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ABSTRACT

Image segmentation with user inputs gets more and more pop-
ular in recent years and always performs better compared with
automatic methods. However, existing interactive image seg-
mentation methods still might fail if the image contains messy
textures, or the user inputs are sparse or at inappropriate lo-
cations. In this paper, we propose a novel iterative refinement
framework which leads to robust segmentation performance
even with sparse and improper input strokes. Specifically, a
geodesic distance based energy is introduced and combined
with convex active contour model, and an iterative seeds re-
finement technique is put forward to handle the sparse in-
put problem. Extensive experiments using real world images,
and segmentation benchmark dataset show that our proposed
method has superior performance compared with representa-
tive state-of-the-art methods.

1. INTRODUCTION

1.1. Motivation

In recent years, interactive image segmentation becomes
more and more popular as it can produce more reliable seg-
mentation result with the help of the information supplied by
users. This type of interactive way is quite useful for many
image editting problems and medical image processing ap-
plications. However, the performance of interactive image
segmentation heavily depends on the quality and quantity of
the inputs seeds supplied by the users. For most of existing
methods, the regions without seeds might be assigned to in-
correct labels. For an object with complex texture, the input
seeds can not cover every sub-region of the interested object.
These regions without seeds can not be segmented robustly.
Moreover, the seeds are fixed during the whole segmentation
process in most of existing methods. In other words, much
information of former iterations are not involved in the fol-
lowing iterations and these regions without seeds can not be
segmented robustly. In this paper, we try to propose a robust
interactive image segmentation method to deal with these
problems which are rarely considered before.

1.2. Related Works

In general, there are two categories of interactive image seg-
mentation approaches: boundary-based and region-based

ones. State-of-the-art region-based interactive segmentation
algorithms include Graph Cut based methods [1, 2], Ran-
dom Walks(RW) based methods [3, 4], and Geodesic meth-
ods [5,6]. All these methods firstly convert an image into a
weighted graph and then minimize an objective energy func-
tional to produce the final segmentation. However, the Graph
Cut algorithm is sensitive to the number of seeds, while the
RW and Geodesic algorithms are sensitive to the locations of
seeds [7].

In 2007, Bresson et. al. [8] proposed a convex active con-
tour model based on “active contours without edges” model
[9] and “Mumford-Shah” model [10], utilizing both boundary
and regional information. Recently, Nguyen et. al. [11] ex-
tended it to interactive image segmentation, which is named
constrained active contour model. Specifically, the segmenta-
tion result of Geodesic method [5] is used for contour initial-
ization and foreground/background Gaussian Mixture Mod-
els(GMMs) [2] are utilized to represent regional term.

Fig. 1. An illustration of different segmentary results us-
ing [11], under different sparse input strokes: (a)(c) different
input seeds; (b)(d) segmentary results of input seeds in (a)(c)
respectively.

The energy term in segmentation models is always com-
posed by global energy term [12, 13] and local energy term
[14, 15]. The former one relates each pixel to all samples
and it can quickly propagate seeds through the image while
the latter one involves more user interaction. Recently a new
method proposed by Xu [16] is based on iterative feature dis-
crimination and it relates each pixel to part of the control sam-
ples. It successfully combine the effect of both global and
local operators even with a small amount of user inputs.

Through extensive experiments we find the crucial prob-
lems of existing methods are: 1) the results of segmentation
are extremely sensitive to the locations and quantity of seeds;



2) these methods can barely work on images with complex
color distribution or messy textures. Results of using a rep-
resentative method [11] with different sparse user inputs are
shown in Fig. 1. Obviously, the different performances in
Fig. 1(b) and (d) indicate that the segmentation is sensitive to
locations of seeds, especially without sufficient input strokes.

1.3. Our Contributions

Current interactive image segmentation methods mainly con-
sider the color information like the tensity or their distribu-
tions, and the user supplied seeds are fixed and used only
once. The fixed user inputs might result in uncertainties when
the desired segmentation region does not contains input seeds.
Besides, as mentioned in the motivation part, invariable seeds
will lose some important information during the iterations in
the segmentation procedure. In this paper, a new model with
seeds refinement is proposed and performs much better, even
for images with sparse inputs. In summary, the main contri-
butions of this paper are:

e A geodesic energy term is introduced and combined
with convex active contour model to enhance the
weightiness of those seed regions.

e A seeds refinement technique is proposed to enhance
the reliable segmentation results, and use them to guild
the unreliable part segmentation.

e Experiments on MSRC dataset show that the proposed
method produces high quality segmentation results
even with few user inputs.

The rest of paper is organised as follows: in Section 2 we
explain new Geodesic energy term together with constrained
active contour model as well as the proposed iterative seeds
refinement scheme. In Section 3, we verify our method by
showing some representative results and discussions. The
conclusions are given in Section 4.

2. ROBUST INTERACTIVE IMAGE
SEGMENTATION

In this section, we will first introduce how to modify the Con-
strained Active Contour Model to incorporate the seeds loca-
tion information. Then the interative seeds refinement strat-
egy is proposed to handle the low quality and small quantity
of input seeds problem.

2.1. Modified Constrained Active Contour Model

Active contour model [11, 17] gets big success in image seg-
mentation. However the seed locations are not emphasized
in existing models, and thus the regions without seeds might
be assigned with incorrect labels. To handle this problem, a
geodesic energy term is added to enhance the weightiness of
those seed regions. The proposed model is formulated as

min [, 9| Vu| + Ahou + Ao (dp — dp)udx
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where A1 and Ao are two trade-off parameters. u is a proba-
bility function defined on image domain €2, which has a value
between 0 and 1 at each pixel location x in the image. Set
F(or B) is the pixels in foreground(or background). The
segmented region is obtained by thresholding the function u.
Different from the models in [11, 17], the geodesic energy
term (dr — dp)u? is added to the modified constrained active
contour model to enhance the performance, where dr () and
dp(x) are the geodesic distance of pixel « to foreground and
background [5] separately. ¢, and h, in our model are the
same as in [11], which describe the boundary and regional
properties of the image,
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where g. and g, are edge detection results of Pr(c,) and the
original image, respectively. Pr(cy|F), Pr(c,|B) denote
the probabilities of the Gaussian Mixture Models(GMMs).
The likelihood of a pixel  with color ¢, belonging to the
foreground becomes Pr(c;) = Pr(c:|F)/(Pr(c:|F) +
Pr(cy|B)). P(z) = Dp(z)/(Dp(z) + Dp(zx)) is assigned
to u(z) as initialization.
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Fig. 2. (a) A sample image with sparse inputs; (b) the visual-
ization of dp — dp.

The newly added geodesic energy term in model Eq. 1
increases the weight of the region near the seeds. If dp(z) <
dp(x), it means that pixel x is closer to the foreground seeds
from the perspective of geodesic distance, and thus u(z) is
supposed to assign a larger value. This term magnify the ef-
fect of the seed regions. As shown in Fig. 2, the visualization
of dp — dp is showed. The week edges such as the texture
does not increase the geodesic distance. Thus the region with-
out seeds but near with the seeds region in the geodesic dis-
tance can obtain a more proper segmentation result.

To solve Eq. 1, we first introduce an auxiliary variable d
to substitute Vu and rewrite it as

Ien[%“u Jo 96ld] + Aihou + Ao (dp — dp)u’dz
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Eq. 2 can be optimized via Split Bregman [18], i.e.,
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u€(0,1],d J o (3)
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where superscript k indicates the iteration index, and b is the
dual variable. Based on Euler-Lagrange differential equa-
tion, the value of u can be solved by a Gauss-Seidel iterative
method,

uNVu — 2o (dp — dp)u = A h, + pdiv(d® — %), (5)

where div is the divergence operator. The minimum solution
of d value in Eq. 3 can be obtained by soft-thresholding,

dk+1 _ vukJrl +bk

= [ (Ve 6 = 0, 0). (6)

2.2. Iterative Seeds Refinement

+
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Fig. 3. Pipeline of our method. The white pixels represent
foreground seeds and the black ones represent background.
Within each iteration, u is gradually refined as shown in each
row, and the seeds are updated based on the optimized wu.

In existing interactive image segmentation methods, the
final segmentation result is decided by optimizing the pro-
posed energy once with the initial user inputs. However, when
the user input strokes are sparse or its locations are inappro-
priate, the complex objects are hardly to be segmented cor-
rectly. We propose to apply model Eq. 1 to calculate the
u(z) multiple times by iteratively refining the seeds. With the
newly updated seeds based on the optimized u(z) value, we
update the foreground/backgroud GMMs and recalculate the
geodesic distance for every pixel to the updated seeds in each

iteration. And then, the probability function u(x) is recom-
puted by Eq. 1. This iteration is continued until the proportion
of seed regions exceeds the predefined threshold. The final
segmentaiton can be got through applying the threshold 7" on
the final u(x). The seeds refinement and model’s updating
process are illustrated in Fig. 3 and our demo [19].

Instead of segmenting images based on the initial input
seeds in the model whose energy function is minimized only
once, we make full use of the information which can generate
the new seed regions properly and then the active contour
model is updated. The more seeds input to the model, the
more regions can be determined with high assurance. We
iteratively update the segmentation results by solving the
model multiple times with refined seeds. Fig. 4 indicates
obviously that with more iterations, the better visual results
are achieved.

(b) iter=1 (c) iter=5 (d) iter=27

(a) seeds image

Fig. 4. Results at different iterations for image with complex
color distribution and texture.

3. EXPERIMENTAL RESULTS AND DISCUSSIONS

Similar to the settings in [11], A; is set to 100 in our exper-
iments. Different Ay values are evaluated as well. For over
small \o, the geodesic energy does not take important effect.
While large A\, leads over dominant of seed locations. In the
following experiments, we set Ao to 1000. The commonly
used MSRC ground truth data set [2] that contains 50 test im-
ages is used for comparison with existing methods.

Fig. 5 describes our segmentation results for image with
complex foreground and background, under sparse inputs on
image. Note that the sparse inputs indicates that we merely
choose at most 1% pixels of the whole image. Apparently,
the results with our proposed model gets better with more it-
erations, while the results generated by [11] are unsatisfied,
due to complex image contents and limit quantity of the input
seeds. With the geodesic energy term, the texture structure
around with foreground seeds can benefit regions which are
within local area of seeds. For cases with similar foreground
and background, the method in [11] can hardly find the exact
cutting contour, or even completely fail in some particular sit-
uations by merely segmenting stroke regions, such as the third
example in Fig. 5. With the help of more iterations in our pro-
posed method, the segmentation has a chance to correct error,
as shown in the last column of Fig. 5.



Fig. 5. Segmentation results on complex images with sparse
strokes. The second column are the results of [11]. The third
column shows the results of model in Eq. 1. The last column
shows the final results until seed refinement stops.

In addition, we testify our method under different seed lo-
cations as shown in Fig. 6. Although the seeds do not cover
every component of foreground, and the seeds are quite dif-
ferent in both cases, both of the two results are similar and
satisfying, indicating that our method is more robust to sparse
input strokes than some state-of-art method (such as the one
in Fig. 1).

Fig. 6. With different inputs (same with Fig 1), the segmen-
tation results of proposed method are satisfying and similar.

Table 1 reports the error rates (percentage of mislabeled
pixels) of concerned methods and our proposed method. The
error rate is computed via the average result of 50 images
in MSRC dataset. We test the Constrained Active Contour
Model (Constrained ACM) [11] with both normal and sparse
inputs for comparison. It is obvious that the proposed method
achieves lower error rates than Constrained ACM for both
sparse and normal inputs. All the input sparse strokes and the
segmentation results are supplied in [20]. Note that the per-
formances of Grabcut [2], RW with AT [21] and Constrained
ACM [11] are under exactly the same conditions as where

they are reported.

\ Method \

Grabcut [2]
RW with AT [21]

error rate (%) \

5.66 (reported in [11])
3.3 (reported in [21])

Constrained ACM [11] 3.77 (reported in [11])

Constrained ACM [11] | 5.06 (with sparse inputs)
Our Method 4.30 (with sparse inputs)
Our Method 2.78 (with normal inputs)

Table 1. Error rate comparison using the MSRC dataset.

Although the iterative seeds refinement and optimization
of Eq. 1 are required in the proposed method, the numerical
algorithm in Eq. (6) is quite efficient, and the value of u from
previous iteration serves as a good initial value. The corre-
sponding computational efficiency for representative images
(in Fig. 5) is listed in Table2, under the computer setting of
Inter Core i7-3770K CPU and 32GB RAM.

| Image | Size | time(s) |
Fig.5 (1) | 481 x 321 1.453
Fig. 5 (2) | 481 x 321 1.829
Fig. 5 (3) | 321 x 481 1.622
Fig. 5 (4) | 481 x 321 | 1.560

Table 2. Computational efficiency of the examples in Fig. 5.

4. CONCLUSIONS

In this paper, we propose an iterative refinement framework
with geodesic distance enhancement active contour model.
The iterative seeds refinement strategy gradually update the
reliable segment part and use them as guidance to segment
the unreliable part. With these two novel strategies, the pro-
posed method can handle images with complex textures and
limit quantity of input seeds. Experiments on public image
segmentation dataset and natural images indicate that our pro-
posed method can achieve high quality segmentation.
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