L1-Regression based Subdivision Schemes for Noisy Data

Ghulam Mustafa, Hao Li, Juyong Zhang, Jiansong Deng USTC, HeFei, China

Subdivision

- Subdivision for curve/surface fitting: simple, easy to implement, arbitrary topology, local support
- Only clean input data is considered in classical subdivision schemes

Classical Chaikin Scheme

Data with Gaussian Noise

[Dyn, et.al. Univariate subdivision schemes for noisy data, 2013]

Data with Outliers

Image Denoising: Gaussian

 $\min_{u} \sum_{i} \sum_{j} \|\nabla u(i,j)\| + \frac{\lambda}{2} \|u - f\|_{2}^{2}$

Image Denoising: Outliers

 $\min_{u} \sum_{i} \sum_{j} \|\nabla u(i,j)\| + \frac{\lambda}{2} \|u - f\|_1$

Extend this idea to subdivision

Least Square Subdivision

Given data y_1, \cdots, y_m at nodes x_1, \cdots, x_m

Find a linear polynomial minimizing the squared residual

$$\min_{\beta_1,\beta_2 \in R} \sum_{i=1}^m (y_i - (\beta_1 + \beta_2 x_i))^2$$

[Dyn, et.al. Univariate subdivision schemes for noisy data, 2013]

Proposed L1 Model

$$\min_{\beta_1,\beta_2 \in R} \sum_{i=1}^m (y_i - (\beta_1 + \beta_2 x_i))^2$$

Proposed L1 Scheme:

LS Scheme:

$$\min_{\beta_1,\beta_2 \in R} \sum_{i=1}^{m} |y_i - (\beta_1 + \beta_2 x_i)|$$

Given Data

 $\phi_m = S_m^\infty \delta$

m = 6

 $\phi_m = S_m^\infty \delta$

m = 7

 $\phi_m = S_m^\infty \delta$

m = 8

Optimization Algorithm

Convex, but non-differentiable!

$$\min_{\beta_{1},\beta_{2}\in R} \sum_{r=-n+1}^{n} |f_{r} - \beta_{1} - \beta_{2}r| = \frac{1}{|f_{r} - \beta_{1} - \beta_{2}r|} (f_{r} - \beta_{1} - \beta_{2}r)^{2}$$

$$\beta_{1,\delta}^{k+1}, \beta_{2,\delta}^{k+1} = \arg\min_{\beta_{1},\beta_{2}\in R} \sum_{r=-n+1}^{n} w_{r}^{k} (f_{r} - \beta_{1} - \beta_{2}r)^{2}$$

$$k = k+1$$

$$w_{r}^{k} = 1/ \left[(f_{r} - \beta_{1,\delta}^{k} - \beta_{2,\delta}^{k}r)^{2} + \delta \right]^{1/2}$$

Iterative Reweighted Least Square (IRLS) formulation

Closed Form Expression

$$\begin{split} f_{2i}^{(k+1)} &= \sum_{r=-n+1}^{n} \left\{ 1 - \left(\tau_{2,i}^{(m)} - \frac{1}{4} \tau_{1,i}^{(m)} \right) \left(\frac{r \tau_{1,i}^{(m)} - \tau_{2,i}^{(m)}}{\tau_{1,i}^{(m)} \tau_{3,i}^{(m)} - \left(\tau_{2,i}^{(m)} \right)^2} \right) \right\} \frac{w_{i+r}^{(m)} f_{i+r}^{(k)}}{\tau_{1,i}^{(m)}} \\ f_{2i+1}^{(k+1)} &= \sum_{r=-n+1}^{n} \left\{ 1 - \left(\tau_{2,i}^{(m)} - \frac{3}{4} \tau_{1,i}^{(m)} \right) \left(\frac{r \tau_{1,i}^{(m)} - \tau_{2,i}^{(m)}}{\tau_{1,i}^{(m)} \tau_{3,i}^{(m)} - \left(\tau_{2,i}^{(m)} \right)^2} \right) \right\} \frac{w_{i+r}^{(m)} f_{i+r}^{(k)}}{\tau_{1,i}^{(m)} \tau_{1,i}^{(m)}} \\ \end{split}$$

Recap of L1 Scheme

Assign weights to local points Adjust the vertex positions

- Iterative formulation
- Closed form expression for each iteration

Iterative Results of IRLS

Iterative Results of Subdivision

More Results

Data with Outliers

Data with Noise and Outliers

$$Surface Fitting$$

$$\beta_{1}, \beta_{2}, \beta_{3} = \arg \min_{\beta_{1}, \beta_{2}, \beta_{3} \in R} \sum_{r=-n+1}^{n} \sum_{s=-n+1}^{n} |f_{r,s} - \beta_{1} - r\beta_{2} - s\beta_{3}|$$

$$\beta_{1,\delta}^{k+1}, \beta_{2,\delta}^{k+1}, \beta_{3,\delta}^{l+1} = \arg \min_{\beta_{1}, \beta_{2}, \beta_{3} \in R} \sum_{r=-n+1}^{n} \sum_{s=-n+1}^{n} w_{r,s}^{k} (f_{r,s} - \beta_{1} - r\beta_{2} - s\beta_{3})^{2}$$

$$w_{r,s}^{k} = 1 / \left[(f_{r,s} - \beta_{1,\delta}^{k} - r\beta_{2,\delta}^{k} - s\beta_{3,\delta}^{k})^{2} + \delta \right]^{1/2}$$

Conclusion

	Computation	Noise Type
Classical Scheme	Closed Form	
LS Scheme	Closed Form	Gaussian
L1 Scheme	Closed Form Iterative	Gaussian Impulsive Outliers

Thank you!