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(a) (b) (c) (d)

Fig. 8. ROC curves of (PD, PF) with different spatial information on the four test datasets. (a) HYDICE. (b) Gainesville. (c) TIR. (d) Cri.

(a) (b) (c) (d)

Fig. 9. ROC curves of (PF, τ ) with different spatial information on the four test datasets. (a) HYDICE. (b) Gainesville. (c) TIR. (d) Cri.

Fig. 10. Histograms of the normalized anomaly obtained by the SITSR and SITSR-l1 on the four test datasets. (a) HYDICE. (b) Gainesville. (c) TIR. (d) Cri.

of two directions, actually SITSR, the detection performance
has been improved to varying degrees, especially, for the Cri
dataset. The same conclusion can be obtained from Fig. 9,
which presents a better ability of SITSR to suppress back-
ground compared with TSR-h and TSR-v. The AUC values
are also listed in Table II. As we can see, SITSR obtains the
highest-AUC values of (PD, PF) and lowest-AUC values of
(PF, τ ).

2) Group Sparsity: To verify the effectiveness of the l2.1.1
norm in modeling the pixel-wise sparse anomaly, we replace
it in (14) with the l1 norm. The SITSR based on the l1 norm is
denoted as SITSR−l1. Histograms of the normalized anomaly
obtained by the SITSR and SITSR-l1 are presented in Fig. 10.
As we can see, for the Gainesville and TIR datasets, most val-
ues of the anomaly map of the SITSR are close to zero. For the
HYDICE and Cri datasets, most values are small, and only a
few values are between 0.1 and 1. Even if only a few values in
the anomaly map of the Cri dataset are close to 0, the anomaly
can be detected well, because the response of the anomaly is
far greater than that of the background. Besides, the value of
the anomaly part obtained by the SITSR is much smaller than
that of the SITSR-l1, which indicates the l2.1.1 norm performs
better than the l1 norm in modeling the anomaly. We also list

the values of AUC(PD, PF) and AUC(PF, τ ) of the SITSR-l1
in Table II, which shows that the SITSR has better overall
performance.

V. CONCLUSION

In this article, we presented a SITSR method for hyperspec-
tral anomaly detection based on the tensor self-representation
model. Compared with conventional matrix-based anomaly
detectors derived by using the unfolding matrix of the 3-D
HSI, our tensor-based method is implemented directly on the
raw tensorial data, which preserves structural integrity and
makes it possible to use the global correlation. The spa-
tial information and spectral information were incorporated
by virtue of the t-product. A more balanced and informa-
tive model was proposed by combining two self-representation
ways with two different spatial modes. Then, the obtained
two different representative coefficients were integrated into
a low-rank matrix, and the low-rank property was charac-
terized by pursuing a low-dimensional subspace. For the
anomaly component, we utilized the l2.1.1 norm to formulate
its group sparsity. Extensive experiments conducted on sev-
eral datasets have validated the superiority of the proposed
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SITSR compared with the state-of-the-art detectors. And the
utility of the double spatial self-representation model was also
verified by the designed ablation study. As for future work,
a tensor subspace combining coefficient tensor instead of the
HSI data itself can be exploited to depict the global correlation
of the background. And more regularization can be imposed
on the coefficient tensor to utilize more potential information
of the HSI.
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