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Total variation (TV) has been proved very successful in image processing, and it has

been combined with various non-quadratic fidelities for non-Gaussian noise removal.

However, these models are hard to solve because TV is non-differentiable and non-

linear, and non-quadratic fidelity term is also nonlinear and even non-differentiable for

some special cases. This prevents their widespread use in practical applications. Very

recently, it was found that the augmented Lagrangian method is extremely efficient for

this kind of models. However, only the single-channel case (e.g., gray images) is

considered. In this paper, we propose a general computational framework based on

augmented Lagrangian method for multichannel TV minimization with non-quadratic

fidelity, and then show how to apply it to two special cases: L1 and Kullback–Leibler

(KL) fidelities, two common and important data terms for blurry images corrupted by

impulsive noise or Poisson noise, respectively. For these typical fidelities, we show that

the sub-problems either can be fast solved by FFT or have closed form solutions. The

experiments demonstrate that our algorithm can fast restore high quality images.

& 2011 Elsevier B.V. All rights reserved.
1. Introduction

In image processing and signal processing areas, many
problems can be casted as an energy minimization for-
mulation, whose objective energy functional often contains
two terms, one is the regularization term modeling some a
priori information about the original data, and a fidelity
term measuring some types of deviation of the original
data from the observed data. One of the most used and
successful regularization term is total variation, which was
first put forward in [1], and has been successfully applied
in many image processing areas, such as image restoration
[1–6], image segmentation, image compression, image
reconstruction and surface reconstruction [5,7,8]. Its suc-
cess is based on the fact that the gradient is sparse in most
ll rights reserved.

g).
images and total variation catches this property, like the
basis pursuit problem [9] in compressive sensing [10,11].

As for the fidelity term, different problems use different
formulation to suit its applications. For image restoration, the
most common and popular fidelity term is the L2 type, which
has shown great success for recovering blurry images cor-
rupted by Gaussian noise [1,12,2,13]. However, for many
other important applications, the L2 type fidelity term is not
suitable any more and we need to use a non-quadratic
fidelity term to depict the relation between the observed
data and the original data. For example, it has been shown
that we can get high restoration results by using TV-L1 model
to recover images corrupted by blur and impulsive noise
[14,3]. Another typical example is the TV-KL model for
Poisson noise [4].

Although TV regularization has many good properties, it
is also well-known to be hard to solve because of its non-
differentiability and nonlinear properties. A lot of effort has
been contributed to design fast solvers [15–22] in the past
few years, however, all of these works only consider TV
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minimization with squared L2 fidelity term. Compared with
TV-L2 model, TV with non-quadratic fidelity models are
more complicated because the first order variations of these
fidelities are no longer linear. Several algorithms have been
put forward to overcome these difficulties. For example, for
TV-L1 model, there are gradient descent method [23], LAD
method [24], splitting-and-penalty based method [25], and
primal-dual method [26] based on semi-smooth Newton
algorithm [27], alternating direction methods [28], as well
as augmented Lagrangian method [29] for gray images. The
same problem exists for TV-KL model, which is effective to
deblur images corrupted by Poisson noise, but is quite hard
to minimize. Popular methods to solve this TV-KL model
are gradient descent [4], multilevel method [30], the scaled
gradient projection method [31], and EM-TV alternative
minimization [32], as well as variable splitting and convex
optimization based methods [33,34].

In this paper, we put forward a general computational
framework for multichannel TV (MTV) minimization with
non-quadratic fidelity. Our algorithm is derived from the
well-known variable-splitting and augmented Lagrangian
method in optimization, which is an unconstrained func-
tion based on augmenting the Lagrangian function with a
quadratic penalty term. Another benefit of this formulation
is that two of three subproblems either can be fast solved
by FFT or has closed form solution for general fidelity terms,
and the remaining subproblem has closed-form formula for
some typical fidelities. We will see that our algorithm
dramatically improves the computation speed because of
the FFT implementation and closed form solutions. Besides,
our different parameters for different auxiliary variables
strategy is also much more effective than the one in
[28,33,34]. Except the MTV regularization, our algorithm
can also be extended to effectively handle weighted MTV,
as well as high-order regularization terms, like the strategy
used in [35]. In general, we present a very efficient algo-
rithm for a quite general type of models which is composed
of MTV-like regularization term and non-quadratic fidelity
term. As shown in Section 4, our algorithm makes the edge-
preserving variational color image restoration models to be
practically viable technologies.

The rest of the paper is organized as follows. In the next
section, we will first give an introduction about multi-
channel total variation. Augmented Lagrangian method
based numerical solver for multichannel total variation
with non-quadratic fidelity terms will be given in Section
3, and its application to two special cases: blurry images
corrupted by impulsive noise or Poisson noise will also be
presented in this section. Experimental results are shown
in Section 4 and we conclude the paper in Section 5.

2. Multichannel total variation

Let us denote in general an M-channel image by
u=(u1,u2,y,uM)T, where umð8m¼ 1,2, . . . ,MÞ can be trea-
ted as a single channel image represented as an N � N

matrix. For convenience of description, we introduce the
following notations:

V¼ V � V � � � � � V|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
M

, Q ¼Q � Q � � � � � Q|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
M

,

where V denotes the Euclidean space RN�N and Q ¼ V � V .
The definition of inner products, norms, and operators r
and div in the spaces V, Q, V and Q can be referred to [35].
Assume f 2 V is an observed multichannel image contain-
ing both blur and noise. Then it can be in general modeled
as

u�!
blur

Ku�!
noise

f, ð1Þ

where u 2 V is the true image, K : V-V is a blur operator.
It has the form of

K¼

K11 K12 � � � K1M

K21 K22 � � � K2M

^ ^ & ^

KM1 KM2 � � � KMM

0
BBBB@

1
CCCCA,

where Kij 2 R
N2�N2

is a convolution matrix. The diagonal
elements of K denote within channel blur whereas the off
diagonal elements describe cross channel blur. Here we
do not specify the noise model n, which can be Gaussian,
impulsive, Poisson and even others.

Image restoration aims at recovering u from f. How-
ever, recovering u from f by directly inverting (1) is an ill-
posed problem because small perturbations in the data
may produce unbounded variations in the solution. To
stabilize the recovery of u, regularization on the solution
should be considered, which reflects some a priori pre-
ferences. One of the most basic and successful image
restoration models is based on the TV regularization,
which was first put forward in [1] for single channel
images. For multichannel signal u, it is important to
couple channels in regularization. For example, TV on
single channel image has been extended to ‘‘color TV’’ in
[2] and multichannel TV in [12,36,13]. Some other
approaches of coupling channels in regularization are
the Beltrami flow [37] and the Mumford–Shah functional
[38]. In this work, we use multichannel TV:

RmtvðruÞ ¼ TVðuÞ ¼
X

1r i,jrN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
1rmrM

jðrumÞi,jj
2

s
, ð2Þ

which is convenient to compute and produces high
quality results.

The multichannel total variation regularization term
RmtvðruÞ only models some a priori information about u,
which is not enough. We need to use a fidelity term F(Ku, f)
to measures some types of deviation of u from f. And thus
the functional to be minimized takes the form:

min
u2V
fEðuÞ ¼ RmtvðruÞþFðKu,fÞg, ð3Þ

where the fidelity term depends on the statistic of the noise
model. For example, as we discussed in the Introduction, it
is a squared L2 term for the Gaussian noise image restora-
tion, while L1 term for impulsive noise and KL term for
Poisson noise.

Since the blur is essentially averaging, it is reasonable
to assume
�
 Assumption 1. nullðrÞ \ nullðKÞ ¼ f0g,
where nullð�Þ represents the null space of �.
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For the fidelity term, we make the following
assumptions:
�
 Assumption 2. domðRJrÞ \ domðFJKÞa|;

�
 Assumption 3. F(z) is convex, proper, and coercive

[39,40];

�
 Assumption 4. F(z) is continuous over dom(F),

where domðFÞ ¼ fz 2 V : �1oFðzÞoþ1g is the domain
of F, with similar definitions for domðRJrÞ and domðFJKÞ.

Under the above assumptions, it can be verified that
the functional E(u) in (3) is convex, proper, coercive, and
lower semi-continuous. According to the generalized
Weierstrass theorem and Fermat’s rule [39,40], we can
further prove that the problem (3) has at least one
solution un. Actually, these assumptions are quite general
and many fidelities such as L1, L2 and KL meet all of them.

3. Augmented Lagrangian method for MTV with
non-quadratic fidelity

For MTV with non-quadratic fidelity models, it is quite
hard to directly solve it because MTV and fidelity are
nonlinear. Similar with augmented Lagrangian method for
TV-L2 model in [35], we use variable splitting technology
to change it to minimization problem with equality
constraints first. By introducing two new variables p 2 Q
and z 2 V, we reformulate problem (3) to the following
equality constrained optimization problem:

min
u2V,p2Q ,z2V

fEðu,p,zÞ ¼ RmtvðpÞþFðz,fÞg

s:t: p¼ru,
z¼Ku: ð4Þ

To solve (4), we define the following augmented Lagrangian
functional:

Lðu,p,z; lp,lzÞ ¼ RmtvðpÞþFðz,fÞþðlp,p�ruÞþðlz,z�KuÞ

þ
rp

2
Jp�ruJ2

þ
rz

2
Jz�KuJ2, ð5Þ

with Lagrange multipliers lp 2 Q ,lz 2 V and positive con-
stants rp, rz. We then consider the following saddle-point
problem:

Find ðu�,p�,z�; l�p,l�zÞ 2 V � Q � V �Q � V

Lðu�,p�,z�; lp,lzÞ

s:t: rLðu�,p�,z�;l�p,l�zÞ
rLðu,p,z; l�p,l�zÞ,
8ðu,p,z; lp,lzÞ 2 V � Q � V � Q � V: ð6Þ

According to optimization theories [39,40], we can
verify the following theorem, just like [29].

Theorem 1. u� 2 V is a solution of (3) if and only if there

exist ðp�,z�Þ 2 Q � V and ðl�p,l�zÞ 2 Q � V such that

ðu�,p�,z�; l�p,l�zÞ is a solution of (6).

It guarantees that the solution of the saddle-point
problem (6) provides a solution of the original problem
(3). In the following Algorithm 1, we present an iterative
algorithm to solve the saddle-point problem (6) and
address three sub-problems raised up in each iteration.
Algorithm 1. Augmented Lagrangian method for MTV
minimization with non-quadratic fidelity.
1.
 Initialization: l0
p ¼ 0,l0

z ¼ 0;
2.
 For k=0,1,2,y:
(a) compute (uk,pk,zk) as

ðuk ,pk ,zkÞ � arg min
ðu,p,zÞ2V�Q�V

Lðu,p,z; lk
p ,lk

zÞ, ð7Þ

k k
where Lðu,p,z; lp ,lzÞ is as in (5);
(b) update

lkþ1
p ¼ lk

pþrpðp
k�rukÞ,
lkþ1
z ¼ lk

zþrzðz
k�Kuk

Þ:
Since the variables u,p,z in Lðu,p,z; lk
p,lk

zÞ are coupled
together in the minimization problem (7), it is difficult to
solve them simultaneously. Therefore we separate the
problem to be three sub-problems and apply an alter-
native minimization. The three sub-problems are as
follows:
�
 u-sub problem: Given p,z,

min
u2V

ðlk
p,�ruÞþðlk

z ,�KuÞþ
rp

2
Jp�ruJ2

þ
rz

2
Jz�KuJ2

n o
:

ð8Þ
�
 p-sub problem: Given u,z,

min
p2Q

RmtvðpÞþðl
k
p,pÞþ

rp

2
Jp�ruJ2

n o
: ð9Þ
�
 z-sub problem: Given u,p,

min
z2V

Fðz,fÞþðlk
z ,zÞþ

rz

2
Jz�KuJ2

n o
: ð10Þ

Note here we omit the constant terms in the objective
functionals in (8)–(10).

In the following we will show how to efficiently solve
these sub-problems and then present an alternative
minimization algorithm to solve (7).

3.1. Solving the u-sub problem (8)

Eq. (8) is a quadratic optimization problem, whose
optimality condition reads

rzK�Ku�rpDu¼K�lk
zþrzK�z�divlk

p�rpdivp, ð11Þ

where Kn is the L2 adjoint of K. Following [41,18,42,
25,22,35,29], we use Fourier transform (and hence FFT
implementation) to solve the above linear equation by
considering the periodic boundary conditions. Applying
Fourier transform to both sides of (11), we have

A

F ðu1Þ

F ðu2Þ

^

F ðuMÞ

0
BBBB@

1
CCCCA¼F ðK�Þ

F ðlk
z1þrzz1Þ

F ðlk
z2þrzz2Þ

^

F ðlk
zMþrzzMÞ

0
BBBBB@

1
CCCCCA�F ðdivÞ

F ðlk
p1þrpp1Þ

F ðlk
p2þrpp2Þ

^

F ðlk
pMþrppMÞ

0
BBBBBBB@

1
CCCCCCCA

,

ð12Þ

where F ðuÞ ¼ ðF ðu1Þ,F ðu2Þ, . . . ,F ðuMÞÞ
T , F ðKÞ ¼ ðF ðKi,jÞÞM�M ,

F ðK�Þ ¼ conjðF ðKi,jÞÞ and A¼ ðrzF ðK�ÞF ðKÞ�rpF ðDÞÞ. conj(x)
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here is the complex conjugate of x. Clearly, the matrices F ðKÞ,
F ðK�Þ, F ðDÞ, F ðdivÞ and thus A only need to be computed
once before iteration.

The u-sub problem can be solved in three steps. First,
we apply discrete FFTs to both sides of (11). Then, we
solve the resulting systems (12) by Gaussian elimination
for F ðuÞ. At last, we apply F�1 to F ðuÞ to obtain a new u.
The total number of N2 � N2 size discrete Fourier trans-
forms (including inverse Fourier transforms) is 2M per
each u-sub problem (8).

If we assume the Neumann boundary conditions and
all the blurring kernels are symmetric, the forward and
inverse FFTs can be replaced by the forward and inverse
discrete cosine transforms (DCTs); see [43]. In this case, a
longer CPU time is needed for solving (12) because DCT is
generally 3–4 times slower than FFT in MATLAB. In our
experiments, we assumed the periodic boundary condi-
tions and thus used FFTs.
3.2. Solving the p-sub problem (9)

According to the definition of Rmtv(p) and J � JQ , pro-
blem (9) equivalents to solving the following problem:

min
p2Q

X
1r i,jrN

jpi,jjþ
rp

2

X
1r i,jrN

pi,j� ru�
lk

p

rp

 !
i,j

������
������
2

8><
>:

9>=
>;:

As one can see, it is decomposable and the problem takes
the following form at each pixel (i, j):

min
q2R2M

jqjþ
rp

2
jq�wj2

n o
, ð13Þ

where w 2 R2M .
Similarly with [41,18,44,22,35,29], (9) has the follow-

ing closed form solution:

pi,j ¼max 0,1�
1

rpjwi,jj

� �
wi,j, ð14Þ

where

w¼ru�
lk

p

rp
2 Q :
3.3. Solving the z-sub problem (10)

For a general fidelity Fð�Þ, there is no reason to find a
closed form solution for (10). Fortunately, the objective
functional in (10) is strictly convex, proper, coercive
and lower semi continuous. Therefore, (10) has a unique
solution and can be obtained by various numerical opti-
mization methods. At the same time, for some special and
typical (non-quadratic) fidelities, we still have closed
form solutions; see the two special cases in Section 3.4.
Our method is therefore particularly efficient for these
typical and important fidelities.

After knowing how to solve (8)–(10), we now present
the following alternative minimization procedure
(Algorithm 2) to solve (7).
Algorithm 2. Augmented Lagrangian method for TV
restoration with non-quadratic fidelity—solve the mini-
mization problem (7).
� Initialization: uk,0=uk�1,pk,0=pk�1,zk,0=zk�1;

� For l=0,1,2,y,L�1:

J compute uk,l + 1 from (12) for p=pk,l,z=zk,l;

J compute pk,l + 1 from (14) for u=uk,l + 1, z=zk,l;

J compute zk,l + 1 by solving (10) for u=uk,l + 1,p=pk,l + 1;

� uk=uk,L,pk=pk,L,zk=zk,L.
According to our numerical tests, we found that L=1
setting is a good choice in Algorithm 2, which also
coincides with the conclusion in [21,29].
3.4. Applications

We have put forward a quite general computational
framework based on augmented Lagrangian method for
MTV minimization with non-quadratic fidelity, which is a
quite common model in signal processing. In this part, we
just show two special cases: to restore blurry images
corrupted by impulsive noise or Poisson noise.

For image restoration, the most used is the TV-L2

model, which is quite effective to restore blurry images
corrupted by Gaussian noise. However, the noises in many
data may not obey Gaussian distribution. For example, the
noises in malfunctioning pixels in camera sensors, faulty
memory locations in hardware and erroneous transmis-
sion always belong to impulsive noise. Poisson noise is
another very common noise, which is often contained
in signals in various applications such as radiography,
fluorescence microscopy, positron-emission-tomography
(PET), optical nanoscopy and astronomical imaging appli-
cations [4,32]. For these two typical noises, it has been
shown that L1 or KL fidelity is quite effective to restore
the degraded images [14,3,4,25,32]. In this section, by
applying Algorithms 1 and 2 to MTV-L1 restoration for
recovering blurry images corrupted by impulsive noise
(e.g., salt-and-pepper noise and random-valued noise),
and MTV-KL restoration for recovering blurry images
corrupted by Poisson noise, we will see that these two
models can be efficiently minimized because their z-sub
problems (10) can also be fast solved by closed form
solution except the u-sub problem and p-sub problem.
3.4.1. Augmented lagrangian method for MTV-L1 restoration

As introduced in the above, MTV-L1 model is especially
effective to restore blurry images corrupted by impulsive
noise. It aims at solving the following minimization
problem:

min
u2V
fEMTV�L1 ðuÞ ¼ RmtvðruÞþaJKu�fJL1 g, ð15Þ

which is a special case of (3) where the fidelity term is

FðKu,fÞ ¼ aJKu�fJL1 :

We apply Algorithms 1 and 2 to solve (15). For this
special fidelity, p-sub problem and z-sub problem of (15)
have similar formulations. Using the same way as in
Section 3.2, we have the following explicit solution for
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the z-sub problem (10):

zi,j ¼ f i,jþmax 0,1�
a

rzjwi,j�f i,jj

� �
ðwi,j�f i,jÞ, ð16Þ
Fig. 1. Recovered from blur with salt-and-pepper noise from 30% to 60%. The b

MTV-L1 model (15) with different numerical solvers (image size: 512�512).

Fig. 2. Recovered from blur with random-valued noise from 20% to 50%. The b

MTV-L1 model (15) with different numerical solvers (image size: 250�303).
where

w¼Ku�
lk

z

rz
2 V:
lur operator is the one in (19). All the results are obtained by using the

lur operator is the one in (19). All the results are obtained by using the



Fig. 3. MTV-L2 and MTV-KL restoration: recovering from blurry image

with Poisson noise. MTV-KL produces much better result than MTV-L2.

Also a better computational efficiency with comparable restoration

result (similar SNRs) is achieved by allowing rparz in MTV-KL

restoration.
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3.4.2. Augmented Lagrangian method for MTV-KL

restoration

To restore blurry images corrupted by Poisson noise,
KL divergence is used as the data fidelity, which has an
explanation in the context of Bayesian statistics [4].
Similarly with the derivation in [4] for single channel
image, under the assumption that the values of (fm)i,j at
the channel m for pixel (i,j) are independent, we deduce
the MTV-KL variational model for multichannel images as
follows:

min
u2V

EMTV�KLðuÞ ¼ RmtvðruÞþa
X

1r i,jrN

X
1rmrM

ðððKuÞmÞi,j

8<
:
�ðfmÞi,jlogððKuÞmÞi,jÞ : ððKuÞmÞi,j40,8ðm,i,jÞ

)
: ð17Þ

Problem (17) is also a special case of (3) where

FðKu,fÞ ¼
a

P
1r i,jrN

P
1rmrM

ðððKuÞmÞi,j�ðfmÞi,jlogððKuÞmÞi,jÞ ððKuÞmÞi,j40,

þ1, otherwise:

8<
:

Therefore, Algorithms 1 and 2 can be applied to
compute (17). For this special fidelity, we also have, by
considering ðzmÞi,j40, a closed form solution to the z-sub
problem (10):

ðzmÞi,j ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðwmÞi,j�

a
rz

� �2

þ4
a
rz
ðfmÞi,j

s
þ ðwmÞi,j�

a
rz

� �0
@

1
A,

ð18Þ

where

w¼Ku�
lk

z

rz
2 V:

4. Experimental results

Our proposed augmented Lagrangian algorithm is a
quite general framework suitable for multichannel TV
regularization with non-quadratic fidelity. In this section,
we test our algorithm on recovering blurry color images
with impulsive noise or Poisson noise on several levels. In
the rest of this section, we will first describe restoration
results for impulsive noise and then for Poisson noise.

The algorithms are implemented in MATLAB and all
blurring effects are generated using the MATLAB function
‘‘imfilter33’’ with periodic boundary conditions. We first
blurred the image by cross-channel blurring described
below and then corrupted its pixels by noise. let A(hsize)
denotes the average blur of the size hsize,G(hsize, sigma)
the Gaussian blur of the size hsize and standard deviation
sigma, and M(len, theta) the motion blur with motion
length len and angle theta. We first define

Hð1Þ ¼ Að13Þ, Hð2Þ ¼ Að15Þ, Hð3Þ ¼ Að17Þ,
Hð4Þ ¼ Gð11,9Þ Hð5Þ ¼ Gð21,11Þ Hð6Þ ¼ Gð31,13Þ,
Hð7Þ ¼Mð21,45Þ Hð8Þ ¼Mð41,90Þ Hð9Þ ¼Mð61,135Þ,

and then by making a random permutation to HðiÞ,
i 2 f1,2, . . . ,9g, we get Hij ði,j 2 f1,2,3gÞ. Considering that
within-channel blurs are usually stronger than cross-channel
ones, we assigned larger weights to the within-channel blurs.
Similar methods for choosing kernel weights are used in the
literature; see, e.g., [25]. Then we get the following blur
kernel:

0:7 � H11 0:15 � H12 0:15 � H13

0:1 � H21 0:8 � H22 0:1 � H23

0:2 � H31 0:2 � H32 0:6 � H33

0
B@

1
CA: ð19Þ

In the experiments, we find that the types locations and
kernel size appear to have little influence on the efficiency of
our algorithm.

As is usually done, the quality of restoration is mea-
sured by the signal-to-noise ration (SNR)

SNR910�log10
Ju�EðuÞJ2

Ju�uJ2
,

where EðuÞ is the mean intensity value of the original
image u, and u is the restored image.
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In Figs. 1 and 2, the images are first blurred by the
kernel given in (19) and then corrupted by different level
of salt-and-pepper noise or random-valued noise. We use
MTV-L1 model to restore them. In each figure, a, t, and
SNR denote the parameters of the model, the CPU cost
(in seconds), and the SNR of the image, respectively. Note
here we use the same a’s for all the methods in each
example, since our goal is to compare the efficiency of
different methods for the same model. All of our experi-
ments were performed under Windows XP and MATLAB
R2007a running on a PC with Intel Core 2.66 GHz CPU and
2 GB RAM.

The parameter rp in our ALM algorithm for salt-and-
pepper noise is set to 10 and rz is around 200; while rp for
random-valued noise is set to 20 and rz is about 150. As
can be seen from Figs. 1 and 2, we can fast get high quality
restoration results by using our augmented Lagrangian
algorithm. The potential reason for this advantage may be
as follows. First, in our method, we simply set L=1 for
inner iteration and hence do not need to compute those
residuals for stopping criterion, which are calculated in
[25]. Second, augmented Lagrangian method benefits
Fig. 5. MTV-L1 restoration from blurry image with 50% random-valued noise

(similar SNRs) is achieved by letting rparz .

Fig. 4. MTV-L1 restoration from blurry image with 60% salt-and-pepper noise

(similar SNRs) is achieved by letting rparz .
from its Lagrange multipliers update, which can be
actually interpreted as sub-gradients update in split Breg-
man iteration [21], and makes the method extremely
efficient for homogeneous 1 objective functionals.

As explained in Section 3.4, our algorithm is also very
efficient to solve MTV-KL model, which is quite effective
to restore blurry image corrupted by Poisson noise. In
Fig. 3, we compare the restoration results of MTV-L2 [35]
and MTV-KL models calculated by augmented Lagrangian
method (ALM) with parameters r and rp,rz, respectively.
We find that rp = 10, rz = 40 setting generates good results
for most pictures. As one can see, MTV-L2 removes the
noise, but has difficulty to preserve sharp edges, while
MTV-KL model produces much better results than
MTV-L2. In addition, MTV-KL model can still be calculated
very efficiently by augmented Lagrangian method, which
is much faster than existing gradient descent method for
TV-KL model [4]. In one word, augmented Lagrangian
method for MTV-KL model produces much better results
than MTV-L2 model with an acceptable CPU cost, which
is quite useful for recovering blurry images with Poisson
noise.
: a better computational efficiency with comparable restoration result

: a better computational efficiency with comparable restoration result
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Alternating direction method [28] and variable split-
ting based methods [33,34] are quite similar with our
algorithm, however, they treat the operators in a compact
way so that penalty parameters for different auxiliary
variables must be the same. In augmented Lagrangian
framework, we find that it is more efficient to use
different parameters for different auxiliary variables as
in our algorithm. From Figs. 3, 4, and 5, we can see that
much more efficiency can be achieved by using different
penalty parameters, which is quite obvious in the exam-
ple of Fig. 4.

5. Conclusion

In this paper, we first proposed a fast computational
framework for a quite general model, which can be
composed of multichannel TV regularization with non-
quadratic fidelity term. We then applied it to two typical
image deblurring problems with impulsive noise or Pois-
son noise. Benefitting from FFT implementation, closed
form solutions for its sub-problems and simple stopping
criterion of the inner iteration, our algorithm is extremely
efficient, which is also highly enhanced by the flexibility
of rparz in the proposed augmented Lagrangian frame-
work. The experimental results confirm that our proposed
algorithm can fast restore high quality results and already
achieves a remarkable practical performance.
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