Guided Mesh Normal Filtering

Wangyu Zhang USTC

Bailin Deng EPFL, University of Hull

Juyong Zhang USTC

Sofien Bouaziz EPFL

Ligang Liu USTC

Filtering is necessary

Related Work

Bilateral mesh denoising [Fleishman et al. 2003]

Non-iterative, feature-preserving mesh smoothing [Jones et al. 2003]

Bilateral Normal Filtering for Mesh Denoising [Zheng et al. 2011]

Mesh Denoising via L0 Minimization [He & Schaefer 2013]

Bilateral filter

Joint bilateral filter

The role of guidance

 The success of joint bilateral filtering is heavily dependent on the guidance signal.

 The guidance signal should provide a robust estimation about the features of the output signal

The importance of guidance

Guidance geometry

- Contrary to the case of images, such guidance geometry is not easily available from measure devices.
- It often has to be constructed computationally.

Example

Denoising pipeline

Guidance normal computation

Normal consistency

For each candidate patch $\mathcal{P} \in \mathcal{C}(f_i)$

we measure the consistency of its normals using

$$\mathcal{H}(\mathcal{P}) = \Phi(\mathcal{P}) \cdot \mathcal{R}(\mathcal{P})$$

Maximum normal difference

$$\Phi(\mathcal{P}) = \max_{f_j, f_k \in \mathcal{P}} \|\mathbf{n}_j - \mathbf{n}_k\|$$

Edge saliency measurement

$$\Re(\mathcal{P}) = \frac{\max_{e_j \in E_{\mathcal{P}}} \varphi(e_j)}{\varepsilon + \sum_{e_j \in E_{\mathcal{P}}} \varphi(e_j)}$$

$$\varphi(e_j) = \|\mathbf{n}_{j_1} - \mathbf{n}_{j_2}\|$$

Patch selection

 $\mathcal{H} = 0.293526$

 $\mathcal{H} = 0.274781$

 $\mathcal{H} = 0.304013$

 $\mathcal{H} = 0.276286$

 $\mathcal{H} = 0.310027$

 $\mathcal{H} = 0.332381$

Guidance normal

Normal filtering

 Our normal filtering computes a new unit normal for each face via joint bilateral filter:

$$\overline{\mathbf{n}}_i = \frac{1}{W_i} \sum_{f_i \in \mathcal{N}_i} A_j \ K_s(\mathbf{c}_i, \mathbf{c}_j) \ K_r(\mathbf{g}_i, \mathbf{g}_j) \ \mathbf{n}_j$$

Updating vertices

• Based on the filtering face normals, the vertex positions are updated by minimizing the ℓ_2 error of the compatibility conditions:

$$\overline{\mathbf{n}}_i \cdot (\overline{\mathbf{v}}_{i_k} - \overline{\mathbf{c}}_i) = 0 \ (k = 1, 2, 3)$$

Recap: pipeline

Denoising process

Denoising Process

Results: vs bilateral filter

Results: comparisons

Time statistics

Model	#Vertices	#Faces	Time(s)/Iter
Fandisk	6475	12946	0.076
Block	8771	17550	0.104
Bunny	34834	69451	0.698
Iron	85574	168285	1.571

Conclusion

- A joint bilateral filter for mesh processing
 - A novel method to construct the guidance signal
 - Effective and efficient, simple to implement
 - Much better denoising results than state of the art

The source code is available:

https://github.com/bldeng/GuidedDenoising

Thank you!