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Abstract—Reconstructing the shape of a 3D object from
multi-view images under unknown, general illumination is a
fundamental problem in computer vision and high quality
reconstruction is usually challenging especially when high detail
is needed. This paper presents a total variation (TV) based
approach for recovering surface details using shading and
multi-view stereo (MVS). Behind the approach are our two
important observations: (1) the illumination over the surface of
an object tends to be piecewise smooth and (2) the recovery of
surface orientation is not sufficient for reconstructing geometry,
which were previously overlooked. Thus we introduce TV to
regularize the lighting and use visual hull to constrain partial
vertices. The reconstruction is formulated as a constrained TV-
minimization problem that treats the shape and lighting as
unknowns simultaneously. An augmented Lagrangian method
is proposed to quickly solve the TV-minimization problem.
As a result, our approach is robust, stable and is able to
efficiently recover high quality of surface details even starting
with a coarse MVS. These advantages are demonstrated by the
experiments with synthetic and real world examples.

I. INTRODUCTION

This paper considers the problem of recovering the surface
details of 3D shape of an object from multi-view images.
With advance and wide availability of various acquisition
devices, 3D shape recovery under general unknown illumina-
tion conditions is of significant interest in practice. Extensive
research has been done in this area and many techniques
have been developed. In particular, multi-view stereo (MVS)
methods [16] compute depth from corresponding views of
the same point in multiple images and reconstruct the overall
shape of an object well. Shape-from-shading (SfS) [30]
and photometric stereo (PS) methods [5], [22] use shading
information to estimate shapes and are able to recover high-
frequency surface details. Recently much work aims to
combine different techniques to improve the performance of
reconstruction [2], [3], [5], [8]–[10], [14], [20], [24], [25],
[28].

Though the state-of-the-art has achieved great success,
many methods still have various underlying requirements
that limit their application scope in practice. For example,
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SfS and PS methods require the surface reflectance proper-
ties to be known in advance or assume varying controlled
lighting conditions (in the studio lighting environment) in
order to compute the normals of surfaces accurately [27],
[28]. Wu et al. present an excellent method that combines
multi-view stereo and shading-based optimization for high
quality reconstruction [25], but their method assumes a good
initial MVS mesh. Usually such a mesh is also very dense.

This paper restricts the reconstruction to a static Lamber-
tian object from multi-view images captured under general,
unknown illumination conditions. This modest assumption
makes the applicable range wide. Similar to Wu et al. [25],
we are interested in integrating the strengths of MVS and
SfS. Different from [25], however, we aim at a shading-
based geometry refinement that is able to produce a high
resolution model with fine surface details from a coarse
initial MVS mesh. This will make our work insensitive to
the initial MVS result and easy to be used with the state-
of-the-art. To this end, we have made some observations
regarding lighting and geometry, proposed a total variation
(TV) based formulation for integrating multi-view stereo
and shading cues, and used visual hull to constrain partial
vertices. An incident illumination vector is introduced to
each vertex to simulate the overall lighting effect including
self-shadowing and occlusion. A TV term is imposed to the
illumination vector for regularization and also for preserving
the piecewise smooth property that the illumination vector
tends to have. Our algorithm starts with a coarse initial
MVS mesh, refines it using classic subdivision scheme, and
uses the proposed TV-based minimization with visual hull
constraint to optimize the mesh and estimate the illumination
as well. The major contributions of the paper are as follows:

• We have observed that the recovery of surface orien-
tation is not sufficient for reconstructing geometry and
thus suggest using the visual hull to constrain partial
vertices of the initial MVS mesh, which helps enhance
the robustness of our reconstruction method.

• We have proposed a brand new formulation of shape
optimization and lighting estimation based on TV-
minimization, which enables us to generate high fidelity
3D models from images captured under general lighting



conditions. Different from [25] which alternates light-
ing estimation and geometry optimization, our method
estimates both the geometry and illumination together.
This helps speed up the computation and reduce the
chance of converging to a wrong solution or diverging.

• We have developed an augmented Lagrangian solver
to effectively solve the TV-minimization problem. The
solver may be adapted for other TV-based problems.

II. RELATED WORK

An excellent survey on MVS is given in [16] where the
state-of-the-art MVS algorithms are compared and evalu-
ated. These algorithms are classified into four categories:
volumetric methods [17], [18], [21], surface evolution meth-
ods [19], [29], depth map fusion methods [4], [12], [13]
and surface region growing methods [6], [7]. One essential
part of MVS methods is to find point matches from multi-
view images and then to calculate depth through triangula-
tion. If good correspondence cannot be found in smoothly
shading regions, high-frequency shape detail may not be
recovered well. The MVS evaluation benchmark [16] shows
that even the-state-of-the-art MVS algorithms may miss
high-frequency surface details while they can recover rough
shapes well.

In contrast to MVS, SfS estimates surface normal from
shading cues [30]. The shape is then reconstructed based on
the normal field. In this way, the high-frequency shape detail
can be well generated. However, the SfS usually imposes
some assumptions on the illumination. For example, the
illumination comes from a single direction or is known as a
prior [30].

Due to the nature of MVS and SfS, it is interesting
to combine them to maximize the strengths of both tech-
niques [5], [8]–[10], [24], [25], [28]. For example, Jin et
al. [8], [9] introduce variational frameworks that combine
various MVS and shading constraints to estimate the shape
of Lambertian objects, surface albedo and lighting condi-
tion through surface evolution and variational minimization
methods. Joshi et al. [10] proposed to merge the depth map
and surface normal field to reconstruct objects model while
Hernández et al. [5] first recover the surface normal and
then refine the MVS model. Although these two methods
can produce good 3D reconstruction, they require a very
large number of sample images in different viewpoints and
vary light conditions in each viewpoint. Moreover, they both
assume a single point light source in a dark room and cannot
handle general situations. Yoshiyasu et al. [28] introduce a
topology adaptive mesh evolution method by evolving the
object model to match MVS boundary and shading con-
straints. Compared with [5], [10], this method reduces the
number of required sample images but still assumes a single
light source with known position and directions in a dark
environment. The work most related to ours is Wu et al.’s
method [25] that uses sphere harmonic functions to model

general illumination conditions and refines the geometric
model through shading. The method can efficiently recover
surface details. While our method estimates the geometry
and lighting simultaneously and just requires a coarse initial
MVS mesh, their method performs the lighting estimation
and geometry refinement separately and assumes a good
initial guess of the geometry to ensure convergence of the
iterations.

III. SURFACE DETAIL RECOVERY USING SHADING AND
COARSE MVS

Given multiple images taken from different viewpoints
under general, unknown, but fixed and distant illumination,
we first use existing MVS methods to generate an initial
MVS mesh. The camera parameters are also recovered if
they are unknown. The mapping between the mesh and the
multi-view images is then established so that for each mesh
vertex, its corresponding intensity value captured in each
of multi-view images can be found. It is worth noting that
while a dense MVS mesh with a good guess of the geometry
is usually needed for previous work such as [25], a coarse
MVS mesh is sufficient for our method. This makes our
method simple and fast in building the initial MVS mesh.
Once we obtain a coarse initial mesh, we use classic mesh
subdivision schemes such as the Butterfly subdivision to
refine the mesh, generating a dense mesh.

Next we use the shading cues to optimize the position
of the mesh vertices in order to deliver a high-resolution
triangular mesh that recovers high-frequency surface details
in addition to the overall geometry shape. This is done
by iteratively minimizing a TV-based objective function in
terms of geometry and lighting (see Section III-B). The
lighting is formulated by an illumination vector introduced
for each vertex (see Section III-A) and the total variation is
applied to constrain the lighting. The optimal geometry is the
one whose surface details best reflect the shading variations
in the multi-view images. An augmented Lagrangian method
is proposed to effectively solve the minimization problem
(see Section IV).

A. Vertex overall illumination vector

The image formation can be approximately described by
the Lambertian reflectance model [11]:

Io(v) =
∫

Ω(v)

ρ(v)Ii(v, ω)max(ω ·n(v), 0)V (v, ω)dω (1)

where Io(v) is the reflected radiance of the object at vertex
v, ρ(v) is the bidirectional reflectance distribution function
(BRDF), ω is the incident direction, Ii(v, ω) is the incident
radiance along ω, n(v) is the unit surface normal at v,
Ω(v) represents a hemisphere of incident directions at v,
and V (v, ω) stands for a binary visibility function of vertex
v to direction ω.



Denote by Ω′(v) the subset of Ω for which ω · n(v) > 0
and V (v, ω) = 1. Then the model (1) can be rewritten as

Io(v) =

(∫

Ω′(v)

ρ(v)Ii(v, ω)ωdω

)
· n(v). (2)

Let
L(v) =

∫

Ω′(v)

ρ(v)Ii(v, ω)ωdω. (3)

We call L(v) the vertex overall illumination vector at v. It
can be used to represent the overall effect of all incident
lights (see Figure 1 for an illustration). From L(v), the re-
flected radiance can be easily computed: Io(v) = L(v)·n(v).
Thus instead of estimating individual incident lights and
computing the visibility function of each vertex to each
possible incident light direction, we propose to estimate the
overall illumination vector for each vertex. This approach
can handle concave surfaces and self-occlusion automati-
cally, and simplify the reconstruction process.

Figure 1. At each point vi on the surface, the vertex overall illumination
vector L(vi) represents the overall effect of all incident lights such as
l1, l2, · · · , lm from different directions.

It can be seen from (3) that the vertex overall illumination
vector L(v) depends on surface normal n(v), visibility
function V (v, ω), BRDF ρ(v) and the lighting condition. If
ρ(v) is constant or varies smoothly and the lighting condition
can be approximated by a few distant light sources, then
L(v) will exhibit to be piecewise constant or piecewise
smooth over the surface of the object. Fig. 2 visualizes L(v)
of a teapot model lit by several directional light sources.
The rendering indicates that the overall illumination vector
is piece-wise constant over the teapot surface.

Figure 2. Visualization of L(v), which is mapped to RGB, over a teapot
model lit by several directional light sources.

B. Iterative TV-minimization

Assume the obtained initial MVS mesh is composed of
N vertices {vin

i } and a set of triangles. We denote the
normal of the mesh at vin

i by nin
i . In the next step, we

fix the connectivity of the mesh, but move vertices vin
i to

new positions vi such that the new mesh better matches
the intensity captured in the multi-view images. Our basic
approach is to treat vertices vi and their respective overall
illumination vectors L(vi) as variables and find them as a
solution to the minimization problem

min
{

α

2
Ef +

β

2
Esh +

η

2
Elap + Etv

}
(4)

where α, β and η are weights. Unless the difference between
new positions vi and vin

i is within a prescribed threshold,
we replace vin

i by vi and repeat solving the minimization
problem. The objective function of (4) consists of four terms
accounting for position, shading, smoothness and lighting
constraints, which are explained below.

(1) Fidelity term:

Ef =
N∑

i=1

(‖vi − vin
i ‖2 + ‖n(vi)− nin

i ‖2).

This term is introduced to prevent the refined ver-
tices vi and their normals n(vi) from deviating from
their counterparts of the initial MVS mesh too much.
The normal n(vi) is calculated by the sum of nor-
mals of the neighboring triangle faces surrounding
vi. If the vertices on the 1-ring neighbors of vi are
vi,1, vi,2, · · · , vi,a, the normal can be computed by

N(vi) = vi,1 × vi,2 + vi,2 × vi,3 + · · ·+ vi,a × vi,1

and n(vi) = N(vi)
‖N(vi)‖ . Thus Ef is a function of vi.

(2) Shading term:

Esh =
∑N

i=1 ‖L(vi) · n(vi)− ci‖2+∑
(vi,vj)∈E

‖(L(vi) · n(vi)− L(vj) · n(vj))− (ci − cj)‖2

where E is the set of all edges of the mesh and ci is the
average of the intensity values corresponding to vertex
vi in all the multi-view images. The first term of Esh

is the intensity error measuring the difference between
the computed reflected radiance and the average of
the captured intensities. The second term of Esh is
the gradient error measuring the difference between
the gradients of the computed reflected radiance and
the average of the captured intensities. As pointed
out in [25], the gradient error is more stable than
the intensity error. Moreover, the gradient error term
imposes another constraint on the normal changes
that reflect the high frequency surface details [25],
which the conventional MVS methods have difficulty
to recover. Esh is a function of both vertices vi and
vertex overall illumination vectors L(vi).

(3) Laplacian term: Elap =
∑N

i=1 ‖vi − vi‖2 where vi

is the average of all the 1-ring neighboring vertices
of vi. This term is computed as the squared sum



of the Laplacian of all vertices, which helps avoid
generating singular or invalid triangles in the mesh
updating process and make the updated mesh smooth.

(4) TV term: Etv =
∑N

i=1 ‖∇L(vi)‖ where ∇ is the dis-
crete operator of the intrinsic gradient on the triangular
mesh. The computation of ∇ can refer to [23]. Etv is a
total variation regulation term that enables good edge
preservation while removing noise [15]. It has been
observed that the overall illumination vectors tend to
be piece-wise constant or piece-wise smooth. The TV
term Etv is introduced to preserve this property in the
optimization process.

C. Visual hull constraint

In [25] it is pointed out that generating 3D geometry from
recovered normal fields for general surfaces is non-trivial.
In fact, the situation is even worse than that. Sometimes
it is impossible to uniquely determine the geometry from
the normal fields. For example, for two Lambertian surface
meshes lit by directional light sources, if one is a scale of
the other, they could have the same normal fields and same
intensities. This observation implies that the formulation
only relying on shading cues in SfS methods is likely
under-constrained for 3D geometry. Thus it may produce
artifacts of prick-shapes in reconstructed geometry or it may
not deliver accurate vertex positions even if the recovered
normal field is correct. Fig. 3 shows such an example, where
(a) is a ground truth, (b) is the lighting condition, (c) is
a mesh obtained by perturbing the ground truth and it is
used as the initial mesh for reconstruction and (d) is the
reconstruction result using the TV-minimization. Note that
in this case the objective function has actually reached its
minimum value 0 which suggests that Fig. 3(d) is an optimal
solution, but obviously the shape in Fig. 3(d) is different
from the ground truth.

(a) Ground truth (b) Lighting condi-
tion

(c) Initial mesh

(d) Output mesh
without constraints

(e) Constraint candi-
dates (in blue)

(f) Output mesh with
constraints

Figure 3. Reconstruction with and without constraints

The above example implies that we need to impose further
constraints in the minimization process in order to precisely
recover the ground truth. Here we propose a heuristic
approach using the visual hull which is created by the
intersection of silhouette cones. The visual hull contains the
reconstructed object. We compare the initial MVS mesh with
the visual hull and identify those vertices on the MVS mesh,
which are close to the visual hull and at which the MVS
mesh is approximately tangential to the visual hull. The blue
region in Fig. 3(e) show such vertices. We believe that these
vertices are likely on the ground truth and thus fix them in
the reconstruction. In this way, the TV-minimization problem
becomes a constrained one and the variables are a subset of
all vertices, which usually makes the minimization problem
have a unique solution. Fig. 3(f) is the reconstruction result
with those vertices in the blue region being fixed, which
reproduces the ground truth.

IV. AUGMENTED LAGRANGIAN-BASED SOLVER

Solving the minimization problem (4) is difficult due to
the non-differentiability of the total variation term and the
non-linearity of the unit normal vectors. In this section we
propose an augmented Lagrangian (ALM)-based solver to
solve (4). Augmented Lagrangian methods are known as a
good alternative to penalty methods for solving constrained
optimization problems in that they replace a constrained
optimization problem by a series of unconstrained problems.

Let V = [v1, v2, · · · , vN ], L = [L(v1), · · · , L(vN )] and
denote [∇L(v1), · · · ,∇L(vN )] by ∇L. We introduce new
variable P = [P1, P2, · · · , PN ] and reformulate the TV-
based minimization problem (4) to the following constrained
problem:

min
{

α
2 Ef + β

2 Esh + η
2Elap + R(P)

}

s.t. P = ∇L(v)

where R(P) =
∑N

i=1 ‖Pi‖. To solve this problem, we define
the augmented Lagrangian functional

G(V,L,P;λ) =
α

2
Ef +

β

2
Esh +

η

2
Elap + R(P)

+ λ · (P −∇L) +
r

2
‖P −∇L‖2 (5)

where λ = [λ1, · · · , λN ] is the Lagrange multiplier, r is
a positive constant, and r

2‖P − ∇L‖2 is the augmented
term. Consider the following saddle-point problem: find
(V∗,L∗,P∗;λ∗) such that

G(V∗,L∗,P∗;λ) ≤ G(V∗,L∗,P∗;λ∗) ≤ G(V,L,P;λ∗)

for all (V,L,P;λ).
According to [26], the saddle-point problem has at least

one solution and all the saddle-points (V∗,L∗,P∗;λ∗) have
the same V∗ and L∗ which are the solution to the original
problem (4). Thus we solve (5) by iteratively solving two
subproblems: the VL-subproblem and the P-subproblem.



• VL-subproblem: Given P , solve

min
V,L

{α

2
Ef +

β

2
Esh+

η

2
Elap+

r

2
‖(P(k)+

λ(k)

r
)−∇L‖2}

for V and L where k is the previous iteration num-
ber. This problem refines both the vertices and the
vertex overall illumination vectors. It is a non-linear
least squares optimization problem that can be solved
through Levenberg-Marquardt algorithm.

• P-subproblem: Given V and L, solve

min
P
{R(P) + λ(k) · P +

r

2
‖P −∇L‖2}

for P . This problem is decomposable and thus can be
solved for each Pi independently. That is, for each i,
we solve

min
Pi

{‖Pi‖+ λ
(k)
i · Pi +

r

2
‖Pi −∇L(vi)‖2}.

By a simple geometric analysis, it can be found that
the above problem has a closed form solution

Pi = max(0, 1− 1
r‖wr‖ )wr

where wr = ∇L(vi)− λ
(k)
i /r.

The whole augmented Lagrangian solver is given in
Algorithm 1.

Algorithm 1 Augmented Lagrangian Solver
Input: Initial MVS mesh {vin

i ∈ R3|i = 1, · · · , N} and
the average intensity {ci ∈ R1|i = 1, · · · , N}; r, ε;

Output: Optimal {vi ∈ R3|i = 1, · · · , N} and overall
illumination vector {L(vi) ∈ R3|i = 1, · · · , N};

1: initialization: v
(0)
i = vin

i , L(0) = 0, P(0) = 0, λ(0) = 0;
2: repeat
3: Solve VL-subproblem:

min
V,L

{α

2
Ef +

β

2
Esh+

η

2
Elap+

r

2
‖(P(k)+

λ(k)

r
)−∇L‖2}

4: Solve P-subproblem:

min
P
{R(P) + λ(k) · P +

r

2
‖P −∇L(k+1)‖2}

5: Update Lagrange multiplier λ:

λk+1 = λk + r(P(k+1) −∇L(k+1))

6: until
∑N

i=1 ‖L(vi)(k+1) − L(vi)(k)‖2 < ε

V. EXPERIMENTS

We validate our algorithm using two synthetic datasets:
buddha and bunny models (Fig. 4), and four real world
datasets: the dinoRing and templeRing datasets (Fig. 7) from
Middlebury [1], as well as the fish and angel datasets (Fig. 6
and Fig. 5(d)) from [25]. For all the cases, we assume we do

Table I
MODEL SIZES, PERCENTAGE OF THE VISUAL HULL CONSTRAINED

VERTICES, AND THE CORRESPONDING OPTIMIZATION RUNTIME

# of vertices bunny buddha angel dinoRing templeRing fish∗
original (k) 20 25 42 100 100 200

simplified (k) 8 14 10 24 20 NA
subdivided (k) 27 46 40 140 140 NA

VH constrained 7% 8% 6% 5% 5% 5%
runtime 33 m 45 m 1 h 4 h 4 h 6 h

not have any prior knowledge about the lighting conditions.
To show that our algorithm only needs a coarse initial mesh,
unless specified, we use Meshlab to heavily simplify the
existing models (either groundtruth or some MVS results)
followed by subdivision to generate the initial mesh models
as the input to our optimization framework. Table I lists
out the different model size information. Experimentally, the
parameters r and ε are set to 0.5 and 1.0e − 10 for all the
cases, and parameters α, β and η are set to 1.0e+6, 1.0e+5,
100 for datasets from Middlebury, 1.0e + 5, 1.0e + 5, 100
for bunny and buddha, and 1.0e + 6, 5.0e + 5, 100 for fish
and angel.

Synthetic data: Fig. 4 shows the results of the synthetic
datasets. Here, since we have the groundtruth models, we
directly use them for simplification to generate our inputs.
Compared with the geometry ground truth in Fig. 4(e),
our results in Fig. 4(b) successfully recover many high-
frequency shape details, which do not exist in the simplified
meshes in Fig. 4(a). To further demonstrate the robustness
of our method, we generate another input, which is a
random perturbed version of the ground truth, i.e. random
vertex displacement up to 0.5% of bounding box, as shown
in Fig. 4(c). Even with such highly distorted inputs, our
algorithm can still recover the surface details successfully,
as shown in Fig. 4(d).

Table II gives the quantitative evaluation results of the
reconstruction errors (using input2 in Fig. 4) w.r.t. the
groundtruth models. Note that we did not give a numerical
evaluation on the case of using input1 since the output1
in Fig. 4) has different number of vertices from that of the
groundtruth. From Table II, it can be seen that our method
significantly reduces the reconstruction errors by 20% and
71% for budda and 67% and 83% for bunny for the mean
position error and the mean normal error respectively. We
also list down the reconstruction errors using our method
but without the visual hull constraint in Table II, which
achieves results worse than the inputs. This further verifies
that without the visual hull constraint our algorithm becomes
under-constrained and leads to unwanted results. Fig. 5(a)
and (b) gives a visual comparison of the buddha example
w/o and with the visual hull constraint, where the result w/o
the visual hull constraint contain the artifacts of prick-shape

∗The MVS fish model is provided by the author of [25]. It has not been
simplified or subdivided for a direct comparison



(a) Input1(simplified) (b) Output1 (c) Input2(distorted) (d) Output2 (e) Ground Truth

Figure 4. Results of the synthetic data (buddha and bunny) using our proposed method.

(a) Buddha result w/o VH con-
straint

(b) Buddha result with
VH constraint

(c) Angel result from [25] w/o VH
constraint

(d) Our angel result with VH con-
straint

Figure 5. A comparison of the reconstruction results w/o (left) and with
(right) the visual hull constraint.

Table II
QUANTITATIVE EVALUATION ON THE SYNTHETIC DATA. FIRST

COLUMN: POSITION ERROR (IN hOF BOUNDING BOX DIMENSION).
SECOND COLUMN: ERROR IN SURFACE NORMAL DIRECTION IN DEGREE.

Position(h) Normal(deg.)
mean std mean std

Buddha model
Input (distorted) 3.57 1.37 23.17 20.88
Output 2.83 1.31 6.68 6.23
Output w/o VH 4.21 2.73 27.38 29.42
Bunny model
Input (distorted) 4.35 1.66 21.83 19.11
Output 1.45 0.88 3.77 4.09
Output w/o VH 3.72 3.75 18.68 20.52

vertices.
Real-world datasets: For the real-world datasets, the

original dinoRing and templeRing models are generated by
the MVS method [18], and then they are simplified and
subdivided to generate the inputs to our algorithm. The
MVS fish model is provided by the author of [25], which
is directly used as our input. The angel model, however, is
simplified and subdivided to generate the input(see Table I).
Fig. 6 shows the comparison between our result and that
of Wu’s method [25], which represents the state-of-the-art
approach on utilizing lighting and shading information for
3D reconstruction under general unknown illumination. It
can be seen that our result of the fish dataset is comparable to
that of [25]. Fig. 5(c) and (d) show the comparison of Wu’s
angle result [25] and ours. Note that Wu’s result is directly
obtained from the authors of [25]. Without the visual hull
constraint, their method suffers from the artifacts of prick-



(a) Captured image (b) Result from [25] (c) Wu’s (and also our) input (d) Our result

Figure 6. Comparison with Wu’s result for the fish model [25].

shape vertices.
Fig. 7 shows the results for the Middlebury templeRing

dataset. Since there is no result available for Wu’s method
for Middlebury dataset, we compare our result with the
original model obtained from the volumetric MVS algo-
rithm [18], which is one of the high-performance MVS
methods. It can be seen that our method recovers more
surface details such as the pillars of the temple. We also
seek for the standard Middlebury MVS evaluation and
obtain the accuracy scores of 0.62mm and 0.44mm and the
completeness scores of 98.1% and 99.3% for templeRing
and dinoRing, respectively, which are reasonable but not
at the top. We argue that the standard Middlebury MVS
evaluation criteria are not in favor of recovering surface
details.

Computational cost: As described in Algorithm 1, in our
framework, the vertices and their overall illumination vectors
are optimized iteratively until convergence. In each iteration,
the computational cost is mainly on the VL-sub problem
while the P-sub problem and the λ update can be solved
in a very short period of time. The Levenberg-Marquardt
algorithm is used to solve the VL-sub problem, which takes
around 5 ∼ 6 minutes for the bunny dataset. The iteration
is usually repeated about 2 ∼ 3 times until the stopping
criteria are satisfied. Thus, the entire energy minimization
problem is solved around 30 minutes for the bunny dataset
on a standard PC with unoptimized codes. In contrast, Wu’s
method takes less than half an hour to estimate the lighting
and the visibility function and another 1 ∼ 4 hours to refine
the mesh [25]. A detailed runtime for all example are shown
in Table I.

Limitations: Since our method optimizes all the vertices
and overall illumination vectors at the same time, the mem-
ory cost of our framework is very high, which limits the
number of vertices we can process. In our current implemen-
tation, our unoptimized codes cannot handle meshes with
more than 300 thousand vertices, which is also one of the
reasons that we cannot get higher completeness score from
Middlebury benchmark.

VI. CONCLUSION

We have described a new algorithm for recovering surface
details of an object from multi-view images captured under
general unknown illuminations. The algorithm is based
on a TV-minimization formulation which integrates MVS,
shading and visual hull cues. The shape refinement

and lighting estimation are obtained simultaneously by
solving the minimization problem using the proposed
augmented Lagrangian method. It is shown that our method
can efficiently reconstruct geometric models with high-
frequency surface details. Compared to the existing method,
our algorithm has less requirement on the initial MVS mesh.
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