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Figure 1: Using LBC for 3D cage-based manipulation allows for local, smooth, and shape-aware deformations. Only parts near the
manipulated control points are deformed, as indicated by the logarithmic color-coding of the displacement magnitude.

Abstract

Barycentric coordinates yield a powerful and yet simple paradigm
to interpolate data values on polyhedral domains. They represent
interior points of the domain as an affine combination of a set of
control points, defining an interpolation scheme for any function
defined on a set of control points. Numerous barycentric coordinate
schemes have been proposed satisfying a large variety of properties.
However, they typically define interpolation as a combination of all
control points. Thus a local change in the value at a single control
point will create a global change by propagation into the whole
domain. In this context, we present a family of local barycentric
coordinates (LBC), which select for each interior point a small set
of control points and satisfy common requirements on barycentric
coordinates, such as linearity, non-negativity, and smoothness. LBC
are achieved through a convex optimization based on total variation,
and provide a compact representation that reduces memory footprint
and allows for fast deformations. Our experiments show that LBC
provide more local and finer control on shape deformation than
previous approaches, and lead to more intuitive deformation results.
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1 Introduction

Barycentric coordinates provide a simple and convenient way to
interpolate values from a set of control points over the interior of
a domain, using weighted combinations of values associated with
the control points. Due to their simplicity and efficiency, they have
been successfully applied to various problems in computer graphics,
including image composition and warping [Farbman et al. 2009],
shape deformation [Ju et al. 2005; Lipman et al. 2007], texture map-
ping [Desbrun et al. 2002], and synthesis [Takayama et al. 2010].
Current barycentric coordinates typically are of global nature, mean-
ing that the interpolated value depends on many, potentially all,
control points. This implies two main drawbacks. The first one is
the lack of locality and control over a deformation. For example, in
design tasks such as shape and image deformation, where the users
directly manipulate control points, editing just one control point
potentially influences the whole design, yielding a counter-intuitive
behavior. Even worse, manually achieving any localized edit might
be impossible since it would involve manipulating a large amount
of control points to achieve the desired deformation. The second
drawback is scalability. Most practical applications store barycentric
coordinates using one scalar value per control point for every vertex
of the target domain. For high-resolution shapes with many control
points, this leads to high memory consumption. Furthermore, the
interpolation is computationally expensive: it involves a weighted
sum of all control points for each interior vertex. Thus, barycen-
tric coordinates with locality provide benefits in terms of storage
requirements as well as computational cost.

Overview and contributions. This paper introduces a novel
method to derive local barycentric coordinates (LBC), which de-
pend only on a small number of control points. LBC are computed
by minimizing a target functional based on total variation (TV),
subject to a set of constraints that ensure desired properties such as
partition of unity, reproduction, and non-negativity. The TV energy,
widely used for image smoothing and reconstruction [Rudin et al.
1992], induces locality and regularity of the computed coordinates.
The resulting LBC are local, meaning that each control point only
influences a nearby region. As a result, LBC induce lower computa-
tional cost for applications such as cage-based deformation, since
each point on the target shape is only determined by a small number
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Figure 2: A bunny’s ear in the rest pose (left) is stretched
using globally defined mean-value coordinates (middle) and
using reduced weights (right). Color corresponds to vertex
movement. Every vertex in the global model exhibits some
movement, but all movement on the reduced model is locally
restricted to the ear.

dinates may be precomputed and stored yielding relatively
fast deformations.

Unfortunately, most barycentric coordinate techniques are
global in nature. Each vertex in the target mesh is weighted
by a combination of every vertex in the control mesh. As
the complexity of the control mesh increases, the storage
space and time required to deform the target mesh’s vertices
linearly increases as well. Even for sparse control meshes
consisting of 50 to 100 vertices, the deformations may be
too slow for real-time animation. In addition, any deforma-
tion using these globally supported weights will influence
the entire target mesh. For example, if the user moves a sin-
gle ear of the rabbit model in Figure 2, even vertices on the
other side of the model will move slightly. Such movement
is often counterintuitive, especially with articulated figures
where the user may expect the motion of a body part to be
isolated to that portion of the model.

Given a control vertex ci, its basis function defined by
the weights !i typically decreases with respect to Eu-
clidean distance [JSW05] or geodesic distance in the con-
trol mesh [JMD∗07]. Therefore, many of the weights !i for
a single vertex will be very small and only a few control
vertices will have significant influence on the vertex. Since
the magnitude of the weights decrease with distance and the
deformation model may contain extraneous degrees of free-
dom, limiting the number of weights influencing each vertex
of the target mesh is not only possible but desirable as well.
By reducing the number of weights we can expose/increase
locality in the resulting deformations. Since the number of
weights is constant with respect to the control mesh, we can
also increase the complexity of the control mesh without in-
creasing the storage or deformation time of the target mesh.
Finally, if the number of weights are small enough, we can
accelerate these deformations by implementing the deforma-
tion equation on the GPU, which requires a small, fixed num-

Figure 3: An example of our weight reduction applied to a
model of Buddha in the rest pose (left) and deformed poses
(right). The model was reduced from 45 weights down to 12
weights using our Poisson reduction and is indistinguishable
from the original model.

ber of weights to maximize computational efficiency. Fig-
ure 3 demonstrates the type of reduction possible with our
method. In this example each vertex of the Buddha model is
weighted by all 45 vertices of the control mesh. After weight
reduction, each vertex has a maximum of 12 weights and the
model is virtually identical to the original under deforma-
tion.

1.1. Contributions

We present a Poisson-based optimization technique that re-
duces the number of control point influences of a deformable
mesh to a specified count. To expose the limited degrees of
freedom in the model we require the user to specify a num-
ber of example poses demonstrating the set of plausible de-
formations of the character. From these examples we show
that we can maintain the appearance of the surface under
deformation and provide an iterative optimization technique
capable of handling even large meshes consisting of millions
of polygons. Using this reduced set of weights, we show
how we can implement these barycentric coordinate defor-
mations efficiently on the GPU and achieve a factor of 50
speed-up over a CPU implementation. Moreover, we show
that our method can be applied not just to barycentric coor-
dinates but to other deformation methods as well and give an
example of weight reduction for skeletal animation.

2. Previous Work

Though barycentric coordinates have existed since Möbius
in 1827, only in recent years has significant work been done
in this field. Given the relatively new interest in this field,
most previous work has focused on developing new forms
of barycentric coordinates or proving properties about their
deformations [FK08] instead of manipulating or reducing
the number of weights. However, all of these methods have

c⃝ 2009 The Author(s)
Journal compilation c⃝ 2009 The Eurographics Association and Blackwell Publishing Ltd.

Poisson-based Weight Reduction
[Landreneau & Schaefer 2009]
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Fig. 16. Deformations of the Sintel model (66845 triangles) using *Cages. Left: Cages at binding time with different coordinates (Blue - MVC, Green - GC,
Red - HC, and pink cage boundaries). Right: Composition of different poses.

Fig. 15. Deformation involving interior points of the ”Easter Egg” model
using *Cages. Left: The model and the grid of cages at binding time. High-
lighted vertices are interior points. Right: Composition of two different de-
formations.

Sintel model (column 2). The total time required for the preprocess
is shown in column 3, specifying the amount of time dedicated
to compute the coordinates with respect to the parent cages.
Also, *Cages takes much less time to compute cage coordinates
because each of the cages used are simpler and smaller than a
whole single cage. The rest of the time is needed to compute join
cages and the coordinates with respect to them. In the case of
using GC, *Cages requires even less preprocessing time because
of the nature of their computations [Lipman et al. 2008]. The
deformation times (column 4) are the averages of the times needed
for the deformation of a cage vertex. Observe that our approach is
significantly faster for both models, where we achieve between 3
and 5 times the speed of MVC, and between 7 and 18 times that of
GC.

We would like to emphasize that, even our code is unopti-
mized and CPU-based, *Cages allows for a more GPU-friendly
implementation than single cage-based approaches do, as it has
a much lower number of weights to store for each mesh vertex.
Moreover, unlike the technique presented by Landreneau and
Schaefer [2010], we don’t need to be constrained by having to
create new deformations that must be similar to an initial range

of predetermined poses to be able to reduce memory and time
consumption. Instead, we give the user the freedom to perform
any type of deformation while also keeping the memory and
time requirements small, as well. Let us note that *Cages is
fully compatible with the work by Landreneau and Schaefer
[2010], and our computational requirements could be reduced
even more if used together: Their compression could be used
for both cage and join transformations. The latter case would
benefit *Cages the most, as join transformations are more compu-
tationally demanding to evaluate than regular cage transformations.

*Cages is not related with the modeling of cages themselves.
As the examples throughout the paper have shown we use a set of
individual cages, the union of which result in a single cage for the
entire model. This has been done as a way to make comparisons
to previous single cage-based approaches fairer. With *Cages we
don’t need to create the whole set of cages that are equivalent to a
single cage. For instance, if we want to deform only the head of
the Sintel model shown in Figure 16, we are not required to build
all the cages shown there, we only need to model the ones needed
to make this task simpler. Moreover, the modeling of cages used to
deform a small region is usually easier and faster and so, the use
of many cages to deform a mesh can result in a more user-friendly
element for the cage-modeling phase.

As a space deformation approach, *Cages can be used in the
same domains as previous methods. For instance, the lowest-level
cages of our hierarchy could be deformed by a simple skeleton, as
Ju at al. [2008] did. Thanks to the local behavior of our approach,
we could provide a finer degree of control over the skeleton and,
as a result, a smoother final animation. *Cages also can be used
to perform deformations in 2D, as long as the cages satisfy the
requirements described in Section 3. *Cages is a cage-based
method that can be also integrated with other deformation tech-
niques that uses other types of handles, as the one proposed by
Jacobson et al. [2011]. For instance, our approach can be used in
a certain region of the model to perform local and hierarchical
deformations with MVC/HC or GC. Then, on the rest of the model,
the bounded biharmonic weights could be used with point and

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

*Cages
[García et al. 2013]
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locality in the resulting deformations. Since the number of
weights is constant with respect to the control mesh, we can
also increase the complexity of the control mesh without in-
creasing the storage or deformation time of the target mesh.
Finally, if the number of weights are small enough, we can
accelerate these deformations by implementing the deforma-
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Figure 3: An example of our weight reduction applied to a
model of Buddha in the rest pose (left) and deformed poses
(right). The model was reduced from 45 weights down to 12
weights using our Poisson reduction and is indistinguishable
from the original model.

ber of weights to maximize computational efficiency. Fig-
ure 3 demonstrates the type of reduction possible with our
method. In this example each vertex of the Buddha model is
weighted by all 45 vertices of the control mesh. After weight
reduction, each vertex has a maximum of 12 weights and the
model is virtually identical to the original under deforma-
tion.

1.1. Contributions

We present a Poisson-based optimization technique that re-
duces the number of control point influences of a deformable
mesh to a specified count. To expose the limited degrees of
freedom in the model we require the user to specify a num-
ber of example poses demonstrating the set of plausible de-
formations of the character. From these examples we show
that we can maintain the appearance of the surface under
deformation and provide an iterative optimization technique
capable of handling even large meshes consisting of millions
of polygons. Using this reduced set of weights, we show
how we can implement these barycentric coordinate defor-
mations efficiently on the GPU and achieve a factor of 50
speed-up over a CPU implementation. Moreover, we show
that our method can be applied not just to barycentric coor-
dinates but to other deformation methods as well and give an
example of weight reduction for skeletal animation.

2. Previous Work

Though barycentric coordinates have existed since Möbius
in 1827, only in recent years has significant work been done
in this field. Given the relatively new interest in this field,
most previous work has focused on developing new forms
of barycentric coordinates or proving properties about their
deformations [FK08] instead of manipulating or reducing
the number of weights. However, all of these methods have

c⃝ 2009 The Author(s)
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Schaefer [2010], we don’t need to be constrained by having to
create new deformations that must be similar to an initial range
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all the cages shown there, we only need to model the ones needed
to make this task simpler. Moreover, the modeling of cages used to
deform a small region is usually easier and faster and so, the use
of many cages to deform a mesh can result in a more user-friendly
element for the cage-modeling phase.
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Ju at al. [2008] did. Thanks to the local behavior of our approach,
we could provide a finer degree of control over the skeleton and,
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requirements described in Section 3. *Cages is a cage-based
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Figure 1: Using LBC for 3D cage-based manipulation allows for local, smooth, and shape-aware deformations. Only parts near the
manipulated control points are deformed, as indicated by the logarithmic color-coding of the displacement magnitude.

Abstract

Barycentric coordinates yield a powerful and yet simple paradigm
to interpolate data values on polyhedral domains. They represent
interior points of the domain as an affine combination of a set of
control points, defining an interpolation scheme for any function
defined on a set of control points. Numerous barycentric coordinate
schemes have been proposed satisfying a large variety of properties.
However, they typically define interpolation as a combination of all
control points. Thus a local change in the value at a single control
point will create a global change by propagation into the whole
domain. In this context, we present a family of local barycentric
coordinates (LBC), which select for each interior point a small set
of control points and satisfy common requirements on barycentric
coordinates, such as linearity, non-negativity, and smoothness. LBC
are achieved through a convex optimization based on total variation,
and provide a compact representation that reduces memory footprint
and allows for fast deformations. Our experiments show that LBC
provide more local and finer control on shape deformation than
previous approaches, and lead to more intuitive deformation results.

CR Categories: I.3.5 [Computer Graphics]: Computational Geom-
etry and Object Modeling—Geometric algorithms, languages, and
systems;
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1 Introduction

Barycentric coordinates provide a simple and convenient way to
interpolate values from a set of control points over the interior of
a domain, using weighted combinations of values associated with
the control points. Due to their simplicity and efficiency, they have
been successfully applied to various problems in computer graphics,
including image composition and warping [Farbman et al. 2009],
shape deformation [Ju et al. 2005; Lipman et al. 2007], texture map-
ping [Desbrun et al. 2002], and synthesis [Takayama et al. 2010].
Current barycentric coordinates typically are of global nature, mean-
ing that the interpolated value depends on many, potentially all,
control points. This implies two main drawbacks. The first one is
the lack of locality and control over a deformation. For example, in
design tasks such as shape and image deformation, where the users
directly manipulate control points, editing just one control point
potentially influences the whole design, yielding a counter-intuitive
behavior. Even worse, manually achieving any localized edit might
be impossible since it would involve manipulating a large amount
of control points to achieve the desired deformation. The second
drawback is scalability. Most practical applications store barycentric
coordinates using one scalar value per control point for every vertex
of the target domain. For high-resolution shapes with many control
points, this leads to high memory consumption. Furthermore, the
interpolation is computationally expensive: it involves a weighted
sum of all control points for each interior vertex. Thus, barycen-
tric coordinates with locality provide benefits in terms of storage
requirements as well as computational cost.

Overview and contributions. This paper introduces a novel
method to derive local barycentric coordinates (LBC), which de-
pend only on a small number of control points. LBC are computed
by minimizing a target functional based on total variation (TV),
subject to a set of constraints that ensure desired properties such as
partition of unity, reproduction, and non-negativity. The TV energy,
widely used for image smoothing and reconstruction [Rudin et al.
1992], induces locality and regularity of the computed coordinates.
The resulting LBC are local, meaning that each control point only
influences a nearby region. As a result, LBC induce lower computa-
tional cost for applications such as cage-based deformation, since
each point on the target shape is only determined by a small number
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1University of Science and Technology of China 2École polytechnique fédérale de Lausanne
3CNR - Istituto di Matematica Applicata e Tecnologie Informatiche 4Università della Svizzera italiana

Figure 1: Using LBC for 3D cage-based manipulation allows for local, smooth, and shape-aware deformations. Only parts near the
manipulated control points are deformed, as indicated by the logarithmic color-coding of the displacement magnitude.

Abstract

Barycentric coordinates yield a powerful and yet simple paradigm
to interpolate data values on polyhedral domains. They represent
interior points of the domain as an affine combination of a set of
control points, defining an interpolation scheme for any function
defined on a set of control points. Numerous barycentric coordinate
schemes have been proposed satisfying a large variety of properties.
However, they typically define interpolation as a combination of all
control points. Thus a local change in the value at a single control
point will create a global change by propagation into the whole
domain. In this context, we present a family of local barycentric
coordinates (LBC), which select for each interior point a small set
of control points and satisfy common requirements on barycentric
coordinates, such as linearity, non-negativity, and smoothness. LBC
are achieved through a convex optimization based on total variation,
and provide a compact representation that reduces memory footprint
and allows for fast deformations. Our experiments show that LBC
provide more local and finer control on shape deformation than
previous approaches, and lead to more intuitive deformation results.
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1 Introduction

Barycentric coordinates provide a simple and convenient way to
interpolate values from a set of control points over the interior of
a domain, using weighted combinations of values associated with
the control points. Due to their simplicity and efficiency, they have
been successfully applied to various problems in computer graphics,
including image composition and warping [Farbman et al. 2009],
shape deformation [Ju et al. 2005; Lipman et al. 2007], texture map-
ping [Desbrun et al. 2002], and synthesis [Takayama et al. 2010].
Current barycentric coordinates typically are of global nature, mean-
ing that the interpolated value depends on many, potentially all,
control points. This implies two main drawbacks. The first one is
the lack of locality and control over a deformation. For example, in
design tasks such as shape and image deformation, where the users
directly manipulate control points, editing just one control point
potentially influences the whole design, yielding a counter-intuitive
behavior. Even worse, manually achieving any localized edit might
be impossible since it would involve manipulating a large amount
of control points to achieve the desired deformation. The second
drawback is scalability. Most practical applications store barycentric
coordinates using one scalar value per control point for every vertex
of the target domain. For high-resolution shapes with many control
points, this leads to high memory consumption. Furthermore, the
interpolation is computationally expensive: it involves a weighted
sum of all control points for each interior vertex. Thus, barycen-
tric coordinates with locality provide benefits in terms of storage
requirements as well as computational cost.

Overview and contributions. This paper introduces a novel
method to derive local barycentric coordinates (LBC), which de-
pend only on a small number of control points. LBC are computed
by minimizing a target functional based on total variation (TV),
subject to a set of constraints that ensure desired properties such as
partition of unity, reproduction, and non-negativity. The TV energy,
widely used for image smoothing and reconstruction [Rudin et al.
1992], induces locality and regularity of the computed coordinates.
The resulting LBC are local, meaning that each control point only
influences a nearby region. As a result, LBC induce lower computa-
tional cost for applications such as cage-based deformation, since
each point on the target shape is only determined by a small number
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Figure 1: Using LBC for 3D cage-based manipulation allows for local, smooth, and shape-aware deformations. Only parts near the
manipulated control points are deformed, as indicated by the logarithmic color-coding of the displacement magnitude.

Abstract

Barycentric coordinates yield a powerful and yet simple paradigm
to interpolate data values on polyhedral domains. They represent
interior points of the domain as an affine combination of a set of
control points, defining an interpolation scheme for any function
defined on a set of control points. Numerous barycentric coordinate
schemes have been proposed satisfying a large variety of properties.
However, they typically define interpolation as a combination of all
control points. Thus a local change in the value at a single control
point will create a global change by propagation into the whole
domain. In this context, we present a family of local barycentric
coordinates (LBC), which select for each interior point a small set
of control points and satisfy common requirements on barycentric
coordinates, such as linearity, non-negativity, and smoothness. LBC
are achieved through a convex optimization based on total variation,
and provide a compact representation that reduces memory footprint
and allows for fast deformations. Our experiments show that LBC
provide more local and finer control on shape deformation than
previous approaches, and lead to more intuitive deformation results.
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1 Introduction

Barycentric coordinates provide a simple and convenient way to
interpolate values from a set of control points over the interior of
a domain, using weighted combinations of values associated with
the control points. Due to their simplicity and efficiency, they have
been successfully applied to various problems in computer graphics,
including image composition and warping [Farbman et al. 2009],
shape deformation [Ju et al. 2005; Lipman et al. 2007], texture map-
ping [Desbrun et al. 2002], and synthesis [Takayama et al. 2010].
Current barycentric coordinates typically are of global nature, mean-
ing that the interpolated value depends on many, potentially all,
control points. This implies two main drawbacks. The first one is
the lack of locality and control over a deformation. For example, in
design tasks such as shape and image deformation, where the users
directly manipulate control points, editing just one control point
potentially influences the whole design, yielding a counter-intuitive
behavior. Even worse, manually achieving any localized edit might
be impossible since it would involve manipulating a large amount
of control points to achieve the desired deformation. The second
drawback is scalability. Most practical applications store barycentric
coordinates using one scalar value per control point for every vertex
of the target domain. For high-resolution shapes with many control
points, this leads to high memory consumption. Furthermore, the
interpolation is computationally expensive: it involves a weighted
sum of all control points for each interior vertex. Thus, barycen-
tric coordinates with locality provide benefits in terms of storage
requirements as well as computational cost.

Overview and contributions. This paper introduces a novel
method to derive local barycentric coordinates (LBC), which de-
pend only on a small number of control points. LBC are computed
by minimizing a target functional based on total variation (TV),
subject to a set of constraints that ensure desired properties such as
partition of unity, reproduction, and non-negativity. The TV energy,
widely used for image smoothing and reconstruction [Rudin et al.
1992], induces locality and regularity of the computed coordinates.
The resulting LBC are local, meaning that each control point only
influences a nearby region. As a result, LBC induce lower computa-
tional cost for applications such as cage-based deformation, since
each point on the target shape is only determined by a small number
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Figure 1: Using LBC for 3D cage-based manipulation allows for local, smooth, and shape-aware deformations. Only parts near the
manipulated control points are deformed, as indicated by the logarithmic color-coding of the displacement magnitude.

Abstract

Barycentric coordinates yield a powerful and yet simple paradigm
to interpolate data values on polyhedral domains. They represent
interior points of the domain as an affine combination of a set of
control points, defining an interpolation scheme for any function
defined on a set of control points. Numerous barycentric coordinate
schemes have been proposed satisfying a large variety of properties.
However, they typically define interpolation as a combination of all
control points. Thus a local change in the value at a single control
point will create a global change by propagation into the whole
domain. In this context, we present a family of local barycentric
coordinates (LBC), which select for each interior point a small set
of control points and satisfy common requirements on barycentric
coordinates, such as linearity, non-negativity, and smoothness. LBC
are achieved through a convex optimization based on total variation,
and provide a compact representation that reduces memory footprint
and allows for fast deformations. Our experiments show that LBC
provide more local and finer control on shape deformation than
previous approaches, and lead to more intuitive deformation results.
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1 Introduction

Barycentric coordinates provide a simple and convenient way to
interpolate values from a set of control points over the interior of
a domain, using weighted combinations of values associated with
the control points. Due to their simplicity and efficiency, they have
been successfully applied to various problems in computer graphics,
including image composition and warping [Farbman et al. 2009],
shape deformation [Ju et al. 2005; Lipman et al. 2007], texture map-
ping [Desbrun et al. 2002], and synthesis [Takayama et al. 2010].
Current barycentric coordinates typically are of global nature, mean-
ing that the interpolated value depends on many, potentially all,
control points. This implies two main drawbacks. The first one is
the lack of locality and control over a deformation. For example, in
design tasks such as shape and image deformation, where the users
directly manipulate control points, editing just one control point
potentially influences the whole design, yielding a counter-intuitive
behavior. Even worse, manually achieving any localized edit might
be impossible since it would involve manipulating a large amount
of control points to achieve the desired deformation. The second
drawback is scalability. Most practical applications store barycentric
coordinates using one scalar value per control point for every vertex
of the target domain. For high-resolution shapes with many control
points, this leads to high memory consumption. Furthermore, the
interpolation is computationally expensive: it involves a weighted
sum of all control points for each interior vertex. Thus, barycen-
tric coordinates with locality provide benefits in terms of storage
requirements as well as computational cost.

Overview and contributions. This paper introduces a novel
method to derive local barycentric coordinates (LBC), which de-
pend only on a small number of control points. LBC are computed
by minimizing a target functional based on total variation (TV),
subject to a set of constraints that ensure desired properties such as
partition of unity, reproduction, and non-negativity. The TV energy,
widely used for image smoothing and reconstruction [Rudin et al.
1992], induces locality and regularity of the computed coordinates.
The resulting LBC are local, meaning that each control point only
influences a nearby region. As a result, LBC induce lower computa-
tional cost for applications such as cage-based deformation, since
each point on the target shape is only determined by a small number
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Figure 1: Using LBC for 3D cage-based manipulation allows for local, smooth, and shape-aware deformations. Only parts near the
manipulated control points are deformed, as indicated by the logarithmic color-coding of the displacement magnitude.

Abstract

Barycentric coordinates yield a powerful and yet simple paradigm
to interpolate data values on polyhedral domains. They represent
interior points of the domain as an affine combination of a set of
control points, defining an interpolation scheme for any function
defined on a set of control points. Numerous barycentric coordinate
schemes have been proposed satisfying a large variety of properties.
However, they typically define interpolation as a combination of all
control points. Thus a local change in the value at a single control
point will create a global change by propagation into the whole
domain. In this context, we present a family of local barycentric
coordinates (LBC), which select for each interior point a small set
of control points and satisfy common requirements on barycentric
coordinates, such as linearity, non-negativity, and smoothness. LBC
are achieved through a convex optimization based on total variation,
and provide a compact representation that reduces memory footprint
and allows for fast deformations. Our experiments show that LBC
provide more local and finer control on shape deformation than
previous approaches, and lead to more intuitive deformation results.
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1 Introduction

Barycentric coordinates provide a simple and convenient way to
interpolate values from a set of control points over the interior of
a domain, using weighted combinations of values associated with
the control points. Due to their simplicity and efficiency, they have
been successfully applied to various problems in computer graphics,
including image composition and warping [Farbman et al. 2009],
shape deformation [Ju et al. 2005; Lipman et al. 2007], texture map-
ping [Desbrun et al. 2002], and synthesis [Takayama et al. 2010].
Current barycentric coordinates typically are of global nature, mean-
ing that the interpolated value depends on many, potentially all,
control points. This implies two main drawbacks. The first one is
the lack of locality and control over a deformation. For example, in
design tasks such as shape and image deformation, where the users
directly manipulate control points, editing just one control point
potentially influences the whole design, yielding a counter-intuitive
behavior. Even worse, manually achieving any localized edit might
be impossible since it would involve manipulating a large amount
of control points to achieve the desired deformation. The second
drawback is scalability. Most practical applications store barycentric
coordinates using one scalar value per control point for every vertex
of the target domain. For high-resolution shapes with many control
points, this leads to high memory consumption. Furthermore, the
interpolation is computationally expensive: it involves a weighted
sum of all control points for each interior vertex. Thus, barycen-
tric coordinates with locality provide benefits in terms of storage
requirements as well as computational cost.

Overview and contributions. This paper introduces a novel
method to derive local barycentric coordinates (LBC), which de-
pend only on a small number of control points. LBC are computed
by minimizing a target functional based on total variation (TV),
subject to a set of constraints that ensure desired properties such as
partition of unity, reproduction, and non-negativity. The TV energy,
widely used for image smoothing and reconstruction [Rudin et al.
1992], induces locality and regularity of the computed coordinates.
The resulting LBC are local, meaning that each control point only
influences a nearby region. As a result, LBC induce lower computa-
tional cost for applications such as cage-based deformation, since
each point on the target shape is only determined by a small number
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Figure 1: Using LBC for 3D cage-based manipulation allows for local, smooth, and shape-aware deformations. Only parts near the
manipulated control points are deformed, as indicated by the logarithmic color-coding of the displacement magnitude.
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Barycentric coordinates yield a powerful and yet simple paradigm
to interpolate data values on polyhedral domains. They represent
interior points of the domain as an affine combination of a set of
control points, defining an interpolation scheme for any function
defined on a set of control points. Numerous barycentric coordinate
schemes have been proposed satisfying a large variety of properties.
However, they typically define interpolation as a combination of all
control points. Thus a local change in the value at a single control
point will create a global change by propagation into the whole
domain. In this context, we present a family of local barycentric
coordinates (LBC), which select for each interior point a small set
of control points and satisfy common requirements on barycentric
coordinates, such as linearity, non-negativity, and smoothness. LBC
are achieved through a convex optimization based on total variation,
and provide a compact representation that reduces memory footprint
and allows for fast deformations. Our experiments show that LBC
provide more local and finer control on shape deformation than
previous approaches, and lead to more intuitive deformation results.
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1 Introduction

Barycentric coordinates provide a simple and convenient way to
interpolate values from a set of control points over the interior of
a domain, using weighted combinations of values associated with
the control points. Due to their simplicity and efficiency, they have
been successfully applied to various problems in computer graphics,
including image composition and warping [Farbman et al. 2009],
shape deformation [Ju et al. 2005; Lipman et al. 2007], texture map-
ping [Desbrun et al. 2002], and synthesis [Takayama et al. 2010].
Current barycentric coordinates typically are of global nature, mean-
ing that the interpolated value depends on many, potentially all,
control points. This implies two main drawbacks. The first one is
the lack of locality and control over a deformation. For example, in
design tasks such as shape and image deformation, where the users
directly manipulate control points, editing just one control point
potentially influences the whole design, yielding a counter-intuitive
behavior. Even worse, manually achieving any localized edit might
be impossible since it would involve manipulating a large amount
of control points to achieve the desired deformation. The second
drawback is scalability. Most practical applications store barycentric
coordinates using one scalar value per control point for every vertex
of the target domain. For high-resolution shapes with many control
points, this leads to high memory consumption. Furthermore, the
interpolation is computationally expensive: it involves a weighted
sum of all control points for each interior vertex. Thus, barycen-
tric coordinates with locality provide benefits in terms of storage
requirements as well as computational cost.

Overview and contributions. This paper introduces a novel
method to derive local barycentric coordinates (LBC), which de-
pend only on a small number of control points. LBC are computed
by minimizing a target functional based on total variation (TV),
subject to a set of constraints that ensure desired properties such as
partition of unity, reproduction, and non-negativity. The TV energy,
widely used for image smoothing and reconstruction [Rudin et al.
1992], induces locality and regularity of the computed coordinates.
The resulting LBC are local, meaning that each control point only
influences a nearby region. As a result, LBC induce lower computa-
tional cost for applications such as cage-based deformation, since
each point on the target shape is only determined by a small number
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Conclusion

• Local barycentric coordinates by convex 
optimization

• Total variation induces locality via superlevel set 
perimeters
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Future Work

• Higher order continuity

• Fundamental question: how local can smooth 
barycentric coordinates become?
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