Local Barycentric Coordinates

Juyong ZhangUSTCBailin DengEPFLZishun LiuUSTCGiuseppe PatanèCNR-IMATISofien BouazizEPFLKai HormannUSILigang LiuUSTC

Università della Svizzera italiana

• Given a point \mathbf{p} inside a polygon with vertices $\{\mathbf{c}_i\}$

- Given a point \mathbf{p} inside a polygon with vertices $\{\mathbf{c}_i\}$
- Barycentric coordinates $\{w_i\}$ of \mathbf{p} :

• Given a point \mathbf{p} inside a polygon with vertices $\{\mathbf{c}_i\}$

 \mathbf{C}_2

• Barycentric coordinates $\{w_i\}$ of \mathbf{p} :

 $\mathbf{p} = \sum_{i} w_i \mathbf{c}_i, / \sum_{i} w_i = 1$

functions inside the polygon

C5

 \mathbf{c}_1

Global Deformation

Global influence

Our Goal: Local Control

Control points influence nearby regions only

Problem Formulation

• Input: control cage with vertices $\{\mathbf{c}_i\}$

Problem Formulation

- Input: control cage with vertices $\{\mathbf{c}_i\}$
- Output: barycentric coordinate functions $\{w_i(\mathbf{x})\}$ with local influence

Previous Work

Poisson-based Weight Reduction [Landreneau & Schaefer 2009]

Previous Work

Poisson-based Weight Reduction [Landreneau & Schaefer 2009]

*Cages [García et al. 2013]

Previous Work

Poisson-based Weight Reduction [Landreneau & Schaefer 2009]

*Cages [García et al. 2013]

• $\min_{w_1,\ldots,w_n} F(w_1,\ldots,w_n)$ subject to some constraints:

• $\min_{w_1,\ldots,w_n} F(w_1,\ldots,w_n)$ subject to some constraints:

$$-\sum_{i=1}^{n} w_i(\mathbf{x}) \mathbf{c}_i = \mathbf{x}, \quad \sum_{i=1}^{n} w_i(\mathbf{x}) = 1$$

• $\min_{w_1,\ldots,w_n} F(w_1,\ldots,w_n)$ subject to some constraints:

$$-\sum_{i=1}^{n} w_i(\mathbf{x}) \mathbf{c}_i = \mathbf{x}, \quad \sum_{i=1}^{n} w_i(\mathbf{x}) = 1$$

 $-w_i \ge 0$

• $\min_{w_1,\ldots,w_n} F(w_1,\ldots,w_n)$ subject to some constraints:

$$-\sum_{i=1}^{n} w_i(\mathbf{x}) \mathbf{c}_i = \mathbf{x}, \quad \sum_{i=1}^{n} w_i(\mathbf{x}) = 1$$

$$- w_i \ge 0$$
$$- w_i(\mathbf{c}_j) = \begin{cases} 1, & \text{if } i = j \\ 0, & \text{otherwise} \end{cases}$$

– w_i linear on cage edges

Local Influence

• Function w_i for control vertex \mathbf{c}_i

• Function w_i for control vertex \mathbf{c}_i

Necessary condition: large region with zero gradient

Necessary condition: large region with zero gradient

$$\min \int |\nabla w_i(\mathbf{x})| \ d\mathbf{x}$$

Necessary condition: large region with zero gradient

$$\min \int |\nabla w_i(\mathbf{x})| \, d\mathbf{x}$$

$$\int \int \nabla w_i(\mathbf{x}) \, d\mathbf{x}$$
Total variation of w_i :
convex functional

Target functional:

$$F = \sum_{i=1}^{n} \int |\nabla w_i(\mathbf{x})| \, d\mathbf{x}$$

Comparison

Weighted Total Variation

Extension: more locality using weighted total variation

• Local influence: w_i decreases to zero quickly

• Local influence: w_i decreases to zero quickly

Total variation:

$$\int |\nabla w_i(\mathbf{x})| \, d\mathbf{x}$$

Total variation:

$$\int \nabla w_i(\mathbf{x}) d\mathbf{x}$$

$$w_i = 0$$
 $w_i > 0$ c_i

Weighted total variation:

$$\int \phi_i(\mathbf{x}) \, |\nabla w_i(\mathbf{x})| \, d\mathbf{x}$$

Weighted total variation:

 $\int \phi_i(\mathbf{x}) |\nabla w_i(\mathbf{x})| d\mathbf{x}$ $\int \mathbf{0} \nabla w_i(\mathbf{x}) |\nabla w_i(\mathbf{x})| d\mathbf{x}$ Monotonically increasing w.r.t. geodesic distance to cage vertex

Comparison

- Scalar function w defined on domain Ω

- Scalar function w defined on domain Ω

- Scalar function w defined on domain Ω

Coarea formula:

$$\int_{\Omega} |\nabla w_i(\mathbf{x})| \, d\mathbf{x} = \int_{-\infty}^{+\infty} P(w > s) \, ds$$

Superlevel set of w_i for $s \in [0, 1)$:

Superlevel set of w_i for $s \in [0, 1)$:

$$-w_i(\mathbf{a}) = w_i(\mathbf{b}) = s$$

Superlevel set of w_i for $s \in [0, 1)$:

$$-w_i(\mathbf{a}) = w_i(\mathbf{b}) = s$$

– boundary curve connects \mathbf{a}, \mathbf{b}

Penalizing the superlevel set area

della Svizzera italiana

Penalizing the superlevel set area

Universita della Svizzera italiana

Regularizing the boundary curve

della Svizzera italiana

Regularizing the boundary curve

Universita della Svizzera italiana

- Total variation
 - penalize superlevel set size
 - regularize level set curves

Discretization: triangulated domain

- Discretization: triangulated domain
- Piecewise linear functions

- Discretization: triangulated domain
- Piecewise linear functions
 - determined by values at vertices

- Discretization: triangulated domain
- Piecewise linear functions
 - determined by values at vertices

Convex optimization for values at interior vertices

Comparison

MVC HBC BBW LBC

MVC

LBC

3D Example

Superlevel set of $10^{-3}/n$

Cage based deformation: matrix multiplication

W C = P

Global influence: dense matrix

 \mathbf{W}

Local influence: sparse matrix

 \mathbf{W}

- Local influence: sparse matrix
 - lower memory footprint
 - faster multiplication

 \mathbf{W}

Store LBC values

Memory Storage

Deformation Time

Limitation

• Less smoothness: C^1 almost everywhere

LBC

BBW

Limitation

• Less smoothness: C^1 almost everywhere

Conclusion

- Local barycentric coordinates by convex optimization
- Total variation induces locality via superlevel set perimeters

Future Work

- Higher order continuity
- Fundamental question: how local can smooth barycentric coordinates become?

Acknowledgements

- NSF of China (61222206, 61303148)
- NSF of Anhui Province, China (1408085QF119)
- Specialized Research Fund for the Doctoral Program of Higher Education (20133402120002)
- EU FP7 Integrated Project IQmulus (FP7-ICT-2011-318787)
- Swiss National Science Foundation (200021_137626)
- The 100 Talents Program of the Chinese Academy of Sciences

Università della Svizzera italiana