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Locating Facial Landmarks Using
Probabilistic Random Forest

Changwei Luo, Zengfu Wang, Shaobiao Wang, Juyong Zhang, and Jun Yu

Abstract—Random forest is a useful tool for face align-
ment/tracking. The method of regressing local binary features
learned from random forest has achieved state-of-the-art perfor-
mance both in fitting accuracy and speed. Despite the great success
of this method, it has certain weaknesses: the number of available
local binary features is rather limited and is not optimal for face
alignment; the binary features inevitably lead to serious jitter
when tracking a video sequence. To address these problems, we
propose learning probability features from probabilistic random
forest (PRF). The proposed PRF is the same as standard random
forest except that it models the probability of a sample belonging
to the nodes of a tree. By using the probability features, our
method significantly outperforms the state-of-the-art in terms of
accuracy. It also achieves about 60 fps for locating a few facial
landmarks. In addition, our method shows excellent stability in
face tracking.

Index Terms—Face alignment, local binary features, proba-
bilistic random forest, probability features.

I. INTRODUCTION

L OCATING semantic facial landmarks is highly required
in many applications, such as face recognition and facial

animation [1]. Due to large variations of head pose, facial ex-
pressions, illumination and occlusions, automatic and accurate
detection of facial landmarks is still a challenging task.
Active appearance model (AAM) [2], [3] solves the task of

face alignment by modeling the holistic appearance of a face.
The appearance model of AAM has quite weak generalization
capability as the texture space is too large to be modeled using a
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limited number of training images. Compared with AAM, con-
strained local model (CLM) [4], [5] only models the local ap-
pearance around the landmarks. This leads to better generaliza-
tion capability and robustness. CLM learns a set of local detec-
tors independently. The local detectors are used to generate a
response map for each landmark. A parametric shape model is
then fitted to these response maps.
In recent years, shape regression based methods have show

impressive results [6]–[8]. Asthana et al. [9] proposes a discrim-
inative regression based approach in the framework of CLM.
It learns robust functions from response maps to the shape pa-
rameters updates. This approach relies on a parametric shape
model and minimizes model parameter error in training. The
parametric shape model is usually learned from training shapes
using principal component analysis (PCA). In [7], the shape
constrain is adaptively enforced in the process of regression
without using a parametric shape model. Compared with a PCA
based shape model, non-parametric shape model can express
face shapes in more details.
A critical issue for shape regression is what kind of image

features should be used. In [10], SIFT features are used. Yan
et al. [11] have compared several local feature descriptors and
find that HOG (histogram of oriented gradient) shows best per-
formance. Although the hand-crafted features work well, they
are general purpose features and not optimal for face alignment.
The method of [7] jointly learns the image features and regres-
sion functions in a fern based framework. In [12], cascaded con-
volution neural networks are used to learn the features and the
regression functions.
Random forests (or regression trees) are popular for shape

regression [13], [14]. Ren et al. [15] propose a two-step ap-
proach based on random forests. The method has achieved state-
of-the-art performance both in accuracy and speed. Despite the
great success of this method, it has several drawbacks. Firstly,
for a local binary feature vector, the number of non-zero ele-
ments is equivalent to the number of trees in the forest. There-
fore, the number of available local binary features is rather lim-
ited compared with the huge space of face texture. This re-
sults in many-to-one mappings from face texture to local binary
features, i.e., different texture would correspond to the same
shape increments. This may be not true inmany cases. Secondly,
the method suffers from serious jitter problem when tracking a
video sequence. This is reasonable due to the binary features.
Although smoothing the tracking results would alleviate this
problem to a certain extent, the tracking accuracy will deteri-
orate, and there are still notable jitters in the tracking.
To address the above problems, we propose learning prob-

ability features from probabilistic random forest (PRF). The
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proposed PRF is the same as standard random forest except
that it models the probability of a sample belonging to the tree
nodes. By using the probability features, our method achieves
state-of-the-art performance. It also achieves about 60 frames
per second for locating a few facial landmarks. In addition, the
jitter problem is solved essentially.

II. REVIEW OF SHAPE REGRESSION
Regressing the face shape is very challenging in the presence

of large image appearance variations. Cascaded regression has
proven to be effective for improving the accuracy of shape re-
gression. Cascaded regression combines regressors in an ad-
ditive manner. Let denotes the th regressor, .
The face shape is denoted with vector , which contains the x,
y-coordinates of facial landmarks. Given an image and an
initial shape estimation , the regressor computes a shape
increment . This increment is then used to update the pre-
vious shape estimation ,

(1)

is the current shape estimation. is predicted as follows,

(2)

where is a regression matrix. is a feature map-
ping function, and is computed from and indexed to .
In [15], and are learned using a two-step

learning framework. Firstly, it learns local binary features (LBF)
for each landmark independently. Secondly, it performs global
linear regression for all landmarks. In the following, we explain
these two steps in more details. The index is dropped for no-
tational brevity.
Local binary features. To lean for each landmark, is

decomposed into a set of local mapping functions [15],

(3)

where is the mapping function for the th landmark.
is learned by using standard regression forest. The regression
target is a 2D vector , which is the ground truth shape
increment for the th landmark. The split nodes of a tree are
trained using pixel difference feature. After training, each leaf
node stores a 2D vector that is the average of all training sam-
ples in the leaf node.
During testing, a sample traverses a tree until it reaches one

leaf node. If the number of leaf nodes is , then is a -di-
mensional binary vector. For each element of , its value is set
to 1 if the sample reaches the corresponding leaf node and 0 oth-
erwise. Thus, is a rather sparse binary vector, and is called
local binary feature.
Global regression. After local learning of the binary features

using random forest, global linear regression is performed on
the ground truth shape increments and the local binary features
[15], and the regression matrix is obtained.

III. PROBABILITY FEATURE REGRESSION
In this section, we first describe the proposed probabilistic

random forest. Then we show how probability features are ob-
tained and used in shape regression.

A. Probabilistic Random Forest
The proposed probabilistic random forest is built in the same

way as the standard random forest. However, for each split node
of the trees in probabilistic random forest, we need to model
the probability of a sample belonging to the left and right child
nodes. We call these trees probabilistic trees.
Following the method of [15], we independently train a

random forest for each landmark. After training samples stored
in the split node have been assigned to left and right child
nodes. The probability of a sample belonging to the right child
node is modeled by fitting a logistic regression function,

(4)

where is the pixel difference feature [7]. is the split-
ting threshold. , means the training sample
belonging to the right child node. is a constant parameter.
The probability of the sample belonging the left child node

is computed as follows,

(5)

Determining the value of . The probability can
be simply set to 1.0 for training samples in the right child node,
and 0 for samples in the left child node. Then, the parameter
can be determined by fitting equation (4) to the training sam-
ples. The problem is that both the number of split nodes and the
number of training samples in the split nodes are very large. It
would take much time to train the logistic regressors for all split
nodes. Moreover, for pixel difference feature with a value close
to the splitting threshold, even a small perturbation would lead
to extremely larger probability changes.
To over these problems, we compute the mean pixel differ-

ence feature for samples in the right child node, and set
the corresponding probability to a constant

. Similarly, the mean pixel difference feature
for left child node is denoted as , and is set
to . Given , we solve for by minimizing the following
objective function:

(6)
is determined experimentally.

B. Probability Features
During testing, a sample is sent to all trees of the PRF. For

each tree, we calculate the probability of the sample reaching
each leaf node. The probability for one leaf node is denoted as

, and is computed as follows,

(7)

where is the set of split nodes on the path where the sample
goes from tree root to a leaf node. For split node , if
the path goes from node to its right child node, and
otherwise. We call the probability feature of a leaf node.
The output of a leaf node is written as

(8)
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where is the average of all training samples stored in the leaf
node. The output of a tree is the summation of the outputs of all
leaf nodes. Compared with standard regression trees, the pre-
dicted output of our probabilistic trees is continuous and de-
pends on all leaf nodes. This makes the prediction more accu-
rate and reliable.
For the probabilistic random forest corresponding to th land-

mark, the learned probability feature vector is denoted as

(9)

where is the number of leaf nodes in the random forest.
is the probability for the th leaf node, and is computed using
equation (7). We call the probability features of the th
landmark. By concatenating the probability features of all land-
marks, we obtain the probability features of a shape,

(10)

Since the outputs are learned independently for each
landmark, they are noisy and lack enough reliability. To enforce
global shape constrain, we perform global linear regression on
the ground truth shape increments and the probability features.
The regression matrix is obtained by minimizing the fol-
lowing objective function,

(11)

where is the number of training samples, is the ground
truth shape increment for the th training sample. The parameter
controls strength of the regularization term.

IV. EXPERIMENTS

To evaluate the performance of our method, we first conduct
face alignment experiments on two standard databases: LFPW
(labeled face parts in the wild) [16] and 300-W [17]. Then, we
apply our method for facial feature tracking.

A. Face Alignment
LFPW. LFPW database [16] consists of the URLs to 1100

training and 300 test images that can be downloaded from in-
ternet. We were able to download only 813 training images and
224 test images because some of the URLs are no longer valid.
These images were manually annotated with 68 points to gen-
erate the ground-truths [17].
In our experiments, the initial shape is chosen as the mean

shape of the training data, translated and scaled according to the
output rectangle of a face detector. The fitting accuracy is mea-
sured by the normalized landmark error [15], which is calculated
as the average distance between the detected landmarks and the
ground truth landmarks, normalized by the inter-pupil distance.
The error is represented as the percentage of inter-pupil dis-
tance, we drop the notation % for brevity.
For the proposed method, the most important parameter is
. We evaluate the impact of different values of on fitting

accuracy. The experiments are performed with the following
parameter setting. The number of regressors in the cascade is

. The number of trees in each regressor is , and
the depth of the trees is .

Fig. 1. The average error for different values of .

TABLE I
THE AVERAGE ERRORS OF THE TWO METHODS UNDER DIFFERENT

PARAMETER SETTINGS

Fig. 2. Selected results from LBF (top row) and the proposed method (bottom
row) on the LFPW database.

Fig. 1 shows the experimental results. It is shown that the fit-
ting accuracy is not very sensitive to is . The smallest average
error is achieved when is set to about 0.93. This value is used
in the rest of our experiments.
To evaluate the effectiveness of the probabilistic features, we

compared our method with LBF [15]. Two parameter settings
are used: (1) , , , (2) , ,

. Table I shows the errors for the two methods. We can see
that the probability features significantly improve the results of
LBF. In the first case, the error reduction with respect to LBF is
over 10%. It is also worth mentioning that our method with 300
trees is still superior to LBF with 600 trees.
Fig. 2 shows a few results from LBF and the proposed

method. We can see that our method performs better than
LBF. Specifically, our method accurately localizes the outer
landmarks while LBF fails. Our method requires running all the
split tests of a tree, this procedure is about 4 times slower than
evaluating a standard tree. In addition, the probability features
are not able to benefit from efficiency of sparse computations,
leading to lower efficiency. Our current implementation (300
trees) runs at about 65 fps in a desktop with an i7 CPU.
300-W. The 300-W database [17] is created from existing

databases, including AFW [18], LFPW and Helen [19]. It also
includes a new database called IBUG. The IBUG database is
extremely challenge as the images of the database exhibit large
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TABLE II
COMPARISON WITH [15]. IN ALL CASES, ONLY 300 TREES ARE USED. THE
NUMBER WITHIN THE BRACKET DENOTES THE DEPTH OF THE TREES

variations such as illuminations, expressions and occlusions. All
images in 300-W are labeled with 68 landmarks.
Following the methodology of [15], we split the 300-W data-

base into two parts for our training and testing. The training set
consists of AFW, the training set of LFPW and the training set
of Helen. The testing set consists of the testing set of LFPW, the
testing set of Helen, and IBUG. We conduct two experiments
on 300-W database.
In the first experiments, the parameters are set as follows.

and . The depth of the trees is set to and
, respectively. We also compared our method with LBF.

The parameter settings of LBF are the same as the proposed
method except that the depth of the trees is set to .
Table II shows the experimental results for LBF, both the re-

sults reported by [15] and the results for our replication of [15]
are shown. We can see that our replication achieves similar ac-
curacy as reported by [15]. It is also shown that LBF with

is still inferior to our method with . For our method,
the dimension of the probability features is doubled when
is increased from 4 to 5. However, the error reduction is mar-
ginal. This is probably due to over-fitting or the lack of sufficient
training samples. Therefore, is a good compromise be-
tween accuracy and efficiency.
In the second experiments, our testing set is further divided

into two subsets: the common subset (consisting of the testing
sets of LFPW and Helen) and the challenging subset (consisting
of IBUG). We report the experimental results on the full testing
set and the two subsets. In addition to [15], we also compared
our method with the following methods:

(1) DRMF (discriminative response map fitting) [9];
(2) ESR (explicit shape regression) [7];
(3) SDM (supervised descent method) [10];
(4) ERT (ensemble of regression trees) [20];
The comparison results are show in Table III. We can see that

our method shows the best performance. Note that 1200 trees
with are used in LBF [15]. Our method only uses 600
trees with . Nevertheless our method achieves accuracy
superior to LBF. We believe that this is because the probability
features are more accurate than the local binary features. The
space of probability features is large and continuous, while the
space of the binary features is small and discrete. From a prob-
abilistic point of view, the local binary features are a simplified
version of the probability features: the leaf node which a sample
falls into outputs probability 1 while the other leaf nodes output
probability 0.

B. Facial Feature Tracking in a Sequence

Evaluating the performance of fitting algorithms using videos
is meaningful as many applications require accurate and stable

TABLE III
COMPARISON OF AVERAGE ERROR WITH STATE-OF-THE-ART METHODS.
THE RESULTS FOR THESE METHODS ARE OBTAINED DIRECTLY FROM THE

LITERATURES OR EVALUATED BASED ON THE RELEASED CODES

Fig. 3. The landmark error as a function of frame number.

face tracking. We manually labeled 6 videos with 68 landmarks.
The number of frames of the videos ranges from 120 to 1500.
The tracking model is trained on the 300-W database. To track
the facial landmarks, the initial shape for first image frame is
obtained based on the mean shape and the output rectangle of
a face detector. For the following frames, the initial shape is
obtained by transforming the mean shape to the tracking results
of the previous frame.
Fig. 3 shows the landmark error as a function of frame number

for an annotated video. We can see that our method gives better
results than LBF [15]. Please refer to the accompanying video
to better appreciate the performance of our method. From the
tracking results of LBF, we can observe serious sudden jumps
of tracked landmarks. In contrast, our method shows excellent
stability throughout the sequence.

V. CONCLUSION

We propose probabilistic random forest or probabilistic trees
for locating facial landmarks. The probabilistic trees distin-
guish from standard trees in that they model the probability of
a sample reaching each leaf node. By regressing the probability
features, our method achieves fitting accuracy superior to
state-of-the-art methods. Since the output of a probabilistic
tree is continuous and depends on all leaf nodes of the tree, it
expands the expression capability of a standard tree. We believe
that the probabilistic trees will be a useful tool for solving many
regression problems.
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