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Abstract

This paper considers the problem of interactively finding the cutting contour to extract components from a given

mesh. Some existing methods support cuts of arbitrary shape but require careful and tedious input from the user.

Others need little user input however they are sensitive to user input and need a postprocessing step to smooth

the generated jaggy cutting contours. The popular geometric snake can be used to optimize the cutting contour,

but it cannot deal with the topology change. In this paper, we propose a geodesic curvature flow based framework

to overcome all these problems. Since in many cases the meaningful cutting contour on a 3D mesh is locally

shortest in the sense of some weighted curve length, the geodesic curvature flow is an ideal tool for our problem. It

evolves the cutting contour to the nearby local minimum. We should mention that the previous numerical scheme,

discretized geodesic curvature flow (dGCF) is too slow and has not been applied to mesh segmentation. With

a careful observation to dGCF, we devise here a fast computation scheme called fast geodesic curvature flow

(FGCF), which only needs to solve a smaller and easier problem. The initial cutting contour is generated by a

variant of random walks algorithm, which is very fast and gives reasonable cutting result with little user input.

Experiment results on the benchmark mesh segmentation data set show that our proposed framework is robust to

user input and capable of producing good results reflecting geometric features and human shape perception.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Geometric algorithms,languages, and systems

1. Introduction

Interactive mesh cutting [LLS∗05, Sha08], which involves
little user interaction to guide the mesh segmentation pro-
cess, has received much attention in the recent years. It has
many applications such as modeling by examples, 3D mor-
phing, parameterization, texture mapping, and shape match-
ing and reconstruction. In this paper we consider how to cut
a meaningful part out from a given triangular mesh with the
assistance of little user input.

1.1. Related Work

Many interactive mesh cutting algorithms have been pro-
posed in the literature. In general, they can be classified
into two categories: boundary based approaches and region
based approaches. In boundary based approaches, the user
is often required to provide an initial area that is “close” to
the desired cut. The geometric snake and mesh scissoring

algorithms [LL02, LLS∗04, LLS∗05] evolve the initial cut-
ting contour to or find the desired position which is “close”
to the initial area. The intelligent scissoring [FKS∗04] ap-
plies a variant of Dijkstra’s algorithm to find the cutting con-
tour that goes within the initial area. Graph Cut algorithm
is applied to find the cutting contour in [SBSCO06]. Some
early boundary based approaches requires the user to spec-
ify a few points on the desired cutting contour and the cut
is then accomplished by finding the shortest paths between
them [WSHS98,GSL∗99,ZSH00], which is also used to de-
sign its interactive segmentation tool in [CGF09].

One drawback of the boundary based approaches is that
they require great care when specifying the boundary points
or boundary areas, especially for complex graphics mod-
els. Most recent interactive mesh cutting algorithms take the
regional information as the input, which requires a much
smaller amount of user efforts. In particular, the user is asked
to casually draw two types of strokes to label some ver-
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tices or faces as foreground or background seeds, and then
the algorithm completes the labeling for all unlabeled ver-
tices or faces. The easy mesh cutting [JLCW06] and the ran-
dom walks [LHMR08] are two representative region based
approaches. The easy mesh cutting [JLCW06] starts with
different seed vertices simultaneously and grows the sub-
meshes according to the improved isophotic metric incre-
mentally. The random walks [LHMR08] provides fast mesh
segmentation according to the probability value computed
by minimizing a Dirichlet energy [SG07].

1.2. Motivation and Our Approach

In this paper, we consider the problem of interactive mesh
cutting with the input of foreground and background strokes,
which requires least attention from the user. By carefully
examining the existing region based approaches [JLCW06,
LHMR08], we find that they are not able to achieve ro-
bust and effective performance. First, the existing region
based approaches are sensitive to the user input. The region
growing method used in the easy mesh cutting [JLCW06]
heavily depends on the initial seeds’ positions and is sen-
sitive to mesh noise. The performance of the random
walks [LHMR08] also heavily relies on the seeds’ positions.
Fig. 1 shows two examples. It can be seen that for the ran-
dom walks algorithm [LHMR08], different inputs always
result in different cutting contours (see Fig. 1(a) and (b),
Fig. 1(c) and (d)). The essential reason is that it minimizes
a Dirichlet energy and different boundary conditions always
result in different harmonic functions.

Second, the cutting contours generated by the re-
gion based approaches themselves are usually jaggy (e.g
Fig. 1(d)). Thus, additional boundary optimization step is
often needed to smooth the cutting contour. In fact, the
easy mesh cutting [JLCW06] employs a modified snake al-
gorithm to refine the cutting contour. The random walks
mesh cutting [LHMR08] uses a feature sensitive smooth-
ing method to smooth the jaggy boundary produced by the
random walks algorithm itself. However, these additional
boundary optimization methods are supplementary steps,
and they are able to change the contour locally for smooth-
ness but incapable of evolving the entire contour to snap
to geometry features/edges. In addition, the existing bound-
ary optimization methods have some limitations. It is well
known that the geometric snake algorithm [LL02] cannot
deal with the topology change problem and introduces pa-
rameterization artifacts for keeping the updated contour re-
maining on the mesh model. The shortest path method based
on Dijkstra’s algorithm and the graph cut algorithm can be
applied here for cutting contour optimization. However, it
is hard for them to control the overall contour smoothness
while keeping the contour snapping to geometry features.
Besides, it is not trivial to find the solution for the graph cut
algorithm in a fast manner.

Therefore, it is highly desired to have a “strong” cutting

contour optimization method, which can evolve the con-
tour entirely to absorb the non-robust performance of the
region based approaches while keeping the contour smooth
and snapping to geometry features. The geodesic curvature
flow is the one that can meet our goals. The geodesic cur-
vature flow describes how a closed curve evolves to a lo-
cal optimal one that has minimal weighted curve length.
It has been widely used in the applications of image pro-
cessing [SK07, WT09]. Due to the complexity of 3D sur-
faces, until recently a feasible approach named discretized

geodesic curvature flow (dGCF) [WT09] was proposed to
compute the geodesic curvature flow on triangular meshes.

Inspired by the dGCF method, in this paper we develop
a geodesic curvature flow based interactive mesh cutting
framework named mesh snapping. In particular, we use a
level set formulation of the geodesic curvature flow and
set the cutting contour to be the zero level set of the flow
function. By observing the slow processing speed of dGCF,
we propose a new and fast computation scheme called fast

geodesic curvature flow (FGCF) for interactive mesh cut-
ting. In addition, based on the types of seeds specified by
the user, the original random walks algorithm is modified
to compute a flow function value for each vertex, which is
then treated as the initial geodesic curvature flow function
for FGCF. By setting a feature sensitive weight to each trian-
gle on the mesh, our FGCF scheme is able to find weighted-
length local minimum near the initial contour. The closed
curve obtained by FGCF is more coherent with the human
perception because of its local minimum property and the
feature sensitive weight for each triangle. We also develop
a local editing tool to allow the user to slightly edit the
cutting contour if he/she is not fully satisfied with the cur-
rent result. Experimental results show that, compared to the
existing interactive mesh segmentation algorithms such as
easy mesh cutting, intelligent scissors, mesh scissoring and
random walks [JLCW06, FKS∗04, LLS∗05, LHMR08], our
proposed mesh snapping framework is more effective and
robust to different user inputs.

Compared with dGCF [WT09], the proposed FGCF in-
troduces an effective weight to each triangle, which makes
the segmentations come close to the ones from user studies,
and improves the computation of the geodesic curvature flow
by not only an efficient initialization via a modified random
walks approach but also a fast computation method based
on symmetrizing the underlying linear system and reducing
the number of unknowns. Our framework is further imple-
mented on GPU that leads to a processing speed near to in-
stantaneous feedback.

The rest of the paper is organized as follows. Section 2
describes the level set formulation of the geodesic curvature
flow and points out the challenges of applying the geodesic
curvature flow for interactive mesh cutting. Some notations
and definitions are also introduced in Section 2. In Section 3,
we first review the dGCF algorithm and then present the pro-
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(a) random walks [LHMR08] (b) random walks [LHMR08] (c) random walks [LHMR08] (d) random walks [LHMR08]

(e) proposed (f) proposed (g) proposed (h) proposed

Figure 1: For the random walks algorithm [LHMR08], different inputs always result in different cutting contours, but our

proposed mesh snapping framework can cut at the same place although inputs are different. Moreover, our cutting contour is

able to snap to geometry features. The foreground and background strokes are in red and green respectively, and the cutting

contour is in blue.

posed FGCF method. In Section 4, we describe a variant
of the random walks algorithm, which is used to compute
the initial flow function. The local editing algorithm is intro-
duced in Section 5. Experimental results are shown in Sec-
tion 6. Finally, we summarize the contributions of the paper
in Section 7 with some discussions on the limitations.

2. Problem Formulation

2.1. Geodesic Curvature Flow over Smooth Surfaces

Using A Level Set Formulation

The geodesic curvature flow describes the curve evolu-
tion under a geodesic curvature dependent velocity. It has
two totally different frameworks, the Lagrangian framework
and the Eulerian framework(also known as level set for-
mulation [OS88]). See [WT09] for details. The Lagrangian
framework handles both open and closed curves quite well,
but suffers from the difficulty of changing the curve topol-
ogy. The Eulerian framework works particularly well for
closed curve evolution and benefits from its flexible topol-
ogy adaptivity. These characteristics quite match the require-
ments of mesh cutting. For example, the cutting contour of
mesh cutting is always closed. Thus, we adopt the Eulerian
framework for mesh cutting in this research.

Assume M is a general 2-dimensional manifold embed-

ded in R
3, and ∇,div are the intrinsic gradient and diver-

gence operators on M respectively [WDCT09]. Suppose
that C ⊂ M is a curve defined on M, represented by the
zero level set of a flow function φ : M→ R.

The usual geodesic curvature flow decreases the length of
C, i.e.

∫
C dl. To incorporate the surface feature into our al-

gorithm, here we consider a general geodesic curvature flow
which decreases a weighted curve length, where the weight
is denoted as g : M→ R

+, a positive scalar function. Natu-
rally the function g depends on the surface features. By the
Co-area Formula [Fed59,MMTD07], the weighted length of
C can be derived as [WT09]

E(C) =
∫

C
gdl =

∫

M
g |∇φ| δ(φ)dM, (1)

where φ is the flow function and δ(·) is the Dirac func-
tion. (1) basically converts an integration over a curve into
another one over the surface.

By using variational techniques as in [CBMO02], we ob-
tain the following gradient descent equation (geodesic cur-

vature flow)

{
∂φ
∂t

= |∇φ|div(g ∇φ√
|∇φ|2+β

)

φ(t)|t=0 = φ0
, (2)
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where φ0 is an initial flow function, and β is a small posi-
tive number introduced to avoid division by zero. This flow
was discussed respectively in [CBMO02, SK07, WT09] on
implicit (with g = 1), parametric and triangulated mani-
folds. (2) tells that given an initial function φ0, the flow func-
tion φ(t) could be recursively evolved into an optimal one
φ∗, whose curve C∗ represented by the zero level set of φ∗

has local minimal weighted curve length.

Applying such a geodesic curvature flow framework for
segmentation on triangular meshes is not an easy task. First,
triangular meshes are not smooth surfaces, and the dis-
cretization of the geodesic curvature flow is not straight-
forward. Second, the initial flow function φ0 is important.
Although the geodesic curvature flow framework is able to
reliably find a smooth cutting boundary respecting geom-
etry features, it is still a local optimal boundary curve. A
poor initial flow function could lead to an undesired cutting
boundary. Thus, the initial flow function φ0 should provide a
reasonable semantic distance for any point on the surface to
the user specified seeds. In addition, the zero level set of φ0

should be somewhere “close” to the desired cut.

2.2. Notation

Before presenting the discretization of geodesic curvature
flow and the method to obtain the initial flow function, we
first give some notations that will be used throughout the
paper. Assume that M ⊂ R

3 is a compact triangulated sur-
face of arbitrary topology with no degenerate triangles. The
set of vertices, the set of edges, and the set of triangles of
M are denoted as V = {vi : i = 0,1, · · · , |V |− 1}, E = {ei :
i = 0,1, · · · , |E| − 1}, and T = {τi : i = 0,1, · · · , |T | − 1},
where |V |, |E|, and |T | are respectively the numbers of ver-
tices, edges, and triangles. We explicitly denote an edge e

whose endpoints are vi and v j by [vi,v j]. Similarly a trian-
gle τ whose vertices are vi,v j,vk is denoted by [vi,v j,vk]. If
e is an edge of a triangle τ, then we denote it as e ≺ τ. Let
Nk(i) be the k-ring neighborhood of vertex vi and D1(i) be
the 1-disk of the vertex vi.

Now we introduce the concepts of dual meshes and dual
cells [MDSB02,WT09] (see Fig. 2). For any triangular mesh
surface, a barycentric dual is formed by connecting the mid-
point of each edge with the barycenters of each of its in-
cident faces, as illustrated in Fig. 2 (a), where the original
mesh consists of black lines while the dual mesh is in blue.
Using the dual mesh, the dual cell of a vertex vi is defined as
part of its 1-disk that is near to vi in the dual mesh. Fig. 2 (b)
shows the dual cell Ci for an interior vertex vi of the origi-
nal mesh, and Fig. 2 (c) shows the dual cell for a boundary
vertex.

For each vertex vi, let ϕi denote the usual hat function,
which is linear over each triangle and ϕi(v j) = δi j, i, j ∈ V ,
where δi j is the Kronecker delta. The functions {ϕi : i ∈ V}
have three properties: local support, nonnegativity and par-
tition of unity (see [WT09] for more details). A function u
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Figure 2: Barycentric dual mesh, dual cells and computa-

tion of coefficients.

defined over the triangulated surface M is considered to be
a piecewise linear function if u reaches value ui at vertex vi,
i ∈V and u(p) = ∑

0≤i≤|V |−1
uiϕi(p) for any p ∈ M. Besides,

one may have piecewise constant functions over M, i.e. a
value is assigned to each triangle of M.

3. Discretization of Geodesic Curvature Flow

We now consider the discrete setting, where M is triangu-
lated to be M ⊂ R

3. We set φ to be a piecewise linear func-
tion, which interpolates function values at vertices of M, as
defined in Section 2.2. In other words, we only need to com-
pute the value of φ at each vertex. For simplicity, the weight
function g(·) is set to a piecewise constant function as de-
fined in Section 2.2, i.e. g(·) is a constant for each triangle.
Under these settings, the curve C representing the zero level
set of φ is also piecewise linear and hence the union of some
line segments.

In this section, we first review a previous discretiza-
tion of the geodesic curvature flow equation in the Eule-
rian framework on triangular meshes, which is named dis-

cretized geodesic curvature flow (dGCF) [WT09]. By notic-
ing dGCF’s slow processing speed that is not suitable for
interactive mesh cutting, we modify the dGCF method into
a fast computation scheme called fast geodesic curvature

flow (FGCF) in Subsection 3.2. Finally, the feature sensitive
weight function g(·) is described in Subsection 3.3.

3.1. Previous Method: dGCF

The dGCF [WT09] is derived via a semi-implicit finite vol-
ume method (FVM) of discretization of (2). In particular, for
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each vertex vi of M, the two sides of (2) are integrated on the
dual cell Ci:

∫

Ci

∂φ

∂t
dA =

∫

Ci

|∇φ|div(g∇̂φ) dA, (3)

where ∇̂φ = ∇φ√
|∇φ|2+β

. We first approximate the |∇φ| out-

side of the div operator by (|∇φ|)i =
∑

τ∈D1(i)
|∇φ|τ| sτ

∑
τ∈D1(i)

sτ
, where

sτ is the area of triangle τ and ∇φ|τ is the gradient on tri-
angle τ, whose computation is referred to [WDCT09]. Then
we have

∫

Ci

∂φ

∂t
dA =

∑
τ∈D1(i)

|∇φ|τ| sτ

∑
τ∈D1(i)

sτ

∫

Ci

div(g∇̂φ) dA. (4)

By the divergence theorem, we obtain
∫

Ci

div(g∇̂φ) dA =

∑
τ=[vi,v j ,vk ]∈D1(i)

g|τ√
|∇φ|τ|2 +β

(φicii,τ +φ jci j,τ +φkcik,τ),

(5)
where ci j,τ = 1

2 cotθk,cik,τ = 1
2 cotθ j,cii,τ =−ci j,τ −cik,τ as

shown in [MDSB02, WDCT09] (also see Fig. 2 (d)).

Thus with a semi-implicit time integral (from tn to
tn+1), (4) becomes

si
φn+1

i −φn
i

tn+1 − tn
=

∑
τ∈D1(i)

|∇φ|nτ |sτ

∑
τ∈D1(i)

sτ
×

∑
τ∈D1(i)

g|τ√
|∇φ|nτ |2 +β

(φn+1
i cii,τ +φn+1

j ci j,τ +φn+1
k cik,τ),

(6)

where si is the area of the dual cell of vi.

Denoting Φ = (φ0,φ1, · · · ,φ|V |−1)
′

, the above equation is
reformulated into a matrix form

(S +(tn+1 − t
n) G(Φ(tn)) H(Φ(tn)) ) Φ(tn+1) = S Φ(tn)

(7)
where S = diag(s0,s1, · · · ,s|V |−1) and G(Φ(tn)) =

diag(
∑

τ∈D1(0)
|∇φ|nτ |sτ

∑
τ∈D1(0)

sτ
,

∑
τ∈D1(1)

|∇φ|nτ |sτ

∑
τ∈D1(1)

sτ
, · · · ,

∑
τ∈D1(|V|−1)

|∇φ|nτ |sτ

∑
τ∈D1(|V|−1)

sτ
)

are two diagonal matrices, and H(Φ(tn)) = (−hn
i j) with

h
n
i j =






∑
τ,e=[vi,v j ]≺τ

g|τ√
|∇φ|nτ |

2+β
ci j,τ, j ∈ N1(i)

∑
τ∈D1(i)

g|τ√
|∇φ|nτ |

2+β
cii,τ, j = i

0, others

. (8)

As proved in [WT09], matrix H(Φ(tn)) is symmetric and
semi positive-definite. This gives the existence and unique-
ness of the solution to (7). See [WT09] for details. Note

that although both G(Φ(tn)) and H(Φ(tn)) are symmetric,
their product of G(Φ(tn)) H(Φ(tn)) is usually nonsymmet-
ric. Thus, (7) is a nonsymmetric linear system.

3.2. Fast geodesic curvature flow: FGCF

As one can see, the computation complexity of geodesic
curvature flow based algorithms depends heavily on how to
solve the linear system (7). The dGCF scheme in [WT09]
solves (7) directly, which is a nonsymmetric linear sys-
tem with the number of vertices as the problem dimension
for each iteration. Such an approach results in an average
of over 20 s to segment one model in our experiments as
shown in Table 1, which is unacceptable. In this subsection,
we develop a new and fast computation scheme named fast
geodesic curvature flow (FGCF) to solve (7), which dramati-
cally decreases the computation cost compared to the dGCF.
Our basic idea is to symmetrize the coefficient matrix and
reduce the problem dimension.

For the flow function φ(tn), we divide all the vertex in-
dices into two sets: K and L, where K = {i|φn

j = φn
i ,∀ j ∈

N1(i)} and L = {0,1, · · · , |V |− 1}\K. Specifically, K is the
set of vertex indices whose corresponding vertices have zero
flow function gradient and L is the index set for the rest
of vertices. According to the definitions of G(Φ(tn)) and
K, clearly Gii = 0 for i ∈ K. We now discuss how to opti-
mize dGCF in the following two cases: K is empty and K is
nonempty.

When K is empty, Gii > 0,∀i. Hence G(Φ(tn)) is invert-
ible. By multiplying G−1(Φ(tn)) on both sides of (7), we
obtain

(G−1(Φ(tn)) S +(tn+1 − t
n) H(Φ(tn)) ) Φ(tn+1)

= G
−1(Φ(tn)) S Φ(tn). (9)

This is a new linear system equivalent to (7). Moreover, the
coefficient matrix in (9) becomes symmetric in addition to
the sparse and positive-definite properties.

We now consider the case where K is nonempty. As we
know, Gii = 0 if i ∈ K. Thus, the i-th equation of the sys-
tem (7) becomes si φi(t

n+1) = si φi(t
n), which indicates

that φi(t
n+1) = φi(t

n) for i ∈ K. This means that for those
equations whose indices belong to K, there is no need to do
the computation since their flow function values remain un-
changed. Therefore, by removing those equations, we reduce
the number of unknowns and simplify (7).

In particular, we decompose S, G(Φ(tn)), H(Φ(tn)) and
Φ(tn) into the following forms (with index permutations if
needed):

S =

(
SK 0
0 SL

)
,

G(Φ(tn)) =

(
GK(Φ(tn)) 0

0 GL(Φ(tn))

)
,
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H(Φ(tn)) =

(
HK(Φ(tn)) B(Φ(tn))

BT (Φ(tn)) HL(Φ(tn))

)
,

and Φ(tn) = (ΦK(tn) ΦL(tn))
′

.

Replacing S, G(Φ(tn)), H(Φ(tn)) and Φ(tn) in (7)
with the above expressions and considering that ΦK(tn) =
ΦK(tn+1),GK(Φ(tn)) = 0, we rewrite (7) as

(SL +(tn+1 − t
n)GL(Φ(tn))HL(Φ(tn))) ΦL(tn+1)

= SLΦL(tn)− (tn+1 − t
n)GL(Φ(tn))BT (Φ(tn))ΦK(tn).

(10)

Since the diagonal matrix GL(Φ(tn)) is positive-definite, we
then multiply G−1

L (Φ(tn)) to both sides of (10) and obtain

(G−1
L (Φ(tn))SL +(tn+1 − t

n)HL(Φ(tn))) ΦL(tn+1)

= G
−1
L (Φ(tn))SLΦL(tn)− (tn+1 − t

n)BT (Φ(tn))ΦK(tn).
(11)

The coefficient matrix of (11) is also sparse, symmetric and
positive-definite. In addition, (11) has a smaller number of
unknowns than (7).

So far we have reformulated the original system (7) into
(9) and (11) for the two cases of K = ∅ and K 6= ∅ respec-
tively. In our implementation, we only need to solve (11)
since (9) is a special case of (11) with K = ∅. As stated
in [PTVF92], it is easier to solve a linear system with sym-
metric positive-definite coefficient matrix than to solve a sys-
tem with nonsymmetric positive-definite matrix if the num-
ber of unknowns are the same. Thus, not to mention the re-
duced number of unknowns, the new system (11) definitely
has lower computational complexity than the original system
(7). Moreover, as stated in [WT09], the dGCF has the regu-
larization behavior that the flow function tends to be piece-
wise constant during the curve evolution and hence the size
of K becomes larger and larger. This means that the number
of unknowns (the size of L) gets smaller and smaller along
the iterations of FGCF. Thus, the complexity of the original
linear system solved in the dGCF is further reduced through
reducing the dimension of the linear system. See Table 1 for
a comparison of processing speed.

3.3. The weight g

The weight function g(·) in (1) is very important since it af-
fects the final result of the geodesic curvature flow, the zero
level set of which is expected to respect local geometry fea-
tures and reflects human shape perception. Thus, we set the
weight for each triangle on the mesh according to its geo-
metric properties and the minima rule [HR84], which states
that human perception tends to divide a surface into parts
along minimum negative curvatures. In particular, for trian-
gle τk not containing any seed vertex (specified by the user),

we set

g|τk =
1

1+
3
∑

i=1
λk,i||N(τk)−N(τk,i)||2

, (12)

where τk,i, for i = 1,2,3, are the triangles sharing edges with
τk, N(τk) and N(τk,i) respectively denote the normal vectors
of triangle τk and τk,i, and λk,i is a scaling factor. It can be
seen that the weight function g(·) is monotonically decreas-
ing with respect to the absolute normal difference. The scal-
ing factor λk,i is set according to the minima rule: λk,i = 5
if the edge shared by τk and τk,i is a concave edge; other-
wise, λk,i = 1. For those triangles containing seed vertices,
the weight g is set to a big value (10 in our work), since
we wish to prevent the cutting contour from passing through
these triangles.

4. A Variant of Random Walks on Triangular Mesh

We have presented a fast way to compute the geodesic cur-
vature flow. Now the remaining question is how to find a
good initial flow function φ0 (or Φ0 in vector form), which
can provide a reasonable semantic distance for any vertex on
the surface to the user specified seeds and the zero level set
of which should be somewhere “close” to the desired cut. In
this research, we adopt the random walks algorithm to find
the initial flow function. This is because the random walks
algorithm is extremely efficient and is able to generate rea-
sonable cutting results with little user input.

Random walks algorithm was first proposed by
Grady [Gra06] for image segmentation. It is typically
used with a simple user interface: the user draws strokes
specifying seeds for “foreground” (i.e. the part to be cut out)
and “background” (i.e. the rest). The same idea has then
been applied on mesh segmentation [LHMR08]. Unlike the
work in [LHMR08] which computes a probability value for
each triangle, in this paper we propose a variant of random
walks algorithm which computes a flow function value
for each vertex on mesh. There are a few advantages of
computing a value for each vertex instead of each triangle
face. First, the number of vertices is roughly one half of the
number of the faces and thus this significantly reduces the
size of the linear system derived from the random walks.
Second, providing each vertex a flow value facilitates the
cutting contour going through the interior of the existing
triangles by the subsequent FGCF algorithm.

In particular, for a triangular mesh M, we consider that
all the edges are undirected and each edge e = [vi,v j] is as-
signed a weight wi j, which stands for the similarity between
vi and v j . Based on the user input strokes, two sets of seeds,
foreground seeds F and background seeds B, are specified,
where F ⊂ V and B ⊂ V , and F

⋂
B = ∅. We set φ0

i = 1
for any vi ∈ F and φ0

i = −1 for any vi ∈ B. According to
the random walks algorithm [Gra06], for the rest of vertices,
we have φ0

i = 1
di

∑
v j∈N1(i)

wi j φ0
j , ∀vi ∈ V \ (F ∪B), where
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di = ∑
v j∈N1(i)

wi j. This leads to a system of linear equations

with φ0
i ,vi ∈V \(F ∪B) as unknowns. Solving the equations

gives the initial flow function values for all the vertices. The
initial cutting contour is therefore the zero level set of φ0.

In the random walks algorithm, the weights assigned to
edges have an important impact on the result. To take into
account geometry features and the minima rule [HR84], we
define a distance for edge e = [vi,v j] as

di j = η ||vi − v j|| · ||N(vi)−N(v j)|| (13)

where N(vi) and N(v j) are respectively the normals of the
surface at vertices vi and v j, ||vi − v j|| is the Euclidean dis-
tance between vi and v j , and η is a scaling factor. The scal-
ing factor η is set according to the minima rule: η = 5 if
e = [vi,v j] is a concave edge; otherwise η = 1. Note that be-
fore we compute the distance metric (13), the mesh model
is first uniformly scaled into one with a unit bounding box.
Once the edge distance metrics have been computed, the
edge distance di j is mapped into the weight wi j by a Gaus-

sian function wi j = exp(−(
di j

d
)2), where d is the average

value of di j over the entire mesh.

5. Local Editing for Cutting Contour

Although the combination of FGCF and the random walks
algorithm can produce very robust results, sometimes it
might not be exactly the one that a user wants. Different
users might have different expectation on the cutting con-
tour. Therefore, it is often necessary to devise a local editing
method for the user to locally adjust the cutting contour to
meet his expectation. In our system, the user is allowed to
use mouse click to indicate where he wants the cutting con-
tour lying near, and then the cutting contour will be automat-
ically pulled toward where he clicked. This process repeats
until the user is satisfied with the obtained cutting contour.

In particular, as shown in Fig. 3, assuming that the user is
not satisfied with the current cutting contour 3(a) (the blue
line), he wants it passing through triangle fh 3(b). Starting
from fh, the Breadth-First-Search algorithm is first used to
find the nearest triangle fc on the cutting contour, and the
number of steps from fh to fc is recorded as k. The flow
function value of each vertex on the triangles within the k-
ring of triangle fc is subtracted by the flow function value of
fh. In the way, the flow function value of fh becomes zero
and thus the new cutting contour represented as the zero level
set of φ passes through fh, as shown in Fig. 3(c). However,
this new contour has jaggy shape and other vertices on the
cutting contour is far away from the feature positions. To
solve these problems, we use a short time-step geodesic cur-
vature flow to pull and smooth the cutting contour with the
weights g(·) for the (k− 1)-ring triangles of fc (green part
in Fig.3(d)) set to a big value (10 in our experiments), which
prevents the final contour from passing through this green
region. The final smoothed contour is shown in Fig. 3(d).

(a) initial contour (blue) (b) user clicks one face (or-
ange).

(c) pull contour from green
toward orange

(d) smoothed contour

Figure 3: Illustration of the local editing algorithm.

(a) (b) (c)

Figure 4: Local editing example. (a) Initial result; (b) The

user clicks a face where he/she wants the cutting contour

to lie near; (c) The initial cutting contour is pulled toward

where the user clicked.

Note that the calculation of k-ring neighborhood of a face
and the Breadth-First-Search algorithm mentioned above are
performed on the dual graph of the mesh.

A local contour editing example is shown in Fig. 4. After
inputting two types of seeds (in red and green respectively),
the cutting contour (in blue) is then computed as shown in
Fig. 4(a). If the user wants to pull the contour toward the
“ear”, he can select one face where he wants the cutting con-
tour to go through or lie near as shown in Fig. 4(b). The sys-
tem then uses the above local editing algorithm to compute
a new cutting contour shown in Fig. 4(c).

6. Experimental Results

We now summarize the overall process of the developed
mesh snapping framework for interactive mesh cutting as
follows.

1. The user sketches strokes on the mesh to define two types
of seeds.

2. Compute the initial flow function φ0 using our modified
random walks algorithm.
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3. Starting from φ0, we use the proposed FGCF algorithm
and an adaptive time step setting strategy to evolve the
zero level set of φ toward its nearby local minimum.
The adaptive time step setting is similar with the one
in [WT09], but the length of the zero level set is com-
puted according to the value of g. The zero level set of
the optimal flow function φ∗ is then treated as the cutting
contour.

4. If the user is not satisfied with the current cutting con-
tour, he/she can use the local editing algorithm to edit the
cutting contour until he/she is satisfied.

In the following, we provide some experimental results
to show that our mesh snapping framework is effective and
robust. In all the examples, the two types of seeds are shown
in red and green respectively, and the cutting contours are in
blue.

First, we test the effectiveness of our mesh snapping
framework. We find that the cutting contour of our approach
matches the human perception well because it computes
the weighted closed geodesics (see the examples in Fig. 5
(a)(b)(c)(d)). We have tested our mesh snapping framework
on around twenty models in the ground truth benchmark
data set for 3D mesh segmentation [CGF09], where the
ground truth results are manually generated by many people.
Fig. 5(e) and 5(f) show two examples of the ground truth
segmentation results. Note that the ground truth segmenta-
tion results contain different contours for cutting different
parts. Even for cutting one part, the ground truth results also
consist of multiple overlapped contours, which are manually
drawn by different people.

We compare our cutting result with the ground truth
segmentations using the Cut Discrepancy metric [CGF09],
which evaluates how well the cutting results match the
human-generated segmentations. Specifically, assuming C1
and C2 are the sets of all the points on the cutting contours S1
and S2, respectively. Denote by dG(p1, p2) the geodesic dis-
tance between two points on a mesh and define dG(p1,C2) =
min{dG(p1, p2),∀p2 ∈C2}. The Cut Discrepancy is then de-
fined as [CGF09]

CD(S1,S2) =
DCD(S1 ⇒ S2)+DCD(S2 ⇒ S1)

avgRadius
(14)

where avgRadius is the average Euclidean distance from a
vertex on the surface to centroid of the mesh and DCD(S1 ⇒
S2) is the mean of {dG(p1,C2),∀p1 ∈C1}. See [CGF09] for
details. Over twenty models in the benchmark data set, the
average Cut Discrepancy between our results and the ground
truth results is about 0.005. Such a small cut discrepancy
value demonstrates that our cutting results are very close to
the ground truth segmentations. It can also be seen by com-
paring our cutting results in Fig. 5(c) and 5(d) with the cor-
responding ground truth contours in Fig. 5(e) and 5(f).

Fig. 6 gives a comparison on the cutting contour. It can be
seen that the cutting contour of the random walks algorithm

(a) (b)

(c) (d)

(e) (f)

Figure 5: (a)-(d): our results. (e) and (f): the ground truth

segmentations provided by the benchmark data set [CGF09]

that are collected from multiple people.

is of jaggy shape since it has no geometric meaning, while
our cutting contour is smooth and along geometric edges.
Such smooth and geometry feature-snapping properties of
the cutting contour can also be observed in Fig. 1 and 5.

One feature we would like to highlight is that our mesh
snapping framework can freely deal with the curve topol-
ogy change since FGCF is a level set based method. Fig.7
shows one example, where the contour evolves from one
closed curve at the beginning 7(a), to the middle result 7(b)
and finally to two closed curves 7(c). Note that the geo-
metric snake cannot deal with this type of curve position
update, which is a well-known shortcoming of the “snake”
model [KWT88, MSV95].

Most of the cutting contours shown so far go through
concave edges. Fig. 8 shows that the cutting contour of our
method can also be along non-concave edges. Although the
cutting contours in Fig. 8 are not local minimums in terms
of curve length, they are indeed weighted-length local mini-
mums. This is achieved by the weight setting in Section 3.3.
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(a) random walks (b) proposed

(c) random walks (d) proposed

Figure 6: The cutting contours of the random walks algo-

rithm [LHMR08] are of jaggy shape, while our cutting con-

tours are smooth and along geometric edges. The first and

the second rows are for two different views.

(a) initial contour (b) middle contour (c) final contour

Figure 7: Due to the level set formulation, our algorithm

can easily handle topology changes like splitting.

Second, we test the robustness of our mesh snapping
framework to the user input. As mentioned at the begin-
ning, the existing interactive mesh cutting algorithms such
as [JLCW06, LHMR08] are sensitive to the user input in
terms of the position or the number of seeds. For example,
the result of the random walks algorithm [LHMR08] heav-
ily depends on the position of seeds. Placing user’s strokes at
different locations results in quite different cutting contours,
as shown in Fig. 1(a)(b)(c)(d). In comparison, as shown in
Fig. 1(e)(f)(g)(h), our approach produces the same cutting
contour for different user inputs.

Third, we measure the efficiency of our proposed method
in term of computation time. Table (1) compares the com-
putation time and gives the average number of unknowns

(a) (b)

Figure 8: Although our algorithm converges into a local

minimum, it can cut along non-concave edges because of

the feature sensitive weight setting.

in FGCF. Note that (7) of dGCF is solved by the precon-
ditioned biconjugate gradient method (PBCG) [PTVF92]
as [WT09] does. For a fair comparison, we use the corre-
sponding iterative solver for symmetric matrices, i.e. the pre-
conditioned conjugate gradient method (PCG) [PTVF92],
to solve (11) of FGCF. In addition, to further improve the
processing speed, (11) is also solved by the sparse direct
solver Taucs [TcR03], whose complexity is linear with the
non-zeros in the coefficient matrix. From Table (1), we can
see that FGCF by PCG and FGCF by Taucs are more than
two times and five times faster than dGCF respectively. We
would like to point out that the number of unknowns in
dGCF is always equal to the number of vertices while FGCF
has a much smaller number of unknowns as shown in the last
column of Table (1).

To reach realtime application, we have also solved the
FGCF using the Jacobi-preconditioned Conjugate Gradi-
ent algorithm on the GPU [BCL09]. Specifically, we use
Nvidia’s CUDA programming language with the BLAS li-
brary running on an Nvidia Quadro FX 4600 graphics card.
In this way, the processing can be typically accomplished
within 1 ∼ 2 seconds, as shown in Table (1). All the exam-
ples were made on a PC with Intel Core 2.66GHz CPU and
2GB RAM.

Table 1: Mesh information and running time statistics. The

unknowns size in dGCF always equals the number of ver-

tices. The ANUF stands for the average number of unknowns

in FGCF iteration.

Model # of dGCF FGCF FGCF FGCF ANUF
vertices by by by on

PBCG(s) PCG(s) TAUCS(s) GPU(s)
5(c) 13324 3.273 0.418 0.109 0.093 952
4(a) 15941 5.378 1.677 0.934 0.275 12303
8(a) 16386 6.217 2.052 0.946 0.354 13342
5(d) 25125 10.217 1.419 0.703 0.178 7807
5(b) 29299 28.185 6.741 3.331 0.756 24385
7(c) 48485 33.82 10.934 6.742 1.581 29213
8(b) 67173 62.931 27.365 10.358 4.328 56393

7. Conclusion

In this paper, we have developed a mesh snapping frame-
work for interactive mesh cutting, whose results are robust
to the user input and capable of reflecting geometric features
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and human shape perception. The major contributions of this
paper include the following. First, we apply the geodesic cur-
vature flow function for interactive mesh cutting. To the best
of our knowledge, it has not been done before. Second, we
propose the FGCF algorithm which greatly reduces the com-
plexity of dGCF. Together with the GPU implementation,
our framework can produce the cutting results around 1 ∼ 2
seconds for most of the test models. Third, although FGCF
can be used with other exiting mesh cutting algorithms, the
marriage of FGCF and the random walk algorithm combines
the advantages of the random walk algorithm in terms of
simple user interface and fast processing speed and that of
FGCF in robustness. The developed local editing tool further
incorporates some flexibility into the robust mesh snapping
framework.

Since our proposed mesh snapping framework empha-
sizes on the robustness performance, it does not provide
great flexibility for the user to control the final cutting con-
tour. Our local editing tool is only for the user to do some
small adjustment locally. Thus, when there is a big gap be-
tween the cutting result and user’s intention, the local editing
tool does not help and the user needs to input new strokes
and repeat the entire process. How to optimally tradeoff be-
tween robustness and flexibility is still an open question. An-
other limitation of our mesh snapping framework is that it
can only handle a binary segmentation at present. It would
be more interesting to extend the current framework for cut-
ting a mesh into multiple parts.
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