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Abstract. Recently augmented Lagrangian method has been successfully ap-
plied to image restoration. We extend the method to total variation (TV)
restoration models with non-quadratic fidelities. We will first introduce the
method and present an iterative algorithm for TV restoration with a quite
general fidelity. In each iteration, three sub-problems need to be solved, two
of which can be very efficiently solved via Fast Fourier Transform (FFT) im-
plementation or closed form solution. In general the third sub-problem need
iterative solvers. We then apply our method to TV restoration with L1 and
Kullback-Leibler (KL) fidelities, two common and important data terms for de-
blurring images corrupted by impulsive noise and Poisson noise, respectively.
For these typical fidelities, we show that the third sub-problem also has closed
form solution and thus can be efficiently solved. In addition, convergence anal-
ysis of these algorithms are given. Numerical experiments demonstrate the
efficiency of our method.

1. Introduction. Total variation regularization was first introduced in [48]. It has
been demonstrated very successful in image restoration and extensively generalized
[10, 15, 64, 38, 39, 30, 50, 49, 3, 5, 16]. The essential reason of the achievement is
that, in most images the gradient is sparse and TV catches this property, like the
basis pursuit problem [18] for compressive sensing [8, 21]. Although the computation
is difficult due to the nonlinearity and non-differentiability, a lot of effort has been
contributed to design fast solvers [14, 9, 11, 66, 67, 56, 58, 32, 62, 28, 54, 57].
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However, all of these consider TV minimization with squared L2 fidelity term
(TV-L2 model), which is particularly suitable for recovering images corrupted by
Gaussian noise. In many important data, the noise may not obey Gaussian distri-
bution and thus the data fidelity term is non-quadratic. Two typical and important
examples are impulsive noise [4] and Poisson noise [36, 6].

Impulsive noise is often generated by malfunctioning pixels in camera sensors,
faulty memory locations in hardware, or erroneous transmission [4]. It has two
common types, salt-and-pepper noise and random-valued noise. Salt-and-pepper
(or random-valued) noise corrupts a portion of the image pixels with minimal or
maximal intensities (or random-valued intensities) while keeping other pixels un-
affected. To remove this kind of noise is quite difficult, since the corrupted pixels
are randomly distributed in the image and the intensities at corrupted pixels are
usually distinguishable from those of their neighbors. By applying TV regulariza-
tion and Bayesian statistic, one obtains a variational approach which minimizes a
TV-L1 functional. Compared with TV-L2 model, TV-L1 uses a non-smooth fidelity
which has great advantages in impulsive noise removal [42, 43]. It is shown that
the L1 fidelity can fit uncorrupted pixels exactly and regularize the corrupted pixels
perfectly. This model also provides many other useful properties proved recently in
[17, 60, 61]. In addition, it has been noticed in [1, 40, 37] that TV-L1 model (with
no blur kernel) connects closely to classical median type filters [19, 23, 33, 45, 41].
It can also be applied to the recent particularly effective two-phase method [12].
However, the TV-L1 model is hard to compute due to the nonlinearity and non-
differentiability of both the TV term and the data fidelity. Some existing numerical
methods include gradient descent method [17], LAD method [26], the splitting-and-
penalty based method [59], and the primal-dual method [20] based on semi-smooth
Newton algorithm [31], as well as alternating direction method [24].

Poisson noise is a very common signal dependent noise, and is contained in sig-
nals in various applications such as radiography, fluorescence microscopy, positron-
emission-tomography (PET), optical nanoscopy and astronomical imaging applica-
tions [36, 6]. To recover a blurry image corrupted by Poisson noise is difficult. Some
classical methods based on some special assumptions can be found in [2, 34, 35, 55],
which were designed for denoising only. Recently, variational methods based on TV
regularization have been applied to this problem. According to the characteristic of
Poisson distribution, people derived a TV regularization model with the so called
Kullback-Leibler divergence as fidelity term [36, 6]. In this paper we call this model
as TV-KL model. It has been shown that TV-KL model behaves much stable and
robust than the standard expectation maximization (EM) reconstruction (where
no TV regularization is applied) [53], and much more effective than TV-L2 in the
case of Poisson noise removal [36]. Some existing methods for the TV-KL model
are gradient descent [36, 44], multilevel method [13], the scaled gradient projection
method [65], and EM-TV alternative minimization [6], as well as variable splitting
and convex optimization based methods [25, 52].

Therefore, in those image restoration problems with non-Gaussian noise we need
to minimize functionals with TV regularization and non-quadratic fidelities. To
design fast solvers for these restoration models is still highly desired and is much
more difficult than that for TV-L2, since the first order variations of these fidelities
are no longer linear. In this paper, we extend augmented Lagrangian method [29,
46, 47] for TV-L2 restoration [54, 57] to solve the problem. In particular, we will first
give the algorithms for TV restoration with a general fidelity term and then apply
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these algorithms to recover blurry images corrupted by impulsive noise or Poisson
noise. We will show that for these two special cases, augmented Lagrangian method
is extremely efficient since all the sub-problems have closed form solutions. Besides,
convergence analysis of these algorithms will be provided. We should mention that
our method is different from [24, 25, 52]. In [24, 25, 52], the authors treat the
constraints (via operators) in a compact way and consequently penalty parameters
for different constraints are the same. In our method we separately penalize the
constraints and thus allow different penalty parameters for different constraints.
Our numerical tests showed that more efficiency may be achieved by using different
parameters. In addition, the splitting technique and auxiliary variables used in
this work are different from those in [25, 52]. Moreover, by using different penalty
parameters, the convergence analysis is more difficult than those in [24, 25, 52], as
will be elaborated in Section 4.

The paper is organized as follows. In the next section, we give some notation.
In Section 3, we present TV restoration model with a general fidelity. Augmented
Lagrangian method will be given in Section 4 with convergence analysis. In Section
5, we apply our algorithms for deblurring images corrupted by impulsive noise or
Poisson noise. The paper is concluded in Section 6.

2. Notation. Without the loss of generality, we represent a gray image as anN×N
matrix. The Euclidean space RN×N is denoted as V . The discrete gradient operator
is a mapping ∇ : V → Q, where Q = V × V . For u ∈ V , ∇u is given by

(∇u)i,j = ((D̊+
x u)i,j , (D̊

+
y u)i,j),

with

(D̊+
x u)i,j =

{

ui,j+1 − ui,j , 1 ≤ j ≤ N − 1
ui,1 − ui,N , j = N

(D̊+
y u)i,j =

{

ui+1,j − ui,j , 1 ≤ i ≤ N − 1
u1,j − uN,j, i = N

,

where i, j = 1, . . . , N. Here we use D̊+
x and D̊+

y to denote forward difference oper-
ators with periodic boundary condition (u is periodically extended). Consequently
FFT can be adopted in our algorithm.

We denote the usual inner product and Euclidean norm (L2 norm) of V as (·, ·)V
and ‖ · ‖V , respectively. We also equip the space Q with inner product (·, ·)Q and
norm ‖ ·‖Q, which are defined as follows. For p = (p1, p2) ∈ Q and q = (q1, q2) ∈ Q,

(p, q)Q = (p1, q1)V + (p2, q2)V ,

and

‖p‖Q =
√

(p, p)Q.

In addition, we mention that, at each pixel (i, j),

|pi,j | = |(p1i,j , p2i,j)| =
√

(p1i,j)
2 + (p2i,j)

2,

is the usual Euclidean norm in R
2. From the subscript i, j, one may regard |pi,j | as

pixel-by-pixel norm of p. In the case without confusion, we will omit the subscripts
V and Q and just use (·, ·) and ‖ · ‖ to denote the usual inner products and L2

norms. In this paper, we also use ‖v‖L1 to denote the L1 norm of v ∈ V .
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Using the inner products of V and Q, we can find the adjoint operator of −∇,
i.e., the discrete divergence operator div : Q→ V . Given p = (p1, p2) ∈ Q, we have

(divp)i,j = p1i,j − p1i,j−1 + p2i,j − p2i−1,j = (D̊−
x p

1)i,j + (D̊−
y p

2)i,j ,

where D̊−
x and D̊−

y are backward difference operators with periodic boundary con-

ditions p1i,0 = p1i,N and p20,j = p2N,j. See also [57].

3. The total variation image restoration. Assume f ∈ V is an observed image
containing both blur and noise. The degradation procedure is in general modelled
as follows

(1) u
blur−−→ Ku

noise−−−→ f,

where u ∈ V is the true image and K : V → V is a blur operator. Here we do not
specify the noise model. It can be Gaussian, impulsive, Poisson and even others.
Image restoration aims at recovering u from f . Since the problem is usually ill-
posed, we cannot directly solve u from (1). Regularization on the solution should
be considered. One of the most basic and successful image restoration models is
based on total variation regularization, which reads

(2) min
u∈V

{E(u) = R(∇u) + F (Ku)},

where

(3) R(∇u) = TV(u) =
∑

1≤i,j≤N

|(∇u)i,j |,

is the total variation of u [48], and F (Ku) is a fidelity term.
In this paper we only consider the case where the blur operator K is given. Since

the blur is essentially averaging, it is reasonable to assume

• Assumption 1. null(∇) ∩ null(K) = {0},
where null(·) is the null space of ·.

The form of the fidelity term depends on the statistic of the noise model. Some
typical noise models and their corresponding fidelity terms are as follows:

1. Gaussian noise:

F (Ku) =
α

2
‖Ku− f‖2,

2. Impulsive noise:

F (Ku) = α‖Ku− f‖L1,

3. Poisson noise (assuming fi,j > 0, ∀i, j, as in [36]):

F (Ku) =

{

α
∑

1≤i,j≤N

((Ku)i,j − fi,j log(Ku)i,j), (Ku)i,j > 0, ∀ i, j

+∞, otherwise
,

where α > 0 is a parameter. Note for Poisson noise, we extend the definition of the
fidelity to the whole space V , compared to [36] (where K = I) and [6]. To define
the fidelity over the whole space is convenient for analysis. We make the following
assumptions for the fidelity term:

• Assumption 2. dom(R ◦ ∇) ∩ dom(F ◦K) 6= ∅;
• Assumption 3. F (z) is convex, proper, and coercive;
• Assumption 4. F (z) is continuous over dom(F ),
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where dom(F ) = {z ∈ V : F (z) < +∞} is the domain of F , with similar definitions
for dom(R ◦ ∇) and dom(F ◦ K). These assumptions are relatively quite general
and many fidelities such as those listed above meet all of them.

Under the Assumptions 1, 2, 3 and 4, it can be verified that the functional E(u)
in (2) is convex, proper, coercive, and lower semi continuous. According to the
generalized Weierstrass theorem and Fermat’s rule [22, 27], we have the following
result.

Theorem 3.1. The problem (2) has at least one solution u, which satisfies

(4) 0 ∈ K∗∂F (Ku)− div∂R(∇u),

where ∂F (Ku) and ∂R(∇u) are the sub-differentials [22] of F at Ku and R at ∇u,
respectively. Moreover, if F ◦K(u) is strictly convex, the minimizer is unique.

So far many efficient algorithms have been proposed [14, 9, 11, 66, 67, 56, 58,
32, 62, 28, 54, 57] to solve total variation minimization with a quadratic fidelity. In
the following we extend our recent work [54, 57] for total variation restoration with
non-quadratic fidelities satisfying the above assumptions.

4. Augmented Lagrangian method for total variation restoration. In this
section we present to use augmented Lagrangian method for total variation restora-
tion with a non-quadratic fidelity term which satisfies our (relatively quite general)
assumptions. Since F (Ku) is non-quadratic, its first order variation is not linear.
Compared with the augmented Lagrangian method for TV-L2 model [54, 57], we
need one more auxiliary variable to eliminate the nonlinearity for u.

In particular, we introduce two new variables p ∈ Q and z ∈ V and reformulate
the problem to be the following constrained optimization problem

min
u∈V,p∈Q,z∈V

{G(p, z) = R(p) + F (z)}

s.t. p = ∇u, z = Ku
.(5)

To solve (5), we define the following augmented Lagrangian functional

L (u, p, z;λp, λz)

=R(p) + F (z) + (λp, p−∇u) + (λz , z −Ku) +
rp

2
‖p−∇u‖2 + rz

2
‖z −Ku‖2,(6)

with Lagrange multipliers λp ∈ Q, λz ∈ V and positive constants rp, rz , and then
consider the following saddle-point problem:

(7)
Find (u∗, p∗, z∗;λ∗p, λ

∗
z) ∈ V ×Q× V ×Q× V,

s.t.
L (u∗, p∗, z∗;λp, λz) ≤ L (u∗, p∗, z∗;λ∗p, λ

∗
z) ≤ L (u, p, z;λ∗p, λ

∗
z),

∀(u, p, z;λp, λz) ∈ V ×Q× V ×Q× V.

Note that, differently from [24, 25, 52], here it is no need to require rp = rz .
According to our test, more efficiency can be achieved by allowing rp 6= rz. However,
the convergence analysis when rp 6= rz is more difficult than the case rp = rz; see
Section 4.2 for details.

Similarly to [57], we can prove the following result.

Theorem 4.1. u∗ ∈ V is a solution of (2) if and only if there exist (p∗, z∗) ∈ Q×V
and (λ∗p, λ

∗
z) ∈ Q× V such that (u∗, p∗, z∗;λ∗p, λ

∗
z) is a solution of (7).
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Proof. We just provide a sketch since the idea is similar to that in [57].
Suppose (u∗, p∗, z∗;λ∗p, λ

∗
z) is a solution of (7). From the first inequality in (7),

we have

(8)

{

p∗ −∇u∗ = 0,
z∗ −Ku∗ = 0.

The above relation, together with the second inequality in (7), indicates that u∗ is
a solution of (2).

Conversely, we assume that u∗ ∈ V is a solution of (2). We take p∗ = ∇u∗ ∈ Q

and z∗ = Ku∗ ∈ V . From (4), there exist λ∗p and λ∗z such that −λ∗p ∈ ∂R(∇u∗) and
−λ∗z ∈ ∂F (Ku∗) with −K∗λ∗z +divλ∗p = 0. We can verify that (u∗, p∗, z∗;λ∗p, λ

∗
z) is

a saddle-point of L , which completes the proof.

Theorems 3.1 and 4.1 show that the saddle-point problem (7) has at least one
solution and any solution provides a solution of the original problem (2). In the
following we present how to solve the saddle-point problem.

4.1. An iterative algorithm for the saddle-point problem. We use the fol-
lowing iterative algorithm to solve the saddle-point problem (7).

Algorithm 4.1 Augmented Lagrangian method for TV restoration with non-
quadratic fidelity

1. Initialization: λ0p = 0, λ0z = 0, u−1 = 0, p−1 = 0, z−1 = 0;
2. For k=0,1,2,...:

(a) compute (uk, pk, zk) as an (approximate) minimizer of the augmented
Lagrangian functional with the Lagrange multipliers λkp, λ

k
z , i.e.,

(9) (uk, pk, zk) ≈ arg min
(u,p,z)∈V×Q×V

L (u, p, z;λkp, λ
k
z),

where L (u, p, z;λkp, λ
k
z) is as in (6);

(b) update

(10)
λk+1
p = λkp + rp(p

k −∇uk)
λk+1
z = λkz + rz(z

k −Kuk)
.

Since the variables u, p, z in L (u, p, z;λkp, λ
k
z) are coupled together in the min-

imization problem (9), it’s difficult to solve them simultaneously. Therefore we
separate the problem to three sub-problems and then apply an alternative mini-
mization. The three sub-problems are as follows:

• u−sub problem: Given p, z,

(11) min
u∈V

{(λkp,−∇u) + (λkz ,−Ku) +
rp

2
‖p−∇u‖2 + rz

2
‖z −Ku‖2}.

• p−sub problem: Given u, z,

(12) min
p∈Q

{R(p) + (λkp , p) +
rp

2
‖p−∇u‖2}.

• z−sub problem: Given u, p,

(13) min
z∈V

{F (z) + (λkz , z) +
rz

2
‖z −Ku‖2}.
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Note here we omit the constant terms in the objective functionals in (11), (12) and
(13).

In the following we show how to efficiently solve these sub-problems and then
present an alternative minimization algorithm to solve (9).

4.1.1. Solving the u−sub problem (11). The problem (11) is a quadratic optimiza-
tion problem, whose optimality condition reads

divλkp −K∗λkz + rpdiv(p−∇u)− rzK
∗(z −Ku) = 0,

by considering the periodic boundary conditions. Following [56, 58, 59, 54, 57], we
use Fourier transform (and hence FFT implementation) to solve the above linear
equation. Denoting F(u) as the Fourier transform of u, we have

(rzF(K∗)F(K)− rpF(4))F(u)

=F(K∗)(F(λkz ) + rzF(z))−F(D̊−
x )(F((λ1p)

k) + rpF(p1))

−F(D̊−
y )(F((λ2p)

k) + rpF(p2))

,(14)

where λkp = ((λ1p)
k, (λ2p)

k) and p = (p1, p2); and Fourier transforms of operators

such as K, D̊−
x , D̊

−
y ,4 = D̊−

x D̊
+
x + D̊−

y D̊
+
y are regarded as the transforms of their

corresponding convolution kernels.

4.1.2. Solving the p−sub problem (12). Similarly to [7, 56, 54, 57], (12) has the
following closed form solution

(15) pi,j = max(0, 1− 1

rp|wi,j |
)wi,j , ∀ i, j

where

(16) w = ∇u−
λkp

rp
∈ Q.

Here we would like to provide a geometric interpretation of the formulae (15),
which is different from the view point of sub-differential [56]. According to the
definition of R(p) and ‖ · ‖Q, we rewrite the problem (12) as

min
p∈Q

{
∑

1≤i,j≤N

|pi,j |+
rp

2

∑

1≤i,j≤N

|pi,j − (∇u−
λkp

rp
)i,j |2 +Constant}.

As one can see, the above problem is decomposable and at each pixel (i, j), the
problem takes the form as follows

(17) min
q∈R2

{|q|+ rp

2
|q − w|2},

where w ∈ R
2; see Fig. 1.

First of all, it can be verified (and imagined) that the potential minimizer should
locate inside of the solid circle. By constructing symmetric points, we can further
demonstrate that the potential minimizer should locate in the same quadrant as w.
Therefore in the example in Fig. 1, we only need to consider those points located
inside of the solid circle and in the first quadrant, e.g., q. For such a point q, we
draw a dashed circle with O as the center and |q| as the radius. Assume this circle
intersects the line segment Ow at q∗. By the triangle inequality of the Euclidean
norm | · | in R

2, we have

|q|+ |q − w| ≥ |w| = |q∗|+ |q∗ − w|.
Inverse Problems and Imaging Volume 5, No. 1 (2011), 237–261
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bb
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Figure 1. A geometric interpretation of the formulae (15)

Since |q| = |q∗|, we obtain

|q − w| ≥ |q∗ − w|,
indicating

|q|+ rp

2
|q − w|2 ≥ |q∗|+ rp

2
|q∗ − w|2.

This means the solution of the problem (17) will locate on the line segment Ow.
Denoting q = βw with 0 ≤ β ≤ 1, we hence simplify (17) to be the following
1-dimensional problem

(18) min
0≤β≤1

{β|w|+ rp

2
(β − 1)2|w|2}.

The above (18) can be solved exactly, with a closed form solution as

β∗ = max(0, 1− 1

rp|w|
).

The solution of (17) follows immediately.
We further give two comments on this geometric interpretation. First, this ob-

servation (to solve (17)) can be extended to higher (> 2) dimensional problems as
we did in [57] for vectorial and high order TV models. Second, the method can also
be applied to problems with general regularization terms, say, general R(q) (not
only |q|) in (17), as long as the regularizer R(q) depends only on |q|.

4.1.3. Solving the z−sub problem (13). For a general fidelity F , it is no reason to
find a closed form solution for (13). Fortunately, the objective functional in (13) is
strictly convex, proper, coercive and lower semi continuous. Therefore, (13) has a
unique solution and can be obtained by various numerical optimization methods.
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It should be mentioned that, for some special and typical (non-quadratic) fideli-
ties, the z−sub problem still has closed form solution; see Section 5. Our method
is therefore particularly efficient for these ones.

After knowing how to solve (11), (12) and (13), we present the following alter-
native minimization procedure to solve (9). It is with Gauss-Seidel flavor.

Algorithm 4.2 Augmented Lagrangian method for TV restoration with non-
quadratic fidelity – solve the minimization problem (9)

• Initialization: uk,0 = uk−1, pk,0 = pk−1, zk,0 = zk−1;
• For l = 0, 1, 2, ..., L− 1:

– compute uk,l+1 from (14) for p = pk,l, z = zk,l;
– compute pk,l+1 from (15) for u = uk,l+1;
– compute zk,l+1 by solving (13) for u = uk,l+1;

• uk = uk,L, pk = pk,L, zk = zk,L.

Here L can be chosen using some convergence test techniques. In this paper,
we simply set L = 1. In our experiments we found that with larger L (> 1)
the algorithm wastes the accuracy of the inner iteration and does not speed up
dramatically the convergence of the overall algorithm (Algorithm 4.1 with Algorithm
4.2 as a sub algorithm). This has also been observed in [28, 54, 57]. To simply set
L = 1 also benefits the efficiency of the algorithm, since we do not need to compute
those residuals of the optimality conditions used to stop Algorithm 4.2.

4.2. Convergence analysis. In this subsection we give some convergence results
of the augmented Lagrangian method applied to total variation restoration with
non-quadratic fidelity. We focus on analyzing Algorithm 4.1. In particular, we will
prove the convergence of Algorithm 4.1 in two limiting cases where the minimiza-
tion problem (9) is computed by Algorithm 4.2 with full accuracy (L → ∞, by
assuming Algorithm 4.2 is convergent) and rough accuracy (L = 1), respectively.
The convergence of Algorithm 4.2 depends on the fidelity F and can be checked
when F is given; see Section 5 for two important fidelities.

Our proof is motivated by the classic analysis techniques; see [27]. It should
be pointed out that the techniques in [27, 57] cannot be straightforwardly applied
to our case. The reason is that in general rp 6= rz , the monotonically decreasing
sequences constructed in [27, 57] do not hold. Therefore, we need to construct two
new monotonically decreasing sequences to derive the results. Consequently, other
details of the analysis in [27, 57] should also be modified to fit the derivation based
on the two new sequences.

Theorem 4.2. Assume (u∗, p∗, z∗;λ∗p, λ
∗
z) is a saddle-point of L (u, p, z;λp, λz).

Suppose that the minimization problem (9) is exactly solved in each iteration, i.e.,

L→ ∞ in Algorithm 4.2. Then the sequence (uk, pk, zk;λkp, λ
k
z ) generated by Algo-

rithm 4.1 satisfies

(19)















lim
k→∞

(R(pk) + F (zk)) = R(p∗) + F (z∗) = E(u∗),

lim
k→∞

‖pk −∇uk‖ = 0,

lim
k→∞

‖zk −Kuk‖ = 0.

Moreover, (19) indicates that uk is a minimizing sequence of E(·). If the minimizer

of E(·) is unique, then uk → u∗.

Inverse Problems and Imaging Volume 5, No. 1 (2011), 237–261
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Proof. Let us define uk, pk, zk, λp
k
, λz

k
, as

uk = uk − u∗, pk = pk − p∗, zk = zk − z∗, λp
k
= λkp − λ∗p, λz

k
= λkz − λ∗z .

Since (u∗, p∗, z∗;λ∗p, λ
∗
z) is a saddle-point of L (u, p, z;λp, λz), we have

(20)
L (u∗, p∗, z∗;λp, λz) ≤ L (u∗, p∗, z∗;λ∗p, λ

∗
z) ≤ L (u, p, z;λ∗p, λ

∗
z),

∀(u, p, z;λp, λz) ∈ V ×Q× V ×Q× V.

From the first inequality of (20), we have
{

p∗ = ∇u∗,
z∗ = Ku∗.

This relationship, together with (10), indicates
{

λp
k+1

= λp
k
+ rp(p

k −∇uk),
λz

k+1
= λz

k
+ rz(z

k −Kuk),

which is equivalent to

(21)

{ √
rzλp

k+1
=

√
rzλp

k
+ rp

√
rz(p

k −∇uk),
√
rpλz

k+1
=

√
rpλz

k
+ rz

√
rp(z

k −Kuk).

The observation (21) is a key formula in our proof, and helps to construct a useful
monotonically decreasing sequence, which is different from that in [27, 57].

It then follows that

(rz‖λp
k‖2 + rp‖λz

k‖2)− (rz‖λp
k+1‖2 + rp‖λz

k+1‖2)

=− 2rprz(λp
k
, pk −∇uk)− r2prz‖pk −∇uk‖2

− 2rprz(λz
k
, zk −Kuk)− r2zrp‖zk −Kuk‖2.

(22)

In the following we show that the right hand side of (22) is not less than 0 and thus

the sequence {(rz‖λp
k‖2 + rp‖λz

k‖2)} is monotonically decreasing.
From the second inequality of (20), (u∗, p∗, z∗) is characterized by

(23)
(divλ∗p, u− u∗) + rp(div(p

∗ −∇u∗), u− u∗)
+(λ∗z ,−K(u− u∗)) + rz(z

∗ −Ku∗,−K(u− u∗)) ≥ 0, ∀u ∈ V,

(24) R(p)−R(p∗) + (λ∗p, p− p∗) + rp(p
∗ −∇u∗, p− p∗) ≥ 0, ∀p ∈ Q,

(25) F (z)− F (z∗) + (λ∗z , z − z∗) + rz(z
∗ −Ku∗, z − z∗) ≥ 0, ∀z ∈ V.

Similarly, (uk, pk, zk) is characterized by

(26)
(divλkp, u− uk) + rp(div(p

k −∇uk), u− uk)
+(λkz ,−K(u− uk)) + rz(z

k −Kuk,−K(u− uk)) ≥ 0, ∀u ∈ V,

(27) R(p)−R(pk) + (λkp , p− pk) + rp(p
k −∇uk, p− pk) ≥ 0, ∀p ∈ Q,

(28) F (z)− F (zk) + (λkz , z − zk) + rz(z
k −Kuk, z − zk) ≥ 0, ∀z ∈ V,

since (uk, pk, zk) is the solution of (9). Taking u = uk in (23), u = u∗ in (26),
p = pk in (24), p = p∗ in (27), z = zk in (25), and z = z∗ in (28), respectively, we
obtain, by addition

(29) − (λp
k
, pk −∇uk)− (λz

k
, zk −Kuk) ≥ rp‖pk −∇uk‖2 + rz‖zk −Kuk‖2,
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which is equivalent to
(30)

−rprz(λp
k
, pk−∇uk)−rprz(λz

k
, zk−Kuk) ≥ r2prz‖pk−∇uk‖2+rpr2z‖zk−Kuk‖2.

From (22) and (30), we have

(rz‖λp
k‖2 + rp‖λz

k‖2)− (rz‖λp
k+1‖2 + rp‖λz

k+1‖2)
≥r2prz‖pk −∇uk‖2 + rpr

2
z‖zk −Kuk‖2,

(31)

which indicates

(32)











{λkp : ∀k} and {λkz : ∀k} are bounded,
lim
k→∞

‖pk −∇uk‖ = 0,

lim
k→∞

‖zk −Kuk‖ = 0.

On the other hand, the second inequality of (20) implies

R(p∗) + F (z∗) ≤R(pk) + F (zk) + (λ∗p, p
k −∇uk) + (λ∗z , z

k −Kuk)

+
rp

2
‖pk −∇uk‖2 + rz

2
‖zk −Kuk‖2.

(33)

If we take u = u∗ in (26), p = p∗ in (27), and z = z∗ in (28), we have, by addition,

R(p∗) + F (z∗) ≥R(pk) + F (zk) + (λkp , p
k −∇uk) + (λkz , z

k −Kuk)

+ rp‖pk −∇uk‖2 + rz‖zk −Kuk‖2.
(34)

Using (32), we have

(35) lim inf(R(pk) + F (zk)) ≥ R(p∗) + F (z∗) ≥ lim sup(R(pk) + F (zk)),

by taking lim inf in (33) and lim sup in (34). Hence we complete the proof of (19).
Since R(·) and F (·) are both continuous over their domains, (19) implies clearly

that uk is a minimizing sequence of E(·). If the minimizer of E(·) is unique, then
uk → u∗.

Theorem 4.3. Assume (u∗, p∗, z∗;λ∗p, λ
∗
z) is a saddle-point of L (u, p, z;λp, λz).

Suppose that the minimization problem (9) is roughly solved in each iteration, i.e.,

L = 1 in Algorithm 4.2. Then the sequence (uk, pk, zk;λkp, λ
k
z) generated by Algo-

rithm 4.1 satisfies

(36)















lim
k→∞

(R(pk) + F (zk)) = R(p∗) + F (z∗) = E(u∗),

lim
k→∞

‖pk −∇uk‖ = 0,

lim
k→∞

‖zk −Kuk‖ = 0.

Moreover, (36) indicates that uk is a minimizing sequence of E(·). If the minimizer

of E(·) is unique, then uk → u∗.

Proof. Again we define the following errors uk, pk, zk, λp
k
, λz

k
, as

uk = uk − u∗, pk = pk − p∗, zk = zk − z∗, λp
k
= λkp − λ∗p, λz

k
= λkz − λ∗z .

In this case, (22) still holds, which is represented as follows

(rz‖λp
k‖2 + rp‖λz

k‖2)− (rz‖λp
k+1‖2 + rp‖λz

k+1‖2)

=− 2rprz(λp
k
, pk −∇uk)− r2prz‖pk −∇uk‖2

− 2rprz(λz
k
, zk −Kuk)− r2zrp‖zk −Kuk‖2.

(37)
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Since (u∗, p∗, z∗;λ∗p, λ
∗
z) is a saddle-point of L (u, p, z;λp, λz), (u

∗, p∗, z∗) is char-
acterized by

(38)
(divλ∗p, u− u∗) + rp(div(p

∗ −∇u∗), u− u∗)
+(λ∗z ,−K(u− u∗)) + rz(z

∗ −Ku∗,−K(u− u∗)) ≥ 0, ∀u ∈ V,

(39) R(p)−R(p∗) + (λ∗p, p− p∗) + rp(p
∗ −∇u∗, p− p∗) ≥ 0, ∀p ∈ Q,

(40) F (z)− F (z∗) + (λ∗z , z − z∗) + rz(z
∗ −Ku∗, z − z∗) ≥ 0, ∀z ∈ V.

Similarly, by the construction of (uk, pk, zk) (Algorithm 4.2 with L = 1), we have

(41)
(divλkp, u− uk) + rp(div(p

k−1 −∇uk), u− uk)
+(λkz ,−K(u− uk)) + rz(z

k−1 −Kuk,−K(u− uk)) ≥ 0, ∀u ∈ V,

(42) R(p)−R(pk) + (λkp , p− pk) + rp(p
k −∇uk, p− pk) ≥ 0, ∀p ∈ Q,

(43) F (z)− F (zk) + (λkz , z − zk) + rz(z
k −Kuk, z − zk) ≥ 0, ∀z ∈ V,

Taking u = uk in (38), u = u∗ in (41), p = pk in (39), p = p∗ in (42), z = zk in
(40), and z = z∗ in (43), respectively, we obtain, after addition

− (λp
k
, pk −∇uk)− (λz

k
, zk −Kuk)

≥rp‖pk −∇uk‖2 + rz‖zk −Kuk‖2

+ rp(∇uk, pk − pk−1) + rz(Ku
k, zk − zk−1).

(44)

(37) and (44) indicate

(rz‖λp
k‖2 + rp‖λz

k‖2)− (rz‖λp
k+1‖2 + rp‖λz

k+1‖2)
≥r2prz‖pk −∇uk‖2 + rpr

2
z‖zk −Kuk‖2

+ 2r2prz(∇uk, pk − pk−1) + 2rpr
2
z(Ku

k, zk − zk−1).

(45)

On the other hand, we have, by using the same technique as in [27, 57], the following
estimates

(46)

{

(∇uk, pk − pk−1) ≥ 1
2 (‖pk‖2 − ‖pk−1‖2 + ‖pk − pk−1‖2),

(Kuk, zk − zk−1) ≥ 1
2 (‖zk‖2 − ‖zk−1‖2 + ‖zk − zk−1‖2).

We then obtain, from (45) and (46),

(rz‖λp
k‖2 + rp‖λz

k‖2 + r2prz‖pk−1‖2 + rpr
2
z‖zk−1‖2)

− (rz‖λp
k+1‖2 + rp‖λz

k+1‖2 + r2prz‖pk‖2 + rpr
2
z‖zk‖2)

≥r2prz‖pk −∇uk‖2 + rpr
2
z‖zk −Kuk‖2

+ r2prz‖pk − pk−1‖2 + rpr
2
z‖zk − zk−1‖2,

(47)

which implies
(48)






























{λkp : ∀k}, {λkz : ∀k}, {pk : ∀k}, {zk : ∀k}, {∇uk : ∀k}, and {Kuk : ∀k} are bounded,
lim
k→∞

‖pk −∇uk‖ = 0,

lim
k→∞

‖pk − pk−1‖ = 0,

lim
k→∞

‖zk −Kuk‖ = 0,

lim
k→∞

‖zk − zk−1‖ = 0.
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On the other hand, since (u∗, p∗, z∗;λ∗p, λ
∗
z) is a saddle-point of L (u, p, z;λp, λz),

we have

R(p∗) + F (z∗) ≤R(pk) + F (zk) + (λ∗p, p
k −∇uk) + (λ∗z , z

k −Kuk)

+
rp

2
‖pk −∇uk‖2 + rz

2
‖zk −Kuk‖2.

(49)

If we take u = u∗ in (41), p = p∗ in (42), and z = z∗ in (43), we have, by addition,

R(p∗) + F (z∗) ≥R(pk) + F (zk) + (λkp , p
k −∇uk) + (λkz , z

k −Kuk)

+ rp‖pk −∇uk‖2 + rz‖zk −Kuk‖2

+ rp(∇uk, pk − pk−1) + rz(Ku
k, zk − zk−1).

(50)

Using (48), we have

(51) lim inf(R(pk) + F (zk)) ≥ R(p∗) + F (z∗) ≥ lim sup(R(pk) + F (zk)),

by taking lim inf in (49) and lim sup in (50). This completes the proof of (36).
By the continuity of R(·) and F (·) over their domains, (36) indicates clearly

that uk is a minimizing sequence of E(·). If the minimizer of E(·) is unique, then
uk → u∗.

We would like to add a comment on Theorem 4.3. It is stated in [63] that
augmented Lagrangian method requires (numerically) increasing accuracy of the
inner iteration to ensure the convergence of the overall algorithm. Theorem 4.3
indicates that, even if we just simply set L = 1 (thus not explicitly increasing the
accuracy by checking optimality conditions), the accuracy of the inner iteration
will also essentially and automatically increase, justifying the statement in [63].
As a consequence, setting L = 1 provides a simple stopping criterion of the inner
iteration, which does not need to compute those optimality conditions and thus
reduces the CPU cost.

5. Applications. In this section we apply augmented Lagrangian method to TV
restoration with some typical and important non-quadratic fidelities. We focus
on TV-L1 restoration for recovering blurred images corrupted by impulsive noise
(e.g., salt-and-pepper noise and random-valued noise), and TV-KL restoration for
recovering blurred images corrupted by Poisson noise. In these two cases, the z−sub
problems have closed form solutions, which can be solved very efficiently. For the
sake of completeness, we elaborate Algorithm 4.2 for TV-L1 and TV-KL restoration
as the following Algorithm 5.1 and Algorithm 5.2, respectively. Moreover, we will
prove the convergence of these two algorithms. Numerical examples will also be
provided.

5.1. Augmented Lagrangian method for TV-L1 restoration. TV-L1 restora-
tion model is especially useful for deblurring images corrupted by impulsive noise.
It aims at solving the following minimization problem:

(52) min
u∈V

{ETVL1(u) = R(∇u) + α‖Ku− f‖L1},

where R(∇u) = TV(u).
The problem (52) is a special case of (2) where the fidelity term is

(53) F (Ku) = α‖Ku− f‖L1.
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Therefore we can apply Algorithms 4.1 and 4.2 to solve (52). For this special fidelity,
we have the following explicit solution for the z−sub problem (13):

(54) zi,j = fi,j +max(0, 1− α

rz |wi,j − fi,j|
)(wi,j − fi,j),

where

(55) w = Ku− λkz
rz

∈ V.

The derivation of (54) is similar to (15) by the geometric interpretation.
Hence in this case Algorithm 4.2 can be detailed as follows.

Algorithm 5.1 Augmented Lagrangian method for TV-L1 restoration – solve the
minimization problem (9)

• Initialization: uk,0 = uk−1, pk,0 = pk−1, zk,0 = zk−1;
• For l = 0, 1, 2, ..., L− 1:

– compute uk,l+1 from (14) for p = pk,l, z = zk,l;
– compute pk,l+1 from (15) for u = uk,l+1;
– compute zk,l+1 from (54) for u = uk,l+1;

• uk = uk,L, pk = pk,L, zk = zk,L.

We have the following convergence result for Algorithm 5.1.

Theorem 5.1. For TV-L1 restoration, the sequence {(uk,l, pk,l, zk,l) : l = 0, 1, 2, · · · }
generated by Algorithm 5.1 converges to a solution of the problem (9).

Proof. The proof is motivated by [56, 59] and similar to that of Theorem 4.2 in [57].
Here we just sketch the differences.

Similarly with sτ and s in [56, 59], we define operators s1 and s2 as

s1(t) = max(0, 1− α

rz |t|
)t, for t ∈ R,

and

s2(t) = max(0, 1− 1

rp|t|
)t, for t ∈ R

2.

According to (54), it is useful to further define

(S1)i,j(t) = fi,j + s1(t),

for each pixel (pair (i, j) of index).
By (S1)i,j and s2, we then construct operators S1 and S2 such that (54) and

(15) can be reformulated as z = S1(w − f) and p = S2(w), respectively, with w

defined in (55) and w in (16). Therefore the iterative scheme in Algorithm 5.1 can
be written as

(56)











uk,l+1 = (rzK
∗K + rp∇∗∇)−1(K∗(λkz + rzz

k,l) +∇∗(λkp + rpp
k,l)),

pk,l+1 = S2(∇uk,l+1 − λk
p

rp
),

zk,l+1 = S1(Ku
k,l+1 − λk

z

rz
− f),

where ∇∗ = −div is the adjoint operator of ∇. Here we also mention the existence
of (rzK

∗K + rp∇∗∇)−1 for the assumption Null(∇) ∩ Null(K) = {0}.
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Furthermore, we define two linear operators h2 : Q×V → Q and h1 : Q×V → V

as follows:
(57)






h2(p, z) = ∇(rzK
∗K + rp∇∗∇)−1(K∗(λkz + rzz) +∇∗(λkp + rpp))−

λk
p

rp
,

h1(p, z) = K(rzK
∗K + rp∇∗∇)−1(K∗(λkz + rzz) +∇∗(λkp + rpp))− λk

z

rz
− f.

The non-expansiveness of ĥ : Q × V → Q × V , which is given by ĥ(p, z) =
(h2(p, z), h1(p, z)), can be similarly verified as in [56, 59].

Rewriting the iterative scheme (56) as

(58)

{

uk,l+1 = (rzK
∗K + rp∇∗∇)−1(K∗(λkz + rzz

k,l) +∇∗(λkp + rpp
k,l)),

(pk,l+1, zk,l+1) = (S2 ◦ h2;S1 ◦ h1)(pk,l, zk,l),

one can show the convergence via a similar argument in [56, 59].

Here we show some examples. In Fig. 2, and 3, we compute the TV-L1 model
for removing 7× 7 sized Gaussian blur and salt-and-pepper noise from 30% to 60%.
The TV-L1 model is also computed for removing 7 × 7 sized Gaussian blur and
random-valued noise from 20% to 50% in Fig. 4. In Fig. 5 an example is provided
to show the TV-L1 restoration of the cameraman degraded by 15×15 sized Gaussian
blur and salt-and-pepper noise from 30% to 60%.

In each figure, α, t, and SNR denote the parameter of the model, the CPU cost
(in seconds), and the signal-noise ratio of the image, respectively. Note here we use
the same α’s for all the methods in each example, since our goal is to compare the
efficiency of different methods for the same model.

We compare our method (ALM with parameters rp and rz) with the FTVd
package. The FTVd v2.0 is denoted for the FTVd version 2.0, and FTVd v4.0 is
for FTVd version 4.0. As far as we know, FTVd version 2.0 is one of the most
efficient published algorithms for TV-L1 restoration; see [59]. When this paper was
nearly finished, we got to know that the Rice L1 group had released FTVd version
4.0 recently. Therefore we compare our method to these two versions. As one can
see, augmented Lagrangian method is much more efficient than FTVd version 2.0.
This advantage becomes more and more obvious when the noise level gets higher
and the image size gets larger. The potential reason may be as follows. First,
in our method, we simply set L = 1 for inner iteration and hence do not need to
compute those residuals for stopping criterion, which are calculated in FTVd version
2.0. Second, augmented Lagrangian method benefits from its Lagrange multipliers
update, which can be actually interpreted [54, 51, 57] as sub-gradients update in
split Bregman iteration, and makes the method extremely efficient for homogeneous
1 objective functionals. The performances of our method and FTVd version 4.0 are
very similar. FTVd version 4.0 uses alternating direction method (ADM) with a
similar (not the same) variable splitting technique with ours. For low noise level,
our method seems to be a little more efficient that FTVd version 4.0. For high noise
level, FTVd version 4.0 appears to be a bit better than ours. We finally mention
that, very recently we got to know FTVd version 4.1 released, which improves the
efficiency of the previous version by replacing the Matlab built-in call “imfilter” for
image convolution with FFT implementation. This replacement and improvement
are worthy of being implemented in our method.
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In Fig. 6 and 7, we show two examples calculated via augmented Lagrangian
method with different parameters. One may find that better efficiency can be
achieved by allowing rp 6= rz .

Blurry&Noisy:
30% Salt&Pepper 40% Salt&Pepper 50% Salt&Pepper 60% Salt&Pepper

Recovered(α: 13) Recovered(α: 10) Recovered(α: 8) Recovered(α: 4)
(FTVd v2.0) (FTVd v2.0) (FTVd v2.0) (FTVd v2.0)

t: 13.3s, SNR: 14.53dB t: 11.7s, SNR: 13.52dB t: 12.9s, SNR: 12.72dB t: 15.9s, SNR: 11.24dB

Recovered(α: 13) Recovered(α: 10) Recovered(α: 8) Recovered(α: 4)
(FTVd v4.0) (FTVd v4.0) (FTVd v4.0) (FTVd v4.0)

t: 4.2s, SNR: 14.20dB t: 3.5s, SNR: 13.43dB t: 3.2s, SNR: 12.72dB t: 2.9s, SNR: 11.23dB

Recovered(α: 13) Recovered(α: 10) Recovered(α: 8) Recovered(α: 4)
(ALM, rp: 20, rz: 100) (ALM, rp: 20, rz: 100) (ALM, rp: 10, rz: 100) (ALM, rp: 10, rz: 25)
t: 3.5s, SNR: 14.39dB t: 3.1s, SNR: 13.48dB t: 4.1s, SNR: 12.83dB t: 3.7s, SNR: 11.23dB

Figure 2. TV-L1 restoration from 7×7 sized Gaussian blur with
salt-and-pepper noise from 30% to 60% (image size 256× 256).

5.2. Augmented Lagrangian method for TV-KL restoration. To deblur im-
ages corrupted by Poisson noise, KL divergence is used as the data fidelity. In
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Blurry&Noisy:
30% Salt&Pepper 40% Salt&Pepper 50% Salt&Pepper 60% Salt&Pepper

Recovered(α: 13) Recovered(α: 10) Recovered(α: 8) Recovered(α: 4)
(FTVd v2.0) (FTVd v2.0) (FTVd v2.0) (FTVd v2.0)

t: 75.5s, SNR: 17.77dB t: 76.8s, SNR: 16.79dB t: 77.4s, SNR: 15.92dB t: 92.7s, SNR: 14.43dB

Recovered(α: 13) Recovered(α: 10) Recovered(α: 8) Recovered(α: 4)
(FTVd v4.0) (FTVd v4.0) (FTVd v4.0) (FTVd v4.0)

t: 17.1s, SNR: 16.62dB t: 16.3s, SNR: 16.12dB t: 15.4s, SNR: 15.53dB t: 14.1s, SNR: 14.28dB

Recovered(α: 13) Recovered(α: 10) Recovered(α: 8) Recovered(α: 4)
(ALM, rp: 20, rz: 100) (ALM, rp: 20, rz: 100) (ALM, rp: 20, rz: 100) (ALM, rp: 10, rz: 35)
t: 11.6s, SNR: 16.90dB t: 12.0s, SNR: 16.30dB t: 13.9s, SNR: 15.51dB t: 16.3s, SNR: 14.26dB

Figure 3. TV-L1 restoration from 7×7 sized Gaussian blur with
salt-and-pepper noise from 30% to 60% (image size 512× 512).

particular, we consider the following minimization problem:
(59)

min
u∈V

{ETVKL(u) = R(∇u)+α
∑

1≤i,j≤N

((Ku)i,j−fi,j log(Ku)i,j) : (Ku)i,j > 0, ∀ i, j},

where R(∇u) = TV(u).
The problem (59) is a special case of (2) where

(60) F (Ku) =

{

α
∑

1≤i,j≤N

((Ku)i,j − fi,j log(Ku)i,j), (Ku)i,j > 0, ∀ i, j

+∞, otherwise
.
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Blurry&Noisy:
20% Random-Valued 30% Random-Valued 40% Random-Valued 50% Random-Valued

Recovered(α: 25) Recovered(α: 10) Recovered(α: 8) Recovered(α: 4)
(FTVd v2.0) (FTVd v2.0) (FTVd v2.0) (FTVd v2.0)

t: 9.9s, SNR: 15.24dB t: 12.3s, SNR: 13.29dB t: 14.0s, SNR: 12.44dB t: 16.8s, SNR: 10.83dB

Recovered(α: 25) Recovered(α: 10) Recovered(α: 8) Recovered(α: 4)
(FTVd v4.0) (FTVd v4.0) (FTVd v4.0) (FTVd v4.0)

t: 5.7s, SNR: 13.62dB t: 4.0s, SNR: 12.97dB t: 3.1s, SNR: 12.32dB t: 3.1s, SNR: 11.00dB

Recovered(α: 25) Recovered(α: 10) Recovered(α: 8) Recovered(α: 4)
(ALM, rp: 20, rz: 120) (ALM, rp: 20, rz: 100) (ALM, rp: 15, rz: 120) (ALM, rp: 10, rz: 45)
t: 5.1s, SNR: 14.63dB t: 2.8s, SNR: 13.04dB t: 3.2s, SNR: 12.33dB t: 3.4s, SNR: 10.90dB

Figure 4. TV-L1 restoration from 7×7 sized Gaussian blur with
random-valued noise from 20% to 50% (image size 256× 256).

Therefore, Algorithms 4.1 and 4.2 can be applied to compute (59). For this special
fidelity, we also have, by considering zi,j > 0, a closed form solution to the z−sub
problem (13):

(61) zi,j =
1

2
(

√

(wi,j −
α

rz
)2 + 4

α

rz
fi,j + (wi,j −

α

rz
)),

where

(62) w = Ku− λkz
rz

∈ V.
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Blurry&Noisy:
30% Salt&Pepper 40% Salt&Pepper 50% Salt&Pepper 60% Salt&Pepper

Recovered(α: 13) Recovered(α: 10) Recovered(α: 8) Recovered(α: 4)
(FTVd v2.0) (FTVd v2.0) (FTVd v2.0) (FTVd v2.0)

t: 12.3s, SNR: 11.42dB t: 12.3s, SNR: 10.83dB t: 11.1s, SNR: 10.38dB t: 13.3s, SNR: 9.63dB

Recovered(α: 13) Recovered(α: 10) Recovered(α: 8) Recovered(α: 4)
(FTVd v4.0) (FTVd v4.0) (FTVd v4.0) (FTVd v4.0)

t: 4.7s, SNR: 10.91dB t: 4.3s, SNR: 10.57dB t: 3.5s, SNR: 10.22dB t: 3.0s, SNR: 9.62dB

Recovered(α: 13) Recovered(α: 10) Recovered(α: 8) Recovered(α: 4)
(ALM, rp: 20, rz: 120) (ALM, rp: 20, rz: 120) (ALM, rp: 20, rz: 100) (ALM, rp: 10, rz: 40)
t: 4.3s, SNR: 11.34dB t: 3.8s, SNR: 10.75dB t: 3.8s, SNR: 10.34dB t: 4.7s, SNR: 9.66dB

Figure 5. TV-L1 restoration from 15×15 sized Gaussian blur
with salt-and-pepper noise from 30% to 60% (image size 256×256).

Here we elaborate Algorithm 4.2 for TV-KL restoration as Algorithm 5.2.
For Algorithm 5.2, we have the following convergence result.

Theorem 5.2. For TV-KL restoration, the sequence {(uk,l, pk,l, zk,l) : l = 0, 1,
2, · · · } generated by Algorithm 5.2 converges to a solution of the problem (9).

Proof. As one can see, the only difference between Algorithm 5.2 and 5.1 is in the
solutions of the z−sub problems. We therefore define a mapping Ψ = (ψi,j) : V →
Inverse Problems and Imaging Volume 5, No. 1 (2011), 237–261
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Blurry&Noisy: Recovered(α: 8) Recovered(α: 8) Recovered(α: 8)
50% Salt&Pepper (ALM, rp: 20, rz: 20) (ALM, rp: 100, rz: 100) (ALM, rp: 20, rz: 100)

t: 6.1s, SNR: 11.99dB t: 6.0s, SNR: 12.04dB t: 3.5s, SNR: 12.08dB

Figure 6. TV-L1 restoration from 7×7 sized Gaussian blur with
50% salt-and-pepper noise: A better computational efficiency with
comparable restoration result (similar SNRs) is achieved by letting
rp 6= rz .

Blurry&Noisy: Recovered(α: 4) Recovered(α: 4) Recovered(α: 4)
50% Random-Valued (ALM, rp: 10, rz: 10) (ALM, rp: 45, rz : 45) (ALM, rp: 10, rz: 45)

t: 4.4s, SNR: 10.90dB t: 5.8s, SNR: 10.87dB t: 3.4s, SNR: 10.90dB

Figure 7. TV-L1 restoration from 7×7 sized Gaussian blur with
50% random-valued noise: A better computational efficiency with
comparable restoration result (similar SNRs) is achieved by letting
rp 6= rz .

Algorithm 5.2 Augmented Lagrangian method for TV-KL restoration – solve the
minimization problem (9)

• Initialization: uk,0 = uk−1, pk,0 = pk−1, zk,0 = zk−1;
• For l = 0, 1, 2, ..., L− 1:

– compute uk,l+1 from (14) for p = pk,l, z = zk,l;
– compute pk,l+1 from (15) for u = uk,l+1;
– compute zk,l+1 from (61) for u = uk,l+1;

• uk = uk,L, pk = pk,L, zk = zk,L.

V , according to (61), with ψi,j as

(63) ψi,j(t) =
1

2
(

√

t2 + 4
α

rz
fi,j + t).

In the following we prove the convergence in three steps.
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First, we show the sequence {(uk,l, pk,l, zk,l) : l = 0, 1, 2, · · · } is bounded. Ac-
cording to Algorithm 5.2, we have

L (uk,l+1, pk,l, zk,l;λkp, λ
k
z) ≤ L (uk,l, pk,l, zk,l;λkp, λ

k
z),

L (uk,l+1, pk,l+1, zk,l;λkp, λ
k
z) ≤ L (uk,l+1, pk,l, zk,l;λkp, λ

k
z ),

L (uk,l+1, pk,l+1, zk,l+1;λkp, λ
k
z) ≤ L (uk,l+1, pk,l+1, zk,l;λkp , λ

k
z).

By adding the above three equations, we have

L (uk,l+1, pk,l+1, zk,l+1;λkp, λ
k
z ) ≤ L (uk,l, pk,l, zk,l;λkp, λ

k
z ),

indicating that L (uk,l, pk,l, zk,l;λkp, λ
k
z) is monotonically decreasing. Since

L (u, p, z;λkp, λ
k
z) is proper and coercive with respect to (u, p, z), {(uk,l, pk,l, zk,l) :

l = 0, 1, 2, · · · } is bounded.
Secondly, we verify the mapping ψi,j is non-expansive (actually a contraction

mapping) over bounded domains. Given a bounded domain B and any t1 ∈ B, t2 ∈
B, we have, by basic calculus,

|ψi,j(t1)− ψi,j(t2)| ≤M |t1 − t2|,
with a constant M < 1. Here we used the assumption for TV-KL restoration that
fi,j > 0, ∀(i, j).

On the third, the convergence of Algorithm 5.2 can be proved similarly with that
of Algorithm 5.1.

We show some examples; see Fig. 8, 9 and 10. In each figure, α, t, and SNR
denote the parameter of the model, CPU cost (in seconds) and signal-noise ratio,
respectively. We compare the restoration results of TV-L2 and TV-KL models
calculated by augmented Lagrangian method (ALM) with parameters r and (rp, rz),
respectively. As one can see, TV-KL model produces much better results (with
higher SNR) than TV-L2 model. See also, the blurry effect of TV-L2 in Fig. 8 and
9. In addition, TV-KL model can still be calculated very efficiently by augmented
Lagrangian method. When allowing rp 6= rz , a better computational efficiency can
be achieved in TV-KL restoration (See Fig. 10), as in TV-L1 restoration.

TV-L2 Recovered(α:20) TV-KL Recovered(α:20)
Original image Blurry&Noisy: Poisson (ALM, r: 10) (ALM, rp: 10, rz: 20)

SNR: 13.27dB t: 1.7s, SNR: 22.49dB t: 3.8s, SNR: 24.11dB

Figure 8. Comparisons between TV-L2 and TV-KL restoration:
recovering degraded images with 7 × 7 sized Gaussian blur and
Poisson noise (image size 348× 348).

We give some remarks on our numerical tests. All the experiments were per-
formed under Windows XP and MATLAB R2007a running on a PC with Intel
Core 2.66GHz CPU and 2GB RAM. According to Theorem 4.3, we used ‖pk −
∇uk‖2 + ‖zk −Kuk‖2 < ε for some ε > 0 (which means small Lagrange multipliers
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TV-L2 Recovered(α:20) TV-KL Recovered(α:20)
Original image Blurry&Noisy: Poisson (ALM, r: 10) (ALM, rp: 20, rz: 40)

SNR: 10.39dB t: 5.3s, SNR: 12.84dB t: 8.4s, SNR: 13.96dB

Figure 9. Comparisons between TV-L2 and TV-KL restoration:
recovering degraded images with 7 × 7 sized Gaussian blur and
Poisson noise. The second row is the zoom-in of the first row (image
size 512× 512).

Blurry&Noisy: Poisson TV-KL Recovered TV-KL Recovered TV-KL Recovered
(α: 20) (α: 20) (α: 20)

(ALM, rp: 10, rz: 10) (ALM, rp: 20, rz: 20) (ALM, rp: 10, rz: 20)
t: 4.5s, SNR: 24.11dB t: 5.8s, SNR: 24.13dB t: 3.8s, SNR: 24.11dB

Figure 10. TV-KL restoration from 7 × 7 sized Gaussian blur
with Poisson noise: A better computational efficiency with compa-
rable restoration result (similar SNRs) is achieved by letting rp 6=
rz .

update and thus the minimization problem (9) changes little) as stopping condition
of Algorithm 4.1 in our tests.

6. Conclusion. In this paper we extended augmented Lagrangian method for TV-
L2 model to solve TV restoration with non-quadratic fidelity. After presenting and
analyzing the method for TV restoration with a relatively quite general fidelity, we
applied the algorithms to two typical image deblurring problems with non-Gaussian
noise. Once the fidelity is specified, one need only design a solver for the z−sub
problem. Due to FFT implementation or closed form solutions for the sub-problems,
as well as simple stopping criterion (L = 1) of the inner iteration, the proposed al-
gorithms are extremely efficient as demonstrated by the experiments. Since it is no
need to compute residuals (defined by some norms of some data with image size
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related dimensions, as in FTVd version 2.0) to stop inner iteration, our method ex-
hibits even greater advantage for large sized images. Experiments also showed that,
by allowing rp 6= rz in the proposed algorithms, a better computational efficiency
can be achieved. Moreover, we gave convergence analysis for the proposed algo-
rithms, by a sophisticated modification of previous analysis techniques. A possible
future work is to extend the method to color image recovering via TV (and even
Non-Local TV) restoration with non-quadratic fidelities.
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