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Spatial and Temporal Awareness Network for
Semantic Segmentation on Automotive

Radar Point Cloud
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Abstract—Radar sensors are vital for autonomous driving due to
their consistent and dependable performance, even in challenging
weather conditions. Semantic segmentation of moving objects in
sparse radar point clouds is an emerging task that contributes to
improving the safety of autonomous driving. However, the methods
still need to be explored since radar points in driving scenes are
distributed sparsely and irregularly. Typical methods address the
sparsity by aggregating multi-scan data to generate dense point
clouds, where the temporal correlation is ignored. Inputting consec-
utive frames of point clouds can preserve temporal information, but
the irregular distribution makes it difficult to achieve interframe
communications. In this article, we propose a scheme to process
points of multi-scan data into a single frame with the availability
of temporal features. Our novel network, called Spatial and Tem-
poral Awareness Network (STA-Net), enables points at different
times to interact and establish their spatiotemporal connections to
comprehend the surroundings of these points. Furthermore, we
design a shallow feature extraction method based on the radar
measurements of points, which enhances the representation of local
features. To further improve the capability of the network to distin-
guish between various moving objects, we also introduce a prompt
layer inspired by prompt-based learning. This layer instructs the
network to generate a discriminative representation for each type
of moving object. Our experiments demonstrate that our network
achieves state-of-the-art performance compared to other methods
designed on the RadarScenes dataset. In particular, it shows a
remarkable ability to segment small objects such as pedestrians.

Index Terms—Autonomous driving, radar point cloud, deep
learning, semantic segmentation.

I. INTRODUCTION

AUTONOMOUS driving relies on various modalities of
sensors, such as LiDARs, cameras, and radars, to accu-

rately perceive and analyze the driving conditions. By inte-
grating multiple modal information from sensors, self-driving
cars enhance their detection capability to detect and respond
to different environmental conditions and obstacles. As some
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sensor types may encounter malfunctions or interference in spe-
cific scenarios, data redundancy from multiple modal sensors is
necessary to make the sensor suite trustworthy [1]. For example,
LiDAR sensors and cameras fail to capture precise surroundings
in adverse weather, such as rain and snow [2]. In such situations,
radar sensors can still provide valuable information. Apart from
being effective in all weather conditions, they are able to detect
distance, speed, and the presence of nearby objects. Therefore,
radar sensors play a crucial role in making reliable and safe
decisions in autonomous driving [3], [4], [5], [6], [7], [8].

With the development of large-scale 3D and 4D radar datasets,
radar-based deep learning algorithms have made progress across
a range of tasks, including object detection [9], [10], [11], [12],
odometry and mapping [8], [13], semantic segmentation [14],
[15], [16], and scene flow estimation [17], [18]. Among these,
semantic segmentation on point clouds is an emerging task that
assigns each point with a class label or a probability vector,
distinguishing moving objects from static backgrounds. While
most semantic segmentation methods are developed for LiDAR
point clouds, there is a growing interest in performing semantic
segmentation on automotive radar point clouds. Radar sensors
provide two unique measurements, velocity and Radar Cross
Section (RCS), which can offer valuable insights for semantic
segmentation. However, radar point clouds exhibit greater irreg-
ularity and sparsity when compared to LiDAR point clouds. This
poses new challenges for existing models, which are typically
tailored to LiDAR point clouds. Usually, point-based networks
are employed to address the irregularity, as they can directly
operate on points while preserving the geometric structure and
maintaining permutation invariance [19]. To tackle the sparsity
issue, it is a popular way to aggregate multiple scans of radar data
as single-scan input to enrich the input information and preserve
prediction efficiency. As illustrated in Fig. 1, the aggregated
data usually exhibits an intrinsic temporal correlation between
successive scans. However, this correlation is usually dropped
in traditional methods.

Therefore, we present our new approach for processing multi-
scan point clouds, which regards all data as a single frame
but provides temporal characteristic for each point. With this
processing method, we can take advantage of the efficiency
of the single-scan processing methods while facilitating com-
munication between points collected at different times within
a single frame. To accomplish the communication, we design
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Fig. 1. Illustration of the strong correlation between successive scans. The
image above is the presentation of multi-scan data, and the image below shows
the points at the first moment in the above point cloud.

a spatiotemporal mechanism that enables points to perceive
their surroundings from both temporal and spatial perspectives.
Beyond that, we notice that most of the previous methods focus
on extracting deep features from the neighborhoods of points.
The velocity and RCS have not been fully appreciated for their
ability to represent the neighborhood. Therefore, we design the
Local Perception Module (LPM) to exploit the representation
of local areas from radar measurements. Our STA-Net learns
the semantics of points with an encoder-decoder structure. We
introduce the Neighborhood Feature Extraction Block (NFEB)
to encode multi-level semantics of points. Within this block, the
spatiotemporal relationships between points and their respective
surroundings are captured through the Spatiotemporal Attention
Module (SAM), while shallow local radar features are extracted
using the LPM. These features from the two modules are further
combined to enhance the representation of neighborhoods of
points. Furthermore, we propose a Prompt Layer (PL) that
is inspired by prompt-based learning in the field of Natural
Language Processing (NLP) to refine the class features of the
local areas.

In summary, our work makes the following contributions:
1) We propose STA-Net, which efficiently facilitates inter-

scan communications among points, and achieves state-
of-the-art performance on multi-scan radar semantic
segmentation.

2) We design the novel NFEB to generate multi-level neigh-
borhood features, and the PL to enhance the discrimination
of the features. We conduct a series of ablation studies,
which validate the effectiveness of these key components.

3) We evaluate both the effectiveness and efficiency of our
proposed method in experiments, and our method achieves
state-of-the-art results on RadarScenes.

II. RELATED WORK

A. Radar Datasets

1) 3D Radar Datasets: There are a few publicly available
datasets for automotive radar perception [20]. They vary in

the scale of data and data formats. The large-scale dataset
nuScenes [21] is popular for its full sensor suite perception
containing cameras, LiDARs, radars, etc. However, it offers
an extremely sparse radar point cloud, which is insufficient for
radar-only tasks. The RadarScenes dataset [22] provides much
denser point clouds than the nuScenes dataset, with 158 different
scenarios. It has pointwise annotations and contains 11 classes
of moving road users.

To better achieve automotive perception only based on radar
data, high-resolution datasets are published. Zendar [23] is
a high-resolution dataset that uses a synthetic aperture radar
for moving vehicle detection to enhance imaging resolution.
However, it only has a small number of scenarios. The RA-
DIATE [24], Oxford Radar RobotCar [25], and MulRan [26]
contain dense radar images utilizing spinning radar sensors.
However, this type of radar sensor is not commonly used for
automotive applications and is short of Doppler information.
The CARRADA [27], CRUW [28], and RADDet [29] datasets
also provide range-azimuth maps with annotations for object
detection. However, these datasets lack full point cloud infor-
mation.

Several datasets present radar data measured under adverse
weather conditions, which provide a foundation for develop-
ing robust perception algorithms. The Dense dataset [30] uses
long-range sensors and captures data in various natural weather
conditions. Unfortunately, it has poor resolution and sparse
radar targets due to the limited field of view. Although the
RADIATE [24] collects data in different driving scenarios and
weather conditions, it only labels road users with bounding
boxes unsuitable for semantic segmentation.

2) 4D Radar Datasets: The introduction of new-generation
4D radar [31], [32], [33], [34] mitigates the limitations of con-
ventional automotive radar, offering improved resolution and
elevation measurement capabilities. The Astyx dataset is the first
publicly available 4D radar dataset for object detection but only
provides 545 annotated frames [31]. The VOD dataset contains
8693 frames of synchronized and calibrated LiDAR, camera,
and 4D radar data acquired in various traffic [32], and it includes
annotations for 3D bounding boxes.

Similarly, the Tj4DRadSet dataset contains a total of 7757
synchronized frames under rich driving scenarios, which pro-
vides 3D bounding boxes and trajectory IDs [33]. The pro-
posed K-Radar is the first large-scale dataset that provides 4D
radar tensor on diverse conditions along with 3D bounding box
labels [34]. Unfortunately, these 4D datasets lack pointwise
annotations and are unsuitable for semantic segmentation.

B. Semantic Segmentation on Point Cloud

Current mainstream methods for semantic segmentation can
be categorized into four groups: voxel-based [35], [36], [37],
projection-based [38], [39], [40], point-based [14], [15], [16],
[41], and fusion-based methods [42], [43]. However, most of
the voxel-based and projection-based methods are designed
for LiDAR data and inherently introduce discretization errors.
Moreover, these methods become less effective when applied to
radar data due to its limited information and a lower resolution
than LiDAR data. The fusion methods, where a combination
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of voxel and point-based method, or projection and point-based
method is used to extract features, impose significant demands
on memory and computational resources. Therefore, we mainly
review point-based methods here.

For sparse radar point clouds, point-based networks can keep
the geometric structure of the points and process irregular data
directly. PointNet++ [41] is a hierarchical spatial structure that
processes local areas of point clouds sampled progressively
and extracts local features similar to the convolutional neural
networks CNNs. Schumann et al. [15] first perform semantic
segmentation on automotive radar data utilizing PointNet++.
They enhance the representation of radar point clouds by aggre-
gating radar data in multiple scans to generate a denser point
cloud. However, the time information is usually discarded, and
the strong correlation among consecutive scans is not consid-
ered. To resolve this, Schumann et al. [16] propose a recurrent
architecture, which embeds a memory abstraction module to fuse
the input point cloud with previously memorized input. While
the memory abstraction module establishes the connection of
points between different scans, it may be inconvenient to locate
the positions of points in previous scans due to the displacement
caused by the movement of the ego-car. In contrast, Zeller et al.
investigate the single-scan method [14], which is appropriate
for real-time applications that require low latency. However, the
single-scan method may struggle with limited information car-
ried by the point clouds due to the low resolution of radar sensors.
The situation would be worse if objects have unfavorable aspect
angles in the specific scan.

Inspired by the achievement of transformers [44], [45] in
computer vision tasks, point-based networks have successfully
incorporated self-attention mechanisms. Zhao et al. [46] design
point transformer layers to aggregate local features and improve
the performance of large-scale semantic scene segmentation.
Zellar et al. [14] adapt the Point Transformer by replacing the
point transformer layer with the Gaussian transformer layer,
which enhances the feature extraction. Due to the single-scan
input, these methods primarily focus on the exploration of
spatial relations. However, it has been observed that multi-scan
methods [15], [16] exhibit superior performance when it comes
to segmenting smaller objects, owing to the strong correlation
present in the input data.

To further exploit this inherent correlation, we draw inspira-
tion from spatiotemporal attention methods [47], [48] which
capture relations between patches of neighbor frames. We
propose a spatiotemporal attention mechanism for radar point
clouds, where points of different scans within neighborhoods
can directly interact with each other. Instead of maintaining each
scan separately in memory to keep time information, we employ
a temporal feature to retain the temporal awareness and integrate
them into a single frame, thus enhancing the efficiency of our
method.

C. Prompt Learning

In recent years, prompt-based learning techniques [49], [50],
[51] have emerged in the field of NLP. The main idea of
designing prompt functions is to learn specific representations

for downstream tasks in a transfer learning model [47]. The
introduction of prompts in [52] instructs the frozen model to
make predictions for downstream tasks by only learning a small
number of parameters of prompts. In [51], a promptable model
for image segmentation is introduced, which enables powerful
generalization to a range of downstream tasks. The point clouds
contain moving objects under a range of scenarios, depending on
the weather, road conditions, and traffic at the time of detection.
Therefore, we borrow the idea from the prompt-based methods
to instruct our network that can be applied in diverse scenarios
to generate robust class-specific features for moving objects.

III. OUR APPROACH

A. Network Architecture

In the preprocessing stage, multiple scans of point clouds are
first processed to derive temporal features and merged into a
single frame as the input point cloud P0 with N0 points. As
shown in Fig. 2, the encoder consists of the Radar Feature
Encoder (RFE), two NFEB, and a PL. The input point cloud
P0 is first fed into the RFE, where each point of P0 obtains the
input feature based on its radar measurements.

To extract the local features of points from their neighbor-
hoods, we follow the PointNet++ [41] to downsample the point
clouds and generate partitions, i.e., neighborhoods, around the
sampled points. We use two sequential NFEBs, each of which
performs downsampling, neighborhood generation, and neigh-
borhood feature extraction. The n-th NFEB (where n = 1, 2)
takes the point cloud Pn−1 as input and outputs downsampled
point cloud Pn with their neighborhood features.

Since P0 is composed of multiple scans of point clouds, each
point is assigned a temporal feature based on its scan moment. To
access information from points of preceding scans, we sample
N1 points from the last scanning moment in the P0, i.e., the
points with the largest temporal value relative to the rest points,
until the desired number of sampling points is reached. This
allows the sampled points to utilize points collected in previous
moments as their neighbors. As the point clouds from different
scans are highly similar due to the short time interval, our
sampling method is more efficient in generating a represen-
tative sampled point cloud compared to the farthest sampling
method [41].

In the second NFEB, we design a uniform sampling method to
ensure the diversity of RCS and velocity values at the sampling
points. We predetermined the number of RCS and velocity
ranges for the P1 as 6 in our work. Then, we sort the points
according to velocity and RCS. Following each sorting, we
evenly split the points into subsets in descending order. Each
subset covers a specific range of values, and we sample the
same number of points in each range. Note that the number
of sampled points under each sorting criterion is half of the
total sampling number N2. In this way, we make the points
with various velocities and RCS be focused and learned. The
neighborhoods for the sampled points of Pn are created by
searching for their Kn nearest points in the metric space using
the K-Nearest Neighbors (KNN) algorithm [41]. The metric
chosen for the first NFEB is the Euclidean distance metric,
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Fig. 2. Overview of the STA-Net. The network takes multi-scan point cloud input with time information. The point cloud is first encoded by the RFE, followed
by two NFEBs. Before inputting into the NFEB, the point cloud is downsampled and divided into overlapping local areas. The NFEB consists of two branches: the
LPM and the SAM, to extract neighborhood features. The local feature flpm and the spatiotemporal feature fsam are fused in the multi-level feature fusion layer.
The PL refines the output feature from the second NFEB. Latent features are propagated through two FP layers to the input point cloud. The MLP outputs class
probability for each point.

and the second NFEB employs feature distance measured by
similarity. Each NFEB contains two modules: the SAM and the
LPM, extracting neighborhood features in parallel. The SAM
facilitates interactions between neighbor points within each
neighborhood using spatiotemporal attention operations, while
the LPM focuses on leveraging radar measurements of neighbor
points to generate local radar features.

As the point cloud is successively downsampled, the receptive
field of the sampled points is larger, and hence the output features
are deeper. The PL refines the neighborhood feature captured
by the second NFEB to make them class-specific. Since the
semantic segmentation task requires predicting features for each
point, we utilize two Feature Propagation (FP) layers in the
decoder to progressively propagate semantic features from P2

to the initial point cloud P0. Following [15], we perform feature
interpolation for points within the denser point cloud through
each FP layer. In this process, we calculate the interpolated
feature for each output point by averaging the features of three
nearest points in the input point cloud, using the same distance
metric as the corresponding downsampling layer in the encoder.
These interpolated features are then concatenated with their
corresponding features in the encoder using a skip connection
and merged into a multi-scale feature. We iterate the propagation
process until we obtain semantics involving three resolution
levels for each point in the input point cloud P0. Finally, these
resulting semantics are input into a Multi-Layer Perception
(MLP) as the classification head to produce the segmentation
results.

B. Radar Feature Encoder

Radar sensors provide a range of pointwise measurements,
including spatial coordinates (x, y), the ego-motion compen-
sated Doppler velocity v, and the RCS σ. We denote each point
as a c = 4 dimensional vector p = (x, y, v, σ). Since the input
is composed of multi-scan data, the spatial coordinates of the
points are calculated according to the coordinate system at the
first scan. Additionally, the range r and azimuth a of each
point with respect to the ego-vehicle are measured during the
movement of the ego-vehicle. We define the polar coordinates of
each point at the time it was collected as p̂ = (r, a). Note that the
polar coordinates are also transformed to the global coordinate
system. To leverage the time information in the multi-scan data,
we assign each point with a temporal feature t whose value is
determined by the temporal order of the scans. If this point is
obtained in the first scan, the value of the temporal feature is 0,
i.e., t = 0. For each point, we generate features by encoding its
radar measurements along with the temporal features through
the Radar Feature Encoder (RFE):

x = δ(p, t) (1)

where δ : R5 → Rd is the 1D convolutional layer, and x ∈ Rd

is the output feature of point p from RFE.

C. Spatiotemporal Attention Module

To enhance the understanding of the surroundings of the
radar points, we design an attention mechanism that explores
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Fig. 3. Illustration of how our spatiotemporal attention works and the structure
of the SAM in (a). (b) shows the inner structure of the Transformer Encoder in
(a).

relationships among local points in both space and time. The
SAM takes the structure of the Vision Transformer (ViT) as
a basis, which is a stack of L encoding blocks. Each encod-
ing block consists of two layer-normalization (LN) layers, a
spatiotemporal attention layer, and an MLP layer. We illustrate
the spatiotemporal attention as well as the structure of SAM in
Fig. 3.

The SAM takes as input the neighborhoodPneigh = {pj |j =
1, . . . ,K} of each centroid point p and the corresponding
feature set X = {xj |j = 1, . . . ,K}, where pj ∈ Rc is the
neighboring point of p, c is the number of input measurements,
and xj ∈ Rd is the d-dimensional input feature of the j-th
neighboring point pj . The neighboring feature xneigh

j of each
neighboring point pj is calculated as:

xneigh
j = [xj ;pj ] (2)

where xneigh
j ∈ RD is a feature of dimension D = c+ d, and

[; ] denotes the concatenation operation.
1) Class Token: Following the ViT [45] that utilizes a stan-

dard Transformer encoder [44], we extend the class token in
the ViT, typically serving as image representation in image
classification tasks, to represent neighborhoods in point clouds.

As our goal is to extract the neighborhood feature of p by
leveraging the information of neighboring points, the class token
can aggregate features of points in the same class with p while
excluding those from different classes to avoid interference.
Moreover, this mechanism is suitable for various cases of neigh-
borhoods, which can contain any number of points with diverse
temporal features.

2) Space Embedding of Class Token: We use class tokens
to integrate information across the neighborhoods of centroid
points. The motivation for designing space embedding for the
class token is to make it neighborhood-level representative.
Instead of directly training the representation of the xneigh

0 , we

add a space embedding layer to learn the spatial patterns of the
neighborhoods. To achieve this, we input the embedding layer
with encoded neighborhood information, which is represented
by the differences between the centroid point and its neighboring
points. The point differences are computed by:

rsj = pj − p (3)

where rsj represent the differences between the centroid point
p and their neighboring points pj in coordinates, velocities,
and RCS. While the coordinates of neighboring points relative
to the centroid point can reflect their relative positions and the
structure of local regions, the relative velocities as well as RCS
can indicate the motion of the centroid point.

We concatenate the point differences into a matrix rs =
[rs1; . . . ; r

s
k]. The matrix is encode by a convolution layer Conv :

RK×c → RD:

r̂s = Conv(rs) (4)

where r̂s is the input vector of dimension D.
Then we obtain the space embedding es for the class token

by:

es = Es(r̂
s) (5)

where Es : RD → RD is the space embedding function to gen-
erate neighborhood representation that indicates the neighbor-
hood type.

3) Time Encoding: In order to improve the efficiency of point
aggregation, position encoding is often applied in self-attention
methods since the input sequence lacks positional information.
Instead of encoding their relative spatial positions, our research
investigates the possibility of encoding time relevance to enable
the incorporation and communication of multi-scan data. To
encode the input sequence with its temporal information, we
first calculate the relative time rtj of points in the input sequence
by:

rtj = tj − t0 + 1 (6)

where tj is the temporal feature we attached to pj , and t0 =

0 indicates the fixed temporal feature assigned to xneigh
0 . The

temporal feature of the class token is independent of those of
all other points, which enables the class token to capture the
evolution of the entire local area over time. Then we use the
trainable 1D embedding function Et : R → RD applied to rtj
and rt0 = 1 to generate time embeddings as:

etj = Et(r
t
j) (7)

where etj ∈ RD is the time embedding for xneigh
j .

4) Spatiotemporal Attention Layer: Before feeding into the
L = 0 encoding blocks, the input features are added with the
space embeddings and time embeddings:

xneigh
0 = es (8)

x̂neigh
j = xneigh

j + etj (9)

where x̂neigh
j for j = 0, 1, . . . ,K is the j th embedded feature,

and the class token is denoted as xneigh
0 ∈ RD. The class token
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xneigh
0 is concatenated with allxneigh

j to form an input sequence
of length K + 1:

z =
[
x̂neigh
0 ; x̂neigh

1 ; · · · ; x̂neigh
K

]
(10)

where z ∈ R(k+1)×D is the input sequence to the spatiotemporal
attention.

At each block l, l = 1, . . . , L, it conducts the following
operations:

zl−1 = MSA(LN(zl−1)) + zl−1 (11)

zl = MLP
(
LN

(
zl−1

))
(12)

where MSA contains h heads to operate self-attention [44] in
parallel, and LN denotes LayerNorm [53]. These heads learn
the relations of the input data from different aspects and output
features with dimension Dh, which is set to D/n. The MSA
concatenates the outputs of each head as its attention output.

After L encoding blocks, we obtain the output features zLj for
each input element. When dealing with sparse radar point clouds,
the selected neighbors may not belong to the same class. There-
fore, the common way to aggregate all the neighboring features
into a single neighborhood-level representation may introduce
irrelevant information from different classes, resulting in the
ambiguity of the final class-specific feature, which is particularly
problematic for small objects. To address this problem, we use
the feature of the class token to represent the entire neighborhood
without the need to design proper integration strategies. The
output neighborhood feature fsam of the SAM is obtained by:

fsam = zL0 (13)

where zL0 is the output feature of the class token from the L-th
encoding block.

D. Local Perception Module

While the SAM captures local patterns of each neighborhood
based on their input features, the LPM integrated into the NFEB
takes the radar measurement of the neighborhood as input to
enhance the representation. The LPM leverages radar features
of local points to represent the spatial distributions and motion
states of the local area. We define a 2D grid, where the R and
A axes represent the range and azimuth, respectively. The grid
has 16 bins bμ,ν , μ, ν = 0, . . . , 3, arranged in a four-by-four
pattern. The range and azimuth ranges of local point sets are
divided evenly. Each bin represents an interval with a range size
of ru and an azimuth size of au. Then we calculate the indices
μ and ν along the R and A axes, respectively, to determine the
bin in which each neighbor point falls:

μ =

⌊
r − rmin

ru

⌋
(14)

ν =

⌊
a− amin

au

⌋
(15)

where rmin and amin represent the minimum values of range and
azimuth, respectively, among all the points in the neighborhood.

To characterize the local areas with the radar measurements,
we extract local radar features gμ,ν ∈ R3 for each bin which

contains sμ,ν points. The first dimension is the number of points
in the bin. Then we apply max pooling operators on each bin to
calculate the maximum velocity and the RCS of points. These
operations can be formulated as follows:

gμ,ν [0] = sμ,ν (16)

gμ,ν [1] = max
sn=1,...,sμ,ν

vsn (17)

gμ,ν [2] = max
sn=1,...,sμ,ν

σsn (18)

Once we extract bin features gμ,ν , we employ a small con-
volutional neural network γ to capture the overall feature of the
entire grid, and then flatten it to a fixed-dimension vector flpm:

flpm = γ(G) (19)

where G ∈ R4×4×3 is the feature matrix with elements G[μ, ν]
= gμ,ν .

For each neighborhood in the NFEB, the local radar feature
flpm is fused with the deeper feature fsam output from the SAM
by:

fneigh = MLP([flpm; fsam]) (20)

where MLP consists of linear layers and an activation function
ReLU attached to the first layer. The neighborhood-level features
fneigh are output as the point features of the downsampled point
cloud.

E. Prompt Layer

The motivation to introduce a PL is to identify class-specific
representations in the latent space for each moving object, which
refines the neighborhood features fneigh from the second NFEB.
We propose a prompt pool consisting of l learnable prompts i.e.,
H = {h1,h2, . . . ,hl}, where each element in H is a learnable
feature with the same dimensional sizeD as fneigh. Each prompt
represents a kind of object and is associated with a key kω ∈
RD, ω = 1, . . . , l. The keys are learnable features during the
training process. Similar to the scaled dot-product attention [44],
we introduce the query q of fneigh, which is obtained by q =
fneigh for simplicity. The q is matched with a prompt key kω by
calculating their similarity:

ξ = argmax
ω

ρ(q,kω) (21)

where ρ : RD × RD → R is the cosine similarity function and
ξ is the best-matched index of the key. As shown in Fig. 4, we
assign the prompt hξ with the largest similarity value to obtain
the class feature fneigh = hξ for the neighborhood. This allows
us to achieve refining features for discrimination without the
need to make clear boundaries. The prompts are updated during
the training stage to be generalizable for each kind of object in
different scenarios.

F. Loss Design

There is an imbalance problem due to radar reflections from
the static environments accounting for more than 90% of the
whole dataset [22]. This leads to the static class contributing to



3526 IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, VOL. 9, NO. 2, FEBRUARY 2024

Fig. 4. Illustration of the proposed PL. The query of the input looks up the
best match key by calculating their similarities. The prompt with the largest
similarity value is selected as the output prompt, which is indicated with the red
rectangle.

the majority of the training loss and dominating the gradients.
The imbalance can be addressed by introducing a weight vector
to scale the loss of each class individually. The weights for
different classes are usually set empirically and the weights for
classes with vast samplers tend to be a small value.

However, the optimal choice for the weight vector may vary
greatly, depending on the distribution of the training data, and
thus cannot be generalized to all tasks. Instead of assigning the
importance of each class, we differentiate the classes based on
their difficulty in training. We choose focal loss [54], which is a
reshaped cross entropy function. It is added with a modulating
factor (1− yt)

γ , where yt is the probability of belonging to the
ground true label, determined by the trained model. We formu-
late the loss function for semantic segmentation as follows:

Lfocal =

N0∑
i=1

(1− yit)
γ log yit (22)

where γ is a tunable parameter, smoothly adjusting the rate at
which easy samples are down-weighted. Following [54], we use
γ = 2 in our experiments.

In the PL, prompts for classes learn to represent the class-
specific feature. To encourage the network to generate discrim-
inative features with the instruction of prompts, we model the
prompt learning process by an additional loss function:

Lprompt =

N2∑
i=1

(1− ρ((qi),ki
ξ)) (23)

where the similarity function ρ is used to evaluate the choice for
the prompt. Since the PL refines the output features of points
in P2 from the second NFEB, only N2 points contribute to the
prompt loss. When the query for point i matches the prompt of
index ξ, the similarity value should be high and bring a small
loss. We optimize our model by minimizing the overall training
loss:

L = Lfocal + αLprompt (24)

where α is set to 1, determining the proportion of each term
contributed to the final loss.

IV. EXPERIMENTS

A. Experimental Setting

a) Dataset: We use RadarScenes dataset to evaluate the
effectiveness of our method. It contains over 4 hours of driving
and a total of 158 sequences in various scenarios. The points
are labeled into six categories: car, pedestrian (ped), pedestrian
group (ped.group), bike, truck, and static. Following [14], we
train our model with 130 recommended sequences and split the
rest of the data into a validation set and a test set in the same
way for a fair comparison.

b) Implementation details: We implement our network in
PyTorch [55]. We collect successive radar scans in 500 ms as
one input frame and transform these points to the same car
coordinate system as the first scan used. We keep 3072 points in
each input radar cloud to simplify the input processing, as the
number of points in each scan. In the training stage, if the number
of collected points is less than the required number, we use the
method in [15] to extend the input points by resampling the first
point as many times as the number of vacancies. Otherwise, the
points belonging to the static class are randomly discarded. We
employ the DBSCAN algorithm [56] to generate pseudo-labels
for points. Each point is represented by its RCS and velocity
values as its feature. The cluster containing the largest number
of points is labeled as the static class. We record the number
of valid points in each frame. These resampled points do not
contribute to the training or the final assessment.

We adopt the SGD optimizer with a momentum of 0.9 to train
the network. The learning rate is set to 0.1 at the beginning of
the training, and gradually decreases linearly. We train for 100
epochs with a batch size of 16 on 3 NVIDIA GeForce RTX 3090
GPUs. The number of MSA layers L in the SAM is set to 4. For
the number of neighbor points in each NFEB, we set 30 for the
first block and 15 for the second.

B. Comparison With State-of-The-Art Methods

a) Evaluation metrics: To evaluate the performance, we em-
ploy standard metrics, the macro-averaged F1 scores suggested
by [22] as well as Mean Intersection-over-Union (mIoU) which
is commonly used in semantic segmentation tasks. We also
report the F1 and the IoU for each class to show the capability
of different methods to segment individual classes.

b) Comparison methods: We compare to the state-of-the-
art methods: the adapted PointNet++ [15], which we call
RadarPNv1 following [14], model in [16] (called RadarPNv2),
Point Transformer [46] and Gaussian Radar Transformer [14].
We implement Point Transformer with available code. The
RadarPNv1 and Gaussian Radar Transformer are also repro-
duced. To facilitate a fair comparison, we refer to the implemen-
tation details in the articles for parameter and training settings.
The results of RadarPNv2 are referred to as those published
in [14].

c) Analysis: Our network demonstrates state-of-the-art perfor-
mance in terms of both macro F1 score and mIoU, as indicated
in Tables I and II. For a comparison of individual classes, our
method obtains the best segmentation results for car, pedestrian,
and pedestrian groups. It is worth noticing that the F1 scores
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TABLE I
SEMANTIC SEGMENTATION RESULTS OF MOVING OBJECTS ON THE RADARSCENES TEST SET IN TERMS OF F1

TABLE II
SEMANTIC SEGMENTATION RESULTS OF MOVING OBJECTS ON THE RADARSCENES TEST SET IN TERMS OF MIOU

TABLE III
ABLATION STUDY OF STA-NET

and the IoUs for pedestrian and pedestrian group classes are
both the highest among all the methods. Those objects are
regarded as small objects due to the limited reflections, typically
one or two per frame. Multi-scan methods can improve this by
accumulating reflections from small objects over consecutive
scans. However, this approach is less effective in classifying
pedestrian groups. Our method excels in effectively segmenting
the two types of small objects without confusing them as shown
in Fig. 5. This demonstrates our ability to leverage temporal
information embedded in multiple scans to distinguish objects.
In comparison to the multi-scan baseline method RadarPNv1,
we achieve superior performance in five out of six classes, with
the exception of the bike class. We attribute this to the limited
number of bike samples, causing performance variations among
different multi-scan classifiers. Additionally, our method out-
performs the single-scan methods listed in the table, except for
the truck class. This may be primarily due to the narrow-shape
distribution of trucks in a multi-scan setting, posing a challenge
to cluster all points from trucks using Euclidean distance.

C. Ablation Study

In this section, we conduct ablation studies to verify the
improvements of each individual module in our network. The
results are presented in Table III, which shows that each core
design is critical to improving the overall performance.

a) RFE: The first ablation study substitutes the RFE layer
with a fully connected layer, followed by a layer norm and a
LeakyReLU. We keep the rest of the network unchanged. The

performance drops significantly, which indicates that encoding
the input feature is vital for the learning of subsequent layers. Our
RFE layer can effectively encode input points with their radar
measurements, thus enhancing the overall network performance.

b) Time encoding (TE): To quantify the benefit of exploring
temporal information, we conduct an experiment in which we
remove the temporal feature and replace the time embedding
with absolute position embedding, which is a common scheme
in the ViT. Without the inclusion of time information, we observe
decreases inF1 score and mIoU by 3.1% and 4.4%, respectively.

c) Space encoding (SE): We also investigate the effectiveness
of the initialization of class tokens. We remove the encoding
layers added to the class token. The class token is replaced with
a learnable vector that is randomly initialized in the first training
epoch and is updated by backpropagation. The removal of the
SE results in decreases in both F1 and mIoU, indicating that
encoding the relative positions within local areas is helpful in
distinguishing moving objects from static backgrounds.

d) LPM: To evaluate the impact of LPM on improving the
representations of neighborhood features, we conduct an exper-
iment where we disable LPM and only use the spatiotemporal
feature fsam that outputs from the SAM. As the row 5 in Table III
shows, the removal of LPM results in a degradation in overall
performance.

e) PL: To study the effectiveness of the prompt layer, we
evaluate the performance of our network without employing
the PL. As anticipated, the F1 score and mIoU show a drop,
which reveals that the proposed PL can make class features more
discriminative.

D. Runtime Evaluation

Table IV reports a summary of the model parameters, Floating
Point Operations (FLOPs), and the average reference time of
the selected models tested on the RadarScenes test set. Our
model is highly efficient with the shortest reference time of
34.94 ms. Furthermore, in comparison to the Point Transformer
and Gaussian Radar Transformer, our model exhibits much
lower model size and FLOPs.
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Fig. 5. Visualization of semantic segmentation results on the RadarScenes dataset. Each point is represented by a symbol, and the type of symbol represents the
class of the point. The red rectangles indicate the background points that are misclassified as moving objects, while the green rectangles indicate that the types of
the objects are incorrectly predicted.
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TABLE IV
RUNTIME PERFORMANCE ON THE RADARSENES TEST SET

V. CONCLUSION

We presented a novel semantic segmentation approach to
multi-scan radar point clouds in automotive scenarios. Instead of
building complex communication mechanisms between scans,
we enable multi-scan points to interact in an effective and simple
way that operates spatio-temporal attention on local points with
different time embeddings. This allows our network to success-
fully extract features of moving objects over a period of up to
500 ms and to be sensitive to small objects. We also demonstrate
that radar measurements can be utilized to enhance the repre-
sentation of local areas of the point clouds. The segmentation
performance is further improved by our proposed PL, which
makes the class features of points more distinguishing. Our
approach achieved state-of-the-art performance on RadarScenes
both in macro F1 score and mIoU. In addition, our network has
the fastest inference time compared to all other methods. We
hope our work can provide inspiration and ideas for studying
hidden temporal correlations in radar data and the design of
radar perception networks.
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