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The problem of decomposing a 3D mesh into meaningful segments (or parts)
is of great practical importance in computer graphics. This article presents
a variational mesh decomposition algorithm that can efficiently partition
a mesh into a prescribed number of segments. The algorithm extends the
Mumford-Shah model to 3D meshes that contains a data term measuring the
variation within a segment using eigenvectors of a dual Laplacian matrix
whose weights are related to the dihedral angle between adjacent triangles
and a regularization term measuring the length of the boundary between
segments. Such a formulation simultaneously handles segmentation and
boundary smoothing, which are usually two separate processes in most pre-
vious work. The efficiency is achieved by solving the Mumford-Shah model
through a saddle-point problem that is solved by a fast primal-dual method.
A preprocess step is also proposed to determine the number of segments that
the mesh should be decomposed into. By incorporating this preprocessing
step, the proposed algorithm can automatically segment a mesh into mean-
ingful parts. Furthermore, user interaction is allowed by incorporating the
user’s inputs into the variational model to reflect the user’s special intention.
Experimental results show that the proposed algorithm outperforms compet-
itive segmentation methods when evaluated on the Princeton Segmentation
Benchmark.
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1. INTRODUCTION

This article considers the problem of decomposing a 3D mesh into a
set of disjoint, meaningful parts. Figure 1 shows such decomposition
examples where 19 mesh models taken from the Princeton Segmen-
tation Benchmark [Chen et al. 2009], a benchmark for evaluating
3D mesh segmentation algorithms, are automatically decomposed
into several parts that are depicted by various colors. Mesh decom-
position is also known as mesh segmentation and mesh partitioning.
It is a fundamental operation in geometry processing and computer
graphics. It not only provides semantic information about the model
for shape understanding and recognition, but also assists many ge-
ometric processing tasks such as skeleton extraction [Katz and Tal
2003], 3D morphing [Gregory et al. 1999], texture mapping [Lévy
et al. 2002], and modeling by examples [Funkhouser et al.
2004].

The challenge with automatic mesh decomposition lies in the
fact that the decomposition algorithm is expected to segment a
mesh into meaningful parts which are consistent with user inten-
tion, geometric mesh attributes, and human shape perception, but
the concept of “meaningful” and human perception are content
dependent. In general, a good segmentation algorithm should at
least be able to output the results that satisfy the following cri-
teria. First, the elements within the same segment should have
high similarity. Second, the association between different segments
should be low. Geometrically, the segment boundary should be tight
and smooth. Third, the segment boundary should match human
perception. Based on cognitive science, the human visual system
perceives segment boundaries at negative minima of the princi-
pal curvatures, which is known as the minima rule [Hoffman and
Richards 1984]. Fourth, segmentation should reflect significant fea-
tures and small-scale fluctuation should be ignored. In particular, the
part salience theory provides three factors to determine the salience
of a part: the relative size, the boundary strength, and the degree of
protrusion [Hoffman and Singh 1997]. Many previous segmenta-
tion algorithms were designed to meet the criteria via two separate
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Fig. 1. Segmentation results collected from applying our proposed algorithm to the Princeton Segmentation Benchmark [Chen et al. 2009]. One mesh is
shown for each category. The segmentation results match human perception well in not only the cutting boundaries but also the number of segments.

processes: segmentation and boundary smoothing, or partially sat-
isfy the criteria through one process. For instance, the fuzzy cluster-
ing method [Katz and Tal 2003] first segments a mesh into compo-
nents and then refines the boundaries in the fuzzy area, and the mesh
scissoring [Lee et al. 2005] concentrates on the contours for cutting
using the minima rule and part salience. For the best performance,
however, all these criteria should be taken into account within one
process.

The preceding observation motivates us to propose a new method
for mesh decomposition. The mathematical tool at the heart of
the new method is the Mumford-Shah model (M-S model) that
has proven successful in image segmentation [Mumford and Shah
1989]. The piecewise constant Mumford-Shah model contains two
terms: data term and regularization term. The data term measures
the consistency of each segment and the regularization term mea-
sures the boundary length, which makes the model suitable for our
purpose of unifying the two processes: segmentation and boundary
smoothing. However, extending the Mumford-Shah model from
image segmentation to 3D mesh segmentation is not trivial for two
main reasons: (i) Unlike images, meshes are irregular in connectiv-
ity and sampling; and (ii) while the image intensity is directly used
in the M-S model for image segmentation, it is not clear what should
be used in the M-S model for mesh segmentation. The contributions
of the article are as follows.

—We present a mesh segmentation algorithm using the convexified
version of the Mumford-Shah model based on total variation.
We extract spectral attributes from the eigenvectors of the dual
graph Laplacian matrix for the mesh and adapt the Mumford-
Shah model to the spectral attributes of the mesh. The spectral
attributes reflect global information of the underlying mesh. The
minimal rule is respected in constructing the Laplacian matrix.
The Mumford-Shah model simultaneously handles the two pro-
cesses: partitioning and boundary smoothing.

—We propose a fast numerical method to solve the convexified
version of the Mumford-Shah model, which involves solving
two subproblems. One has an explicit solution and the other is
converted to a saddle-point problem that can be solved by the fast

primal-dual method. Examples show that the numerical algorithm
can quickly converge to the solution.

—We present a way to allow the user to interactively express his/her
intention that some regions must be in the same segment. The
Mumford-Shah model is modified to incorporate the user’s in-
tention.

—We also propose a method to determine the number of segments
that the model should be decomposed into. By incorporating this
method, the proposed Mumford-Shah mesh segmentation can
automatically decompose a mesh into meaningful parts.

We test our method with various models and the experimental results
show that our method is efficient and able to produce segmentation
reflecting geometric attributes of the models and human percep-
tion. We also evaluate our method on the Princeton Segmentation
Benchmark. Our method outperforms competitive geometry-based
segmentation methods and is comparable to the learning-based seg-
mentation [Kalogerakis et al. 2010] with a training size of 6. Figure 1
shows some segmentation results obtained automatically from our
method requiring no prior information, no given number of seg-
ments, and no training.

The rest of the article is organized as follows. We review related
work in Section 2 and briefly describe the Mumford-Shah image
segmentation in Section 3. The main contribution of the article—
the Mumford-Shah mesh decomposition algorithm—is presented
in Section 4, followed by a discussion of how to incorporate users’
inputs into the variational model to influence the segmentation in
Section 5 and a method of determining the number of segments in
Section 6. Section 7 provides experimental results and discussions.
Section 8 concludes.

2. RELATED WORK

Mesh segmentation has become an active research topic in com-
puter graphics. Many methods have been developed. Some of them
borrow techniques or ideas from related fields such as image seg-
mentation and data clustering. Comprehensive references can be
found in Attene et al. [2006] and Shamir [2008].
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There are different types of mesh segmentation. Our work ba-
sically focuses on segmenting a mesh into a set of disjoint parts
whose union corresponds to the original mesh. Many algorithms in
this category are based on clustering. For example, the K-means
approach iteratively selects the representatives and performs clus-
tering [Shlafman et al. 2002], but the boundaries between segments
are often jagged or even not accurate; in Katz and Tal [2003], a
fuzzy clustering is performed in a hierarchical way from coarse
to fine to find fuzzy components and then the exact boundaries be-
tween the components are computed using graph cuts; unsupervised
clustering techniques like the mean shift clustering are also used to
segment meshes [Shamir et al. 2006; Yamauchi et al. 2005], but
they often result in oversegmentation.

Other approaches include random walks [Lai et al. 2008], core
extraction [Katz et al. 2005], and spectral clustering and embed-
ding [Liu and Zhang 2004, 2007]. Using random walks on the dual
graph of the mesh, Lai et al. [2008] first oversegments a mesh and
then hierarchically merges segments in an order based on the rel-
ative lengths of the intersections and total perimeters of adjacent
segments. Core extraction [Katz et al. 2005] transforms the mesh
vertices into a pose-insensitive representation, extracts prominent
feature points and then core components, and finally refines bound-
aries to follow the natural seams of the mesh. Spectral embed-
ding [Liu and Zhang 2007] projects the mesh into a plane and then
the outer contour of the 2D spectral embedding of the mesh is used
to guide the segmentation. Spectral clustering [Liu and Zhang 2004]
uses the K-means algorithm to cluster the eigenvectors of an adja-
cent matrix. As shown in Bardsley and Luttman [2009], the solution
of this K-means segmentation algorithm is equivalent to the unreg-
ularized k-phase Mumford-Shah energy functional. Note that our
work is based on the Mumford-Shah model with a regularization
term which adds restrictions on the association between segments
and thus produces better results in general. A very interesting work
that also uses a variational approach is Variational Shape Approx-
imation (VSA) [Cohen-Steiner et al. 2004]. VSA formulates the
problem of faithful shape approximation into a variational geomet-
ric partitioning problem. While VSA uses the L2− or L2,1-based
error functional and applies it to the mesh directly, our method uses
the Mumford-Shah model and applies the model to the eigenvectors
of a dual Laplacian matrix.

Recent progress includes Shape Diameter Function [Shapira et al.
2008], Randomized Cuts [Golovinskiy and Funkhouser 2008], and
learning-based segmentation [Kalogerakis et al. 2010]. Shape Di-
ameter Function [Shapira et al. 2008] is a measure of the diameter
of an object’s volume in the neighborhood of a point on the sur-
face. It is computed to produce a vector for each face indicating
the probability to be assigned to each of the clusters and then the
graph-cut algorithm is used to refine the segmentation to mini-
mize an energy function that combines the probabilistic vectors
with boundary smoothness and concaveness. The general strategy
of Randomized Cuts [Golovinskiy and Funkhouser 2008] is to ran-
domize mesh segmentation algorithms to produce a function that
captures the probability that an edge lies on segmentation boundary
and to produce a ranked set of the most consistent cuts based on
how much cuts overlap with others in a randomized set. Learning
segmentation [Kalogerakis et al. 2010] is a data-driven approach.
It formulates an objective function as a Conditional Random Field
model with terms assessing the consistency of faces with labels and
terms between labels of neighboring faces. The objective function
is learned from a collection of labeled training meshes.

Most previous work segments a mesh based on some geometric
criteria such as concavity, skeleton topology, curvature, geodesic
distances, and shape diameter. These geometric quantities basically

provide low-level, local geometric cues. In contrast, the learning-
based segmentation method segments a mesh from a collection of
labeled training meshes. It has an advantage of learning higher-level,
global cues, but requires per-category training. Overall, the state-
of-the-art of automatic segmentation is still far from satisfactory
in terms of quality and speed, especially in the situation where
the segment number is required to be determined automatically.
In fact, most of the previous methods require users to specify a
segment number or training. Only a few such as Katz et al. [2005]
and Shapira et al. [2008] can determine the number automatically.
Accurately predicting the segment number is not an easy task.

Our work is closely related to the Mumford-Shah image segmen-
tation [Vese and Chan 2002] and multiclass labeling [Pock et al.
2009b; Lellmann and Schnörr 2011]. In the classic Mumford-Shah
image segmentation model, the energy function is nonconvex, which
causes difficulty in getting the global minima. Instead of resorting to
sophisticated methods to find the minima of nonconvex problems,
many efforts have been made to reformulate the energy based on
TV-regularizers to produce a convex problem [Nikolova et al. 2006;
Pock et al. 2009b; Lellmann and Schnörr 2011].

3. MUMFORD-SHAH IMAGE SEGMENTATION

To help understand the principle of our algorithm, this section gives
a brief description of the Mumford-Shah image segmentation.

Given an image I : � → R with bounded domain � ⊂ R2,
the Mumford-Shah image segmentation problem is to find a parti-
tion � = ⋃k

i=1 �i where �i are pairwise disjoint and numbers ci

for �i , which are the solution to the following optimization prob-
lem [Mumford and Shah 1989]

inf
�i ,ci

k∑
i=1

(∫
�i

(I (x) − ci)
2dx + μ

2
|∂�i |

)
, (1)

where μ is a constant, and ∂�i and |∂�i | represent the boundary
and the boundary length of segment �i , respectively. The basic idea
of (1) is to minimize the variation within segments and the length
of the boundary between segments as well. However, even if the
optimal constants ci and the number of segments have been known
as a priori, in general this is still a difficult nonconvex problem.

When k = 2 and c1, c2 have been known, problem (1) can be
rewritten as

inf
�1⊂�

{∫
�1

(I (x) − c1)2 dx +
∫

�\�1

(I (x) − c2)2 dx

+ μ

2
(|∂�1| + |∂(�\�1)|)

}
.

(2)

Nikolova et al. [2006] showed that problem (2) is equivalent to
finding a scalar function u(x) for the following convex minimization
problem.

min
0≤u≤1

{ ∫
�

{u(x)(I (x) − c1)2 + (1 − u(x))(I (x) − c2)2} dx

+μ

∫
�

|∇u|dx

} (3)

Moreover, it has been shown that if u(x) is a minimizer of (3), then
for any η ∈ (0, 1), the set {x ∈ � : u(x) > η} is the minimizer of (2),
implying that the solution to (2) can be obtained by thresholding
u at an arbitrary threshold between 0 and 1. While u(x) can be
considered to be the characteristic function for region �1, 1 − u(x)
is the one for region �\�1.
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In practice, c1 and c2 are unknown. Note that if �1 is fixed, the
values of c1 and c2 that minimize (2) are

c1 = 1

|�1|
∫

�1

I (x)dx, c2 = 1

|�\�1|
∫

�\�1

I (x) dx.

Thus a simple approach to finding the solution is a two-step scheme
that first computes c1 and c2 according to these formulae and then
updates �1 by solving (3) [Nikolova et al. 2006].

Based on the convex formulation (3), several extensions have
been developed for multiregion image segmentation [Pock et al.
2009a; Lellmann and Schnörr 2011].

4. MUMFORD-SHAH MESH DECOMPOSITION

We first introduce some notations. Assume that M ⊂ R
3 is a com-

pact triangulated surface of arbitrary topology with no degenerate
triangles. The set of vertices, edges, and triangles of M are respec-
tively denoted by V = {vi : i = 0, 1, . . . , |V | − 1}, E = {ei : i =
0, 1, . . . , |E| − 1}, and T = {τi : i = 0, 1, . . . , |T | − 1} where |V |,
|E|, and |T | represent the numbers of vertices, edges, and triangles.
For an edge e with two endpoints vi and vj , we explicitly denote
it by [vi, vj ]. Similarly a triangle τ whose vertices are vi, vj , vk is
explicitly denoted by [vi, vj , vk]. If v is an endpoint of edge e, v is
a vertex of triangle τ , or e is an edge of triangle τ , we denote these
relationships by v ≺ e, v ≺ τ , or e ≺ τ . Let D1(vi) be the 1-disk
of vertex vi , which is the set of triangles having vi as one of their
vertices.

Our decomposition problem can be stated as follows: Given a tri-
angular mesh M and a positive integer k, find a disjoint partitioning
of M into M1, M2, . . . ,Mk such that the elements within the same
segment have high similarity and the association between different
segments is low. We measure the similarity within each segment
through the variance of some feature values and the association
between different segments is measured by the weighted boundary
length.

We now propose to solve the decomposition problem using the
Mumford-Shah model. Suppose we have defined a multichannel
function f(x) over mesh M , which, similar to the RGB function for
an image, is a vector function representing some attributes of x over
M and will be described in Section 4.1. The decomposition prob-
lem can be accomplished by solving the following minimization
problem

min
u∈K,χi

{∫
M

〈u(x), s(x)〉 + μg(x)|∇Mu(x)|dσ

}
, (4)

where K is the set of vector functions u = (u1, . . . , uk)T : M → Rk

satisfying that for all x ∈ M and i ∈ [1 . . . k], ui(x) ≥ 0 and∑k

i=1 ui(x) = 1; s(x) = (s1(x), . . . , sk(x))T is a k-dimensional
vector with si(x) = (f(x) − χi)T (f(x) − χi) indicating the affinity
of x with segment Mi measured by the difference between f(x) and
vector χi that is associated with Mi ; 〈, 〉 is the inner dot operator;
the second term in (4) is a weighted multichannel total variation
formulation with edge detection function g(x); and μ is a trade-off
factor balancing the two terms. This is the convexified version of the
Mumford-Shah model. The first term of (4) is the data term that is
to ensure the segmentation complying with segment coherence (i.e.,
small variance). If the affinity of x with segment Mi is large, ui(x)
will tend to be small in order to minimize the energy functional of
(4). Thus ui(x) can be viewed as the probability of x being assigned
to segment Mi and u(x) can be used as a classification function for
the segmentation. The second term of (4) is the regularization term
that is to constrain the boundary between different segments to be as

short as possible. We also introduce an edge detection function into
the second term. The edge detection function is designed to return
values between 0 and 1 (see Section 4.2 for details) and a small
value corresponds to a likely edge. Including the edge detection
function is to favor the segmentation along the curves where the
edge detection function has small values.

The decomposition algorithm proceeds in three steps:

Step 1. Fix u and find the value of χi that minimizes (4). The
value reads

χi =
∫

M
ui(x)f(x) dσ∫
M

ui(x) dσ

which corresponds to the mean of f(x) for segment Mi .

Step 2. Fix χi and solve the minimization problem (4) for u. If the
update of u is less than a prescribed value, go to step 3; otherwise,
go to step 1.

Step 3. Once u is finally obtained, each vertex v is labeled by
�(v) = arg mini∈{1,...,k} ‖u(v) − ei‖, where ei = [0, . . . , 1, . . . , 0]T

with the i-th entry being 1, and is then classified into M�(v).

For completeness of the algorithm, we next need to discuss how to
define an appropriate multichannel function f(x) for mesh M , how
to discretize the continuous Mumford-Shah model (4), and how to
numerically solve (4), which are elaborated next.

4.1 Multichannel Function f(x)

Note that the success of the M-S model relies on the assumption that
the underlying data are approximately piecewise constant. Also, it
is revealed in Chen et al. [2009] that algorithms based on nonlocal
shape features produce segmentations that most closely resemble
ones made by humans. However, for 3D mesh models, the com-
monly used geometric quantities like curvature, vertex normal, face
normal, and geodesic distance are local features and they are not
necessarily piecewise constant either. As shown in Dey et al. [2003],
appropriate shape features should be defined. Our approach is to de-
fine the multichannel function from the eigenvectors of a dual graph
Laplacian matrix. The Laplacian matrix encodes the similarity be-
tween adjacent nodes into its entries, and its eigenvectors reflect
some global information (such as spectral attributes) of the under-
lying mesh model [Lévy and Zhang 2010; Dey et al. 2010].

Now we define the Laplacian matrix. We choose the weight of
two adjacent triangles based on their dihedral angle and whether the
edge shared by the two triangles is concave or convex. Let τi and
τj be two adjacent triangles of M , sharing an edge e. Their dihedral
angle is denoted by dih(τi, τj ). We define d1(τi, τj ) to measure the
difference of τi and τj

d1(τi, τj ) = η[1 − cos(dih(τi, τj ))] = η

2
‖N (τi) − N (τj )‖2, (5)

where N (τl) is the normal vector of triangle τl , and η is a constant
used to give higher priority to a concave edge. We set η = 1.0
for a concave edge and a relatively small number (e.g., 0.2) for a
convex edge, to follow the minima rule. The difference d1(τi, τj )
is then normalized by the average over all edges, d1, which gives
the normalized difference d(τi, τj ) = d1(τi ,τj )

d1
. Then a weight is

heuristically defined to describe the similarity of triangles τi and τj

and is assigned to their common edge e

wij = |e| exp{−d(τi, τj )}, (6)
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Fig. 2. Plots of the eigenvectors of the proposed Laplacian matrix corresponding to the first eight nonzero eigenvalues. Note that for the fifth model, we
purposely render the back side of the model to make the dark part visible. The model is courtesy of the Princeton Segmentation Benchmark.

Fig. 3. Plots of the eigenvectors of the simple Laplacian matrix corresponding to the first eight nonzero eigenvalues. The model is courtesy of the Princeton
Segmentation Benchmark.

where |e| is the edge length. Finally the Laplacian matrix L = [Lij ]
is defined, where

Lij =
⎧⎨
⎩

−wij , i �= j and τi and τj share a common edge∑
k wik, j = i
0, otherwise.

(7)
Actually L is the Laplacian matrix of the dual graph of M .

It is easy to check that Laplacian matrix L is symmetric and
its smallest eigenvalue is 0. Assume that the eigenvectors of L
are v0, v1, . . . , v|T |−1 corresponding to the eigenvalues in ascending
order. Here we select eigenvectors v1, . . . , vk−1 corresponding to
the k − 1 smallest nonzero eigenvalues for k-partitioning. These
eigenvectors form a |T | × (k − 1) matrix [v1, . . . , vk−1]. Each row
of the matrix corresponds to a triangle of M . This suggests that we
define the multichannel function

f(τi) = [v1(i), v2(i), . . . , vk−1(i)],

where vj (i) represents the i-th entry of vj . In this way, we introduce
(k − 1)-channel data to each triangle on the mesh. Since the data
are from the eigenvectors of the Laplacian matrix, f can be viewed
as a spectral attribute of the mesh.

Remark 1. We chose to use the dual graph Laplacian matrix,
rather than the mesh Laplacian matrix itself. This results in the
multichannel function f to be actually a dual function, which benefits
our numerical solver presented later in Section 4.3.

Remark 2. As pointed out in von Luxburg [2007], the eigenvec-
tors are an approximation of the characteristic functions for each
component of the mesh. Figure 2 shows plots of the eigenvectors
of the Laplacian matrix L corresponding to the first eight nonzero
eigenvalues for a bear model. Each eigenvector is linearly mapped
such that the maximum and minimum values of the entries are 1
and 0. The value of the i-th entry is interpreted as the grey value as-
signed to the i-th triangle. We can see that each of these eigenvectors
tends to binary segment the bear model. This feature implies that
our definition of the multichannel function is feasible. It is worth
pointing out that our Laplacian matrix is different from the simple
cotangent-based Laplacian. Our expression of the Laplacian better
measures the similarity between adjacent triangles and has been
used in random walks-based segmentation algorithms [Lai et al.

2008]. As a comparison, Figure 3 provides plots of the eigenvec-
tors of the simple Laplacian matrix corresponding to the first eight
nonzero eigenvalues.

Remark 3. In graph partitioning, the spectral decomposition of
the Laplacian matrix is often used to approximately minimize the
RatioCut model [Hagen and Kahng 1992]

RatioCut(M1, . . . , Mk) = 1

2

k∑
i=1

W (Mi,Mi)

|Mi | , (8)

where M1, . . . , Mk are a k-partition of a graph, Mi is the comple-
ment of Mi , W (Mi, Mi) is an association value of sets Mi and Mi ,
and |Mi | is the size of Mi . The objective function (8) tries to achieve
a “balance” of the clusters in terms of the size. This implies that
the use of eigenvectors might avoid the influence of small-scale
fluctuation.

4.2 Discretization of the Mumford-Shah Model

Let ϕi denote a hat function that is linear on each triangle of M
and ϕi(vj ) = δij for vj ∈ V , where δij is the Kronecker delta. The
functions {ϕi : i = 0, . . . , |V | − 1} have three properties: local
support, nonnegativity, and partition of unity. Any piecewise linear
function f (x) defined over M , which has value fi at vertex vi and is
linear on each triangle, can be written as f (x) = ∑

0≤i≤|V |−1 fiϕi(x)
for any x ∈ M . To discretize the M-S segmentation energy func-
tional of (4), we restrict u to be a piecewise linear function over
M: u(x) = ∑

vi∈V u(vi)ϕi(x). Then the M-S segmentation energy
functional of (4) can be discretized into

∑
τ∈T

(∑
vi≺τ

〈
u(vi),

∫
τ

ϕi(x)s(x)dσ

〉
+ μ

∫
τ

gτ |∇Mu(x)|dσ

)
. (9)

For triangle τ , the edge detection function is set to be gτ =
1

1+∑3
i=1 λi ||N(τ )−N(τi )||2 where τi , i = 1, 2, 3, are the triangles shar-

ing edges with τ , and λi is a scaling factor, which is set respecting
the minima rule: λi = 5 if the edge shared by τ and τi is a concave
edge; otherwise, λi = 1.
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Moreover, the gradient of u(x) is

∇Mu(x) =
∑
vi∈V

u(vi)∇Mϕi(x), (10)

where ∇Mϕi(x) is regarded as a row vector, that is, a 1 × 3 matrix,
which can be calculated using the natural piecewise parametrization
(see Wu et al. [2009] for details). It follows that ∇Mu(x) is a constant
k × 3 matrix on each triangle. Thus (9) becomes

∑
τ∈T

(∑
vi≺τ

〈
u(vi),

∫
τ

ϕi(x)s(x)dσ

〉
+ μgτaτ |∇Mu(τ )|

)
, (11)

where aτ is the area of triangle τ .

4.3 Fast Primal-Dual Method

To find u that minimizes the functional (11), a gradient descent
method [Delaunoy et al. 2009] may be used. However, explicit
schemes often lead to numerical instability, slow convergence for
large meshes, and insufficient control over global behavior. In this
section, we adapt a fast primal-dual algorithm to meshes to quickly
and stably minimize the objective functional. The primal-dual al-
gorithm can be highly paralleled and thus the GPU technology can
be used to speed up the computation.

Using the Cauchy-Schwartz inequality, we can reformulate the
second term of (11) to be∑

τ∈T

μgτ aτ |∇Mu(τ )| = max
d(τ )∈D,∀ τ

μ
∑
τ∈T

gτ aτ 〈∇Mu, d(τ )〉

= max
d(τ )∈D

μ
∑

τ=[vi ,vj ,vk ]∈T

gτ aτ (〈u(vi)∇Mϕi(τ ), d(τ )〉

+〈u(vj )∇Mϕj (τ ), d(τ )〉 + 〈u(vk)∇Mϕk(τ ), d(τ )〉)

= max
d(τ )∈D

μ
∑
vi∈V

〈
u(vi),

∑
τ∈D1(vi )

gτ aτ 〈∇Mϕi(τ ), d(τ )〉
〉

where D = {d(τ ) = (d1, . . . , dk)T ∈ Rk×3 : ‖d(τ )‖F ≤ 1, τ ∈
T }, and d(τ ) is a dual variable defined for each triangle of the
mesh. Here the operations 〈∇Mu, d(τ )〉 and 〈u(vi)∇Mϕi(τ ), d(τ )〉
are understood as follows.

〈A, B〉 =
∑

1≤m≤k,1≤n≤3

amnbmn,

〈a, B〉 =
( ∑

1≤n≤3

anb1n,
∑

1≤n≤3

anb2n, . . . ,
∑

1≤n≤3

anbkn

)T

for a ∈ R1×3 and A, B ∈ Rk×3, respectively, and no confusion will
be caused by writing out the arguments in the bracket 〈, 〉.

Let Ci = ∑
τ∈D1(vi )

∫
τ
ϕi(x)s(x)dσ . Minimizing (11) becomes a

saddle-point problem

min
u∈K

max
d(τ )∈D

g(u, d), (12)

where

g(u, d) =
∑
vi∈V

〈
u(vi), Ci + μ

∑
τ∈D1(vi )

gτ aτ 〈∇Mϕi(τ ), d(τ )〉
〉

.

Since u is uniquely defined by its values at vertices, it is considered
as a primal variable. Thus the saddle-point problem has its primal
objective p(u) := maxd∈D g(u, d) and its dual objective pd (d) :=
minu∈K g(u, d). Rockafellar [1970] has shown that g has a saddle-
point (u∗, d∗) and

min
u∈K

p(u) = p(u∗) = g(u∗, d∗) = pd (d∗) = max
d∈D

pd (d). (13)

ALGORITHM 1: FPD method

Choose initial values u0, u0 and d0

Choose primal step τp > 0, dual step τd > 0, and termination
tolerance ε > 0
while p(uk )−pd (dk )

pd (dk )
> ε do

dk+1(τ ) ← 
D(dk(τ ) + τd (μgτaτ∇Muk)) for τ ∈ T

uk+1(vi) ← 
K (uk(vi) − τp(Ci

+μ
∑

τ∈D1(vi )
gτ aτ 〈∇Mϕi(τ ), dk+1(τ )〉)) for vi ∈ V

uk+1 ← 2uk+1 − uk

k ← k + 1
end while

Fig. 4. User’s input changes the segmentation result. The model is courtesy
of the Princeton Segmentation Benchmark.

Based on the preceding analysis, we can see that a straightforward
approach to solving (12) is to alternatingly apply the projected gra-
dient decent method on the primal variable u and the projected gra-
dient ascent method on the dual variable d [Lellmann and Schnörr
2011]. In fact, Pock et al. [2009b] has presented the Fast Primal-
Dual (FPD) method, which is a variant of Popov’s saddle-point
method [Popov 1980] with provable convergence. We adapt it to
our problem, which is outlined in Algorithm 1.

In Algorithm 1, the initial primal variable u0 is randomly chosen,
u0 is the same as u0, and the initial dual variable d0 is set to the
divergence of the initial primal variable. 
K (·) is the operator that
projects the primal variable u on the set K and 
D(·) is the operator
that projects the dual variable d on the dual constraint set D.

5. USER INTERACTION

Though automatic decomposition is preferred, it is also desirable
to allow users to express their intention or their preference in some
situations, especially when there exist several decomposition possi-
bilities. For example, if we decompose a bear model into five parts,
our algorithm generates the result shown in Figure 4(a). However, if
we want the head to be connected to the body, user’s input such as a
stroke passing through the head and the body shown in Figure 4(b)
would help. Therefore we introduce constraints into the Mumford-
Shah model to incorporate such user’s inputs and the new result is
shown in Figure 4(c).

5.1 Mumford-Shah Model with Constraints

If the user draws a stroke to express the intention that some vertices
must be in the same segment, we can achieve this “must-link”
constraint by enforcing u at those vertices to be the same. Then
the Mumford-Shah model becomes a minimization problem with
some equality constraints. For example, assume that m vertices are
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required to be in the same segment. This will introduce m − 1
independent constraints. If we let U = [u(v0), . . . , u(v|V |−1)]T , the
k-th constraint that vi and vj belong to the same segment can be
expressed as zT

k U = 0 where zk is a |V |-dimensional vector with
only two nonzero entries: zk(i) = 1 and zk(j ) = −1. Grouping all
the zk gives Z = [z1, . . . , zm−1] and all the constraints become

ZT U = 0. (14)

Incorporating these constraints into the Mumford-Shah model of (9)
leads to a constrained Mumford-Shah model. Using Lagrange mul-
tipliers, we can change the constrained model into an unconstrained
optimization problem

min
u∈K

max
w

{∑
τ∈T

(∑
vi≺τ

〈
u(vi),

∫
τ

ϕi(x)s(x)dσ

〉

+μ

∫
τ

gτ |∇Mu(x)|dσ

)
+ 〈w, ZT U〉

}
,

(15)

where w are the Lagrangian multipliers. This minimization problem
can also be solved using the fast primal-dual method described in
Section 4.3. If there are several sets of such requirements, we can
express all these constraints in a similar way.

5.2 Constraint Propagation

It is observed that constraints (14) only guarantee that those m
vertices specified by user’s inputs are in the same segment and
they have little influence on the neighborhood of the user’s inputs.
Moreover, we wish that the user’s inputs could be reflected in the
two terms of the Mumford-Shah model. However, in our method,
the data term is determined by the Laplacian matrix’s eigenvectors,
which are fixed if the edge weights wij are fixed. To overcome this
problem, we propose to increase the weights for those edges near the
user’s inputs in order to propagate the influence of the user’s inputs.
Specifically, for each indicated vertex, we get its farthest vertex
on the mesh. The user-indicated vertices are treated as foreground
seeds and those farthest vertices are treated as background seeds.
Then we use random walks algorithm [Grady 2006] to compute a
probability value p(vk) for each vertex vk on the mesh. For edge e

bounded by vertices vi and vj , if
p(vi )+p(vj )

2 > 0.9, which means that
vi and vj are very close to the user-indicated vertices, we reset the
edge weight of e to 1. In this way, a small region around the user-
indicated vertices will be strongly connected because the similarity
weights between them are set to the largest value 1.

6. DETERMINATION OF THE NUMBER
OF SEGMENTS

The Mumford-Shah mesh decomposition presented in preceding
sections depends on the number of segments. This section proposes
a heuristic method to compute a number based on the stability of the
RatioCut values for the number of segments. It can be done in a pre-
processing stage and could be added to the Mumford-Shah mesh
decomposition to provide an automatic algorithm. The experiments
show that the number computed by the method matches the one
given by users fairly well.

Our observation is that if a good k-partitioning has been done
and one more segment is to be added, the existing segments have
to be split and merged to form a new segmentation, which usually
causes the association between segments to increase rapidly and the
sizes of segments to lose balance. As a result, the RatioCut value
of (8) where the association value W (Mi, Mi) is computed as the
length of Mi’s boundary will have a sudden change. This motivates

(a) three segments (b) nine segments (c) eleven segments

4 6 8 10 12 14 16
0
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0.006

0.008

0.01

0.012

0.014

0.016

(d) |RC(i) − 2RC(i− 1) + RC(i− 2)|

Fig. 5. Numbers of segments and the second-order differences of RatioCut
values. The model is courtesy of the Princeton Segmentation Benchmark.

us to propose a brute-force approach: perform segmentation for
various numbers of segments, compute the RatioCut value for the
segmentation results, and choose h − 1 as the number of segments
if h-partitioning causes a sudden change in RatioCut values.

Note that producing good segmentations for every possible num-
ber of segments is a time-consuming process. Considering our goal
here is to find the number of segments, instead of using sophisticated
segmentation methods for high-quality segmentation, we employ a
fast algorithm to obtain a reasonable segmentation, based on which
we perform RatioCut value stability analysis. As explained in Sec-
tion 4.1, the Laplacian matrix L contains global information of the
underlying mesh. Ng et al. [2001] and Polito and Perona [2001]
determines the cluster number by searching for a drop in the magni-
tude of the eigenvalues of the Laplacian matrix. Zelnik-Manor and
Perona [2004] rotates the eigenvectors of the Laplacian matrix and
finds the number of segments which provides the best alignment
with the canonical coordinate system. We notice that each eigen-
vector is roughly considered to be an indicator for some segment of
mesh M . Therefore we use the K-means algorithm to cluster all the
triangles based on their multichannel data from the k − 1 smallest
(nonzero) eigenvectors to obtain a rough k segments, which can be
done in a very fast speed. Then the RatioCut value is computed for
each k, which is denoted by RC(k). Finally the number of segments
is chosen to be arg maxi{|RC(i) − 2RC(i − 1) + RC(i − 2)|} − 1,
which maximizes the second-order difference.

Figure 5 shows three possible numbers of segments and their
corresponding second-order differences of RatioCut values.

7. EXPERIMENTAL RESULTS AND DISCUSSIONS

This section provides experimental results to validate our proposed
algorithm. The experiments are conducted in two aspects. Since
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Fig. 6. Plots of the eigenvectors of our proposed Laplacian matrix corresponding to the first twenty nonzero eigenvalues. The model is provided courtesy of
the AIM@SHAPE Shape Repository.

the proposed Mumford-Shah mesh segmentation algorithm con-
tains various technical components, the first aspect is to test the
effects of the key ingredients. The second aspect is to evaluate the
performance of the algorithm as a whole applied to various 3D

mesh models and to perform comparison with other methods as
well.

Our proposed algorithm requires to select a value for trade-off
parameter μ in Eq. (4). The larger μ is, the more significant the
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Fig. 7. Comparison of the eigenvectors of the simple Laplacian matrix and our proposed Laplacian matrix. We can see that our proposed Laplacian matrix
better reflects the structure of the underlying models. The model is provided courtesy of INRIA by the AIM@SHAPE Shape Repository.

weighted boundary term. Different μ values could result in differ-
ent segmentation results. As the data and regularization terms are
affected by the mesh model, the number of segments, and the mag-
nitude of geometric features of the model, it is usually difficult to
select a value that is suitable for all situations. However, consid-
ering that μ is expected to be independent of the model scale and
also noticing that when the number of segments increases, the value
of the regularization term increases and the value of the data term
decreases, we here provide an empirical formula to compute μ. We
have

μ = μ̄ × Number-of-segments × Ef

Er

,

where Ef = ∫
M

〈u(x), s(x)〉dσ is the data term and Er =∫
M

g(x)|∇Mu(x)|dσ is the regularization term given an initial u;
and μ̄ is a “normalized” parameter. Our empirical value for μ̄ is
0.02, which works well for many situations. In fact, we used this

choice for all the models in the Princeton Segmentation Bench-
mark. If needed, users can still adjust μ̄ around 0.02, which is more
convenient than tuning μ in a wide range.

It is worth pointing out that the Mumford-Shah segmentation
does not guarantee the connectedness of the segmentation. That is,
though the segmentation produces k segments for k-partition, the
resulting regions belonging to the same segment may not be con-
nected geometrically, which results in more than k disjoint regions.
In our experiments, in case this situation occurs, we recursively
merge the segment with the smallest number of the vertices to its
neighboring segment that has the largest number of vertices until
the number of the disjoint regions is equal to k.

7.1 Effects of Key Ingredients

Our proposed algorithm contains several key ingredients. First,
we use the eigenvectors of a dual Laplacian matrix to define the
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(a) the results using the simple Laplacian matrix

(b) the results without the regularization term

(c) the results without including edge detection function g(x)

(d) the results with our proposed M-S model.

Fig. 8. Comparison of segmentation with various choices. The horse and
hand models are provided courtesy of the AIM@SHAPE Shape Repository.
The bunny model is courtesy of Stanford Computer Graphics Laboratory.

attributes for the mesh elements instead of using purely local
feature descriptions. Remark 2 of Section 4.1 has mentioned
that the eigenvectors approximate the characteristic functions
of components of a mesh. Figures 2, 6, and 7(b) visualize the
eigenvectors of the proposed Laplacian matrix corresponding to
the first few nonzero eigenvalues, from which it can be seen that the
eigenvectors convey segment information. It is also observed that
usually the first few smallest (nonzero) eigenvectors correspond to
relatively large structures of a mesh. Considering the computational
cost, we choose only the first (k − 1) nonzero eigenvectors to
define our multichannel function if the target number of segments
is k, which is similar to the approach of Liu and Zhang [2004] that
chooses k eigenvectors of a normalized affinity matrix.

Second, different from the simple Laplacian matrix, our
Laplacian matrix is constructed from the weights that consider the

coplanarity between adjacent triangles and the local convexity or
concavity of the edge shared by the triangles as well. As a result,
each eigenvector of our Laplacian matrix tends to be more suitable
for binary segmentation and concentrate more on meaningful parts
of the model. Figures 2, 3, and 7 show such comparison.

Third, the Mumford-Shah model contains a regularization term
that constrains the boundary between segments to be as short as pos-
sible. This has an effect of smoothing. Furthermore, we introduce
an edge detection function into the regularization term to encourage
the segmentation to align with feature edges. Figure 8(b) shows
some results of segmentation without the regularization term. The
boundaries of segments are apparently not smooth. Adding the reg-
ularization term improves the smoothness of the boundaries, but
without the edge detection function the resulting boundaries of seg-
ments may not align well with the geometric features of the models,
as depicted in Figure 8(c). For a comparison, we also display the
segmentation results using the M-S model applied to the eigen-
vectors of the simple Laplacian matrix in Figure 8(a). Obviously,
by integrating all the key ingredients mentioned earlier, our pro-
posed algorithm produces excellent segmentation results as shown
in Figure 8(d).

7.2 Overall Performance of the Algorithm

Overall performance on benchmark dataset. We apply our proposed
algorithm on the entire 3D Segmentation Benchmark dataset [Chen
et al. 2009], which contains 19 categories of meshes (20 models
per category), segmentation results by human users, source code
for computing evaluation scores, and the results of many existing
segmentation methods. One snapshot of the visual results in each
category produced by our algorithm is shown in Figure 1. Note
that our algorithm is general and fully automatic, requiring no prior
information, no given number of segments, and no training. From
Figure 1, we can see that the results of our algorithm match human
perception well in not only the cutting boundaries but also the
number of segments. In addition, the cutting contours are along
geometric features.

We further compare our algorithm with the two state-of-the-
art geometry-based methods: Randomized Cuts [Golovinskiy and
Funkhouser 2008] and Shape Diameter Function [Shapira et al.
2008], where Randomized Cuts requires given number of seg-
ments and Shape Diameter Function determines the number of
segments automatically. We also include the latest learning-based
method [Kalogerakis et al. 2010] for reference, although it is a
different type of approach. For all the methods, we perform eval-
uations according to the protocols of Chen et al. [2009], using all
human segmentations in the Princeton Segmentation Benchmark.
Following the comparison presentation in Kalogerakis et al. [2010],
we show the scores of two evaluation metrics, Rand Index and Con-
sistency Error, in Figure 9 and list the detailed Rand Index scores
for each category in Table I, which also include the segmentation
results of human users. The definitions of Rand Index and Consis-
tency Error can be referred to [Chen et al. 2009], and smaller values
suggest better segmentation results. Note that Rand Cuts is given
the dominant number of segments in the human segmentations for
each model.

Among the three geometry-based methods, M-S, Randomized
Cuts and Shape Diameter Function, from Figure 9 and Table I,
we can see that our proposed M-S algorithm achieves the best
performance, significantly outperforming the other two. Note
that the scores of human segmentations are not perfect. This is
due to the variations of the segmentation results among different
users. Figure 10 further shows the visual comparisons of the three
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Fig. 9. Quantitative evaluation of segmentation results in terms of Rand Index and Consistency Error (smaller values stand for better results). For all the
methods, we perform evaluations according to the protocols of Chen et al. [2009], using all human segmentations in the Princeton Segmentation Benchmark.
“SB19” and “SB3” stand for the learning-based method with training set sizes of 19 and 3 (out of 20 models for each category), respectively. “M-S”, “Rand
Cuts” and “Shape Diam” represent our proposed method, Randomized Cuts and Shape Diameter Function, respectively. Note that Rand Cuts is given the
dominant number of segments in the human segmentations for each model. Our method significantly outperforms the two state-of-the-art geometry-based
methods while worse than the learning-based method with large training size.

Table I. Rand Index Scores for Human Segmentations, SB19,
SB3, M-S (our method), Randomized Cuts, and Shape

Diameter Function
Object Bench Rand Shape
Categories Mark SB19 SB3 M-S Cuts Diam

Human 13.5 11.9 14.7 11.1 13.1 17.9
Cup 13.6 9.9 10.0 20.4 21.9 35.8
Glasses 10.1 13.6 14.2 9.4 10.1 20.4
Airplane 9.2 7.9 10.2 11.1 12.2 9.2
Ant 3.0 1.9 2.6 2.2 2.5 2.2
Chair 8.9 5.4 6.6 10.9 18.4 11.1
Octopus 2.4 1.8 2.2 2.5 6.3 4.5
Table 9.3 6.2 11.1 10.3 38.3 18.4
Teddy 4.9 3.1 5.6 3.2 4.5 5.7
Hand 9.1 10.4 15.8 7.9 9.0 20.2
Plier 7.1 5.4 10.5 8.9 11.0 37.5
Fish 15.5 12.9 13.5 29.6 29.7 24.8
Bird 6.2 10.4 18.6 9.4 10.7 11.5
Armadillo 8.3 8.0 8.6 8.7 9.2 9.0
Bust 22.0 21.4 39.3 25.1 23.2 29.9
Mech 13.1 10.0 24.0 13.1 27.7 23.8
Bearing 10.4 9.7 32.7 16.6 12.4 11.9
Vase 14.4 16.0 25.3 12.5 13.3 23.9
FourLeg 14.9 13.3 16.3 14.4 17.4 16.1

Average 10.3 9.4 14.8 12.0 15.3 17.6
The Rand Index scores are measured against all human segmentations in the
Princeton Benchmark and smaller scores suggest better segmentation results.

geometry-based methods, which further demonstrate the superior
performance of our proposed method.

As for the learning-based method [Kalogerakis et al. 2010], we
do not intend to have a comprehensive comparison with our method
since they are different types of approaches. The learning-based
method is an excellent work, which can perform not only segmen-
tation but also labeling while requiring category-specified training.
In terms of the segmentation results, in general the average per-
formance of the learning-based method is better than ours when
the training set size is large. However, when the training set size is

Table II. Mesh Information and Running Time Statistics
Model # of # of # of CPU GPU
(Figure) vertices triangles segments (s) (s)

Horse (8(d)) 48485 96966 6 50.47 4.16
Hand (8(d)) 53054 105860 6 71.45 4.41
Santa (8(d)) 75781 151558 6 80.48 6.54
Bunny (8(d)) 34834 69451 12 91.68 8.63
Octahedron (12(a)) 16386 32768 8 21.78 2.21
Fandisk (12(b)) 6475 12946 3 4.81 0.60

The GPU implementation improves the processing speed by around ten times.

small, say no more than 30% of the entire category size, the perfor-
mance of our algorithm is comparable or better on average. Note
that the human model in Figure 10 is actually a failure case for the
learning-based method [Kalogerakis et al. 2010] while our method
can segment it well.

Cutting contour smoothness. The visual results in Figures 1
and 10 already show that our algorithm produces smooth cut-
ting contour, along geometry features. This is mainly because of
the boundary term in the M-S model, which essentially pulls the
cutting contours toward the geodesic curves [Zhang et al. 2010].
In addition to the benchmark dataset, we also test our algorithm
on other models in Figures 8(d) and 11 and two CAD models in
Figure 12, which contain sharp edges. We can see that our algo-
rithm can cut along the sharp edges and produce smooth cutting
contour.

Segmentation efficiency. As described in Section 4.3, a fast
primal-dual algorithm has been devised to efficiently solve the M-S
model for mesh decomposition. To further accelerate the process-
ing speed, we implement our algorithm on GPU using the NVIDIA
CUDA framework with Quadro FX 4600 graphics card. All the
experiments are run on a PC with Intel Core 2.66GHz CPU and
2GB RAM. Table II lists the computing time for the models in Fig-
ures 8(d) and 12. It can be seen that with our GPU implementation,
the processing speed is improved by around ten times and the seg-
mentation of a middle-size model can be done in a few seconds even
though our GPU implementation is not optimized yet. Further speed
improvement might be possible since over thirty times acceleration
has been reported in Pock et al. [2009b].
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Fig. 10. Visual comparisons to other segmentation methods for Table, Octopus, Hand, Human, Fourleg, Chair, Mech. Top row: results of our method. Middle
row: results of Randomized Cuts, with number of segments defined as the dominant number of segments in the human segmentations for each model. Bottom
row: results of Shape Diameter Function. These models are courtesy of the Princeton Segmentation Benchmark.

Fig. 11. Segmentation results of the proposed algorithm on four nonbench-
mark models, which are provided courtesy of UU, VCG-ISTI, INRIA, and
MPII by the AIM@SHAPE Shape Repository. The cutting contours are
along geometry features.

Number of segments. All the visual results shown in the previous
figures have demonstrated that the number of segments selected by
our method proposed in Section 6 matches human perception well.

Fig. 12. Segmentation results of the proposed algorithm on two CAD
models. Our method cuts the models along the sharp edges.

Considering that the method of Shape Diameter Function [Shapira
et al. 2008] can also automatically choose the number of segments,
we further conduct the following experiments for comparison. In
particular, for each mesh model we compare the selected number
of segments with each of the human segmentations. If the predicted
number is equal to a human segmentation, we count it as one;
otherwise, we count it as zero. For the entire 4300 human segmen-
tations on 380 different meshes, the number of segments we choose
coincides with 1087 human segmentations while Shape Diameter
Function scores 741. In fact, the number of matches for our method
is quite high, considering that there exist significant variations in
the number of segments among different human segmentations for
each model.

7.3 Limitations

Despite its superior average performance over the entire benchmark
dataset, our method fails at some cases. Figure 13 gives one example,
where our results do not match the human segmentations. This
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Fig. 13. (a)-(d): The segmentation results of our method with the number of segments being 4, 5, 6, 7, respectively. (e)-(i): samples of human segmentations.
(j)-(s): Plots of the eigenvectors of our proposed Laplacian matrix corresponding to the first ten nonzero eigenvalues. Our method fails at this smooth model
which contains some tiny segments (fins) and lacks clear geometry edges. The model is courtesy of the Princeton Segmentation Benchmark.

is mainly because the fish model is very smooth, lacking clear
geometry edges and some expected segments (the fins) are of small
size, while our method assumes that the size of each segment should
be considerable. By observing the first ten nonzero eigenvectors of
the Laplacian matrix for the fish model, we find that the eigenvectors
themselves do not contain much expected segment information. We
believe high-level cues are needed to well segment such type of
mesh models.

8. CONCLUSION

This article has studied three fundamental issues in mesh decom-
position: how to accurately and efficiently decompose a mesh into
meaningful parts, how to incorporate users’ inputs to influence the
segmentation, and how to automatically determine the number of
segments that a mesh should be decomposed into. First, a Mumford-
Shah formulation for mesh segmentation is presented, which min-
imizes a functional with two terms: one measuring the variation
within a segment and the other measuring the length of the boundary
between segments. To solve the minimization, an alternating strat-
egy is proposed, which involves solving two subproblems: one with
an explicit solution and the other that is converted to a saddle-point
problem solved by the fast primal-dual method. This formulation si-
multaneously handles segmentation and boundary smoothing and is
able to efficiently partition a mesh into a prescribed number of com-
ponents. Second, a constrained Mumford-Shah model is formulated

to incorporate users’ inputs and an approach is presented to com-
pute the segmentation that reflects users’ intention. Users can draw
constraint curves to force the area around the curves to belong to the
same segment. Third, an automatic approach is proposed to com-
pute the best number of segments for a given model. These works
extensively utilize the spectral information of the mesh represented
by the eigenvectors of the dual Laplacian matrix of the mesh, aim at
segmentation with high similarity within each segment and low as-
sociation among different segments, and take human perception into
consideration. Consequently, the proposed algorithm outperforms
most existing geometry-based segmentation algorithms in terms of
quality and speed when evaluated on the Princeton Segmentation
Benchmark. Extensive experiments show that our algorithm is able
to produce segmentation results that match human perception.

There are a few issues worth further investigation. In the article
only k − 1 eigenvectors are used for k-partition. It is not clear
whether using more eigenvectors will help improve the accuracy
of segmentation or what is the optimal number of eigenvectors that
should be used to construct the multichannel function. Second, it is
certainly valuable to develop deep understanding of the conditions
under which the eigenvectors of the Laplacian matrix can effectively
describe the attributes for mesh elements. Moreover, regarding k-
partition, the method proposed in the article for determining the
number of segments is heuristic. It is interesting to study how to
devise an efficient way directly from the Mumford-Shah model to
determine the number of segments.
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A. 2006. Mesh segmentation - A comparative study. In Shape Modeling
and Applications, 14–25.

BARDSLEY, J. M. AND LUTTMAN, A. 2009. A fixed point formulation of
the k-means algorithm and a connection to Mumford-Shah. Appl. Math.
E-Notes 9, 274–276.

CHEN, X., GOLOVINSKIY, A., AND FUNKHOUSER, T. 2009. A benchmark for
3D mesh segmentation. ACM Trans. Graph. 28, 3.

COHEN-STEINER, D., ALLIEZ, P., AND DESBRUN, M. 2004. Variational shape
approximation. ACM Trans. Graph. 23, 3, 905–914.

DELAUNOY, A., FUNDANA, K., PRADOS, E., AND HEYDEN, A. 2009. Convex
multi-region segmentation on manifolds. In Proceedings of the Interna-
tional Conference on Computer Vision (ICCV).

DEY, T. K., GIESEN, J., AND GOSWAMI, S. 2003. Shape segmentation and
matching with flow discretization. In Proceedings of 8th International
Workshop on Algorithms and Data Structures (WADS). 25–36.

DEY, T. K., RANJAN, P., AND WANG, Y. 2010. Convergence, stability, and
discrete approximation of Laplace spectra. In Proceedings of ACM/SIAM
Symposium on Discreate Algorithms (SODA). 650–663.

FUNKHOUSER, T., KAZHDAN, M., SHILANE, P., MIN, P., KIEFER, W., TAL, A.,
RUSINKIEWICZ, S., AND DOBKIN, D. 2004. Modeling by example. ACM
Trans. Graph. 652–663.

GOLOVINSKIY, A. AND FUNKHOUSER, T. A. 2008. Randomized cuts for 3D
mesh analysis. ACM Trans. Graph. 27, 5.

GRADY, L. 2006. Random walks for image segmentation. IEEE Trans.
Pattern Anal. Mach. Intell. 28, 11, 1768–1783.

GREGORY, A., STATE, A., LIN, M. C., MANOCHA, D., AND LIVINGSTON, M. A.
1999. Interactive surface decomposition for polyhedral morphing. Vis.
Comput. 9, 453–470.

HAGEN, L. W. AND KAHNG, A. B. 1992. New spectral methods for ratio cut
partitioning and clustering. IEEE Trans. Comput. Aid. Des. Integr. Circ.
Syst. 11, 9, 1074–1085.

HOFFMAN, D. AND SINGH, M. 1997. Salience of visual parts. Cognition,
29–78.

HOFFMAN, D. D. AND RICHARDS, W. 1984. Parts of recognition. Cognition,
65–96.

KALOGERAKIS, E., HERTZMANN, A., AND SINGH, K. 2010. Learning 3D mesh
segmentation and labeling. ACM Trans. Graph. 29, 4.

KATZ, S., LEIFMAN, G., AND TAL, A. 2005. Mesh segmentation using feature
point and core extraction. Vis. Comput. 21, 8-10, 649–658.

KATZ, S. AND TAL, A. 2003. Hierarchical mesh decomposition using fuzzy
clustering and cuts. ACM Trans. Graph. 22, 3, 954–961.

LAI, Y.-K., HU, S.-M., MARTIN, R. R., AND ROSIN, P. L. 2008. Fast mesh
segmentation using random walks. In Proceedings of the ACM Symposium
on Solid and Physical Modeling. 183–191.

LEE, Y., LEE, S., SHAMIR, A., COHEN-OR, D., AND SEIDEL, H.-P. 2005. Mesh
scissoring with minima rule and part salience. Comput. Aid. Geom.
Des. 22, 5, 444–465.
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LÉVY, B., PETITJEAN, S., RAY, N., AND MAILLOT, J. 2002. Least squares
conformal maps for automatic texture atlas generation. ACM Trans.
Graph. 21, 362–371.
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