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Techniques from sparse representation have been successfully applied in many areas like dig-

ital image processing, computer vision and pattern recognition in the past ten years. However,

sparsity based methods in geometric processing is far from popular than its applications in

these areas. The main reason is that geometric signal is a two-dimensional manifold and its

discrete representations are always irregular, which is different from signals like audio and im-

age. Therefore, existing techniques cannot be directly extended to handle geometric models.

Fortunately, sparse models are beginning to see significant success in many classical geomet-

ric processing problems like mesh denoising, point cloud compression, etc. This review paper

highlights a few representative examples of how the interaction between sparsity based meth-

ods and geometric processing can enrich both fields, and raises a number of open questions

for future study.

© 2015 Elsevier Inc. All rights reserved.
1. Introduction

Sparsity based regularization and sparse signal represen-

tation [1,2] have proven to be an extremely powerful tool

for processing signals like audio, image and video. Sparse

techniques have become state-of-the-art tools in many fields

like machine learning [3,4], signal processing [5,6], neuro-

science [7,8] and statistics [9–11]. This success is mainly due

to the fact that important classes of signals such as audio

and images have naturally sparse representations with re-

spect to fixed bases (i.e., Fourier, Wavelet), or concatenations

of such bases. Moreover, efficient and provably effective al-

gorithms based on convex optimization or greedy pursuit

are available for computing such representations with high

fidelity [12].

While these successes in classical signal processing

applications are inspiring, in geometric processing we are

dealing with two-dimensional manifold signals with irregu-

lar domain, which is totally different from audio, image and
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video. One might justifiably wonder whether sparsity based

regularization and sparse representation can be useful at all

for geometric processing tasks. The answer has been largely

positive: in the past few years, variations and extensions

of �1 minimization have been applied to many geometric

processing tasks, including mesh denoising [13–15], surface

reconstruction [16], point cloud consolidation [17–21], mesh

segmentation [22–25], and point cloud registration [26].

In almost all of these applications, using sparsity as a prior

leads to state-of-the-art results.

Before going any further, we would like to briefly analyze

the difference between using sparse techniques in geometry

and in traditional fields. Sparse signal techniques have been

successfully applied on many aspects as acquiring, repre-

senting and compressing high-dimensional signals. This is

because that signals like audio and images can be sparsely

represented by fixed basis like Fourier, Wavelet and Discrete

Cosine Transform (DCT). Another important property of

these signals is that they have a natural domain on which

functions can be defined. For instance the domain of an

audio is time or frequency and the domain of an image is a

regular planar grid.
etry modeling and processing, Graphical Models (2015),
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Geometric signals usually consist of geometric positions

and sometimes connection relationships. The connection re-

lationships are represented by a 3D graph on which we can

take geometric positions as sampling for a certain three di-

mensional functions. We can take these relationships as the

domain of geometric signals. However these domains usu-

ally cannot embed onto a planar region and they are irreg-

ular compared to previous domains. Sometimes we cannot

handle geometry directly and we have to transform the ge-

ometry into feature space which might be some Euclidean

space. With these irregular domains another important issue

is that how to define the basis. Besides, famous sparse related

regularization terms for image processing like TV model as-

sume that image is piece-wise constant. Geometric signals

on the other hand are at least continuous. Thus most regu-

larization terms cannot be directly employed on geometric

problems.

Above all, applying sparse techniques on geometric sig-

nals generally faces the problems of handling irregular do-

main, defining basis functions and the geometric specified

regularization terms. Fortunately, many creative researchers

have found a lot of effective methods tackling these prob-

lems and successfully used sparse techniques to solve geo-

metric problems as mentioned above. And the experiment

results sufficiently show the advantages of sparse techniques,

such as robustness to noise, local controllability and feature

preserving.

In the rest of this paper, we would like to first introduce

traditional sparse models (Section 2) used in previous fields

like machine learning, computer vision, etc. Then accord-

ing to the different sparse models, we classify all the papers

into three parts (Sections 3–5) where we illustrate how these

techniques are successfully applied on geometric processing

problems. By giving a survey about the usage and the effec-

tiveness of sparse techniques, we would like to achieve the

goal of inspiring the researchers who are interested to dis-

cover more applications. In the end, Section 6 gives a sum-

mary and possible future works.

2. Preliminaries

Before illustrating how sparsity is applied on geometry

processing problems, we would like to introduce some no-

tations and general sparsity models.

2.1. Notation

To make this survey self-contained, here we introduce

some basic notations. Let x = (x1, x2, . . . , xk)
T be any vec-

tor in Euclidean space Rk, ‖x‖p denotes the �p norm of x

with ‖x‖p = (
∑k

i=1 |xi|p)1/p. And the �0 pseudo-norm of x

is defined as ‖x‖0 = #{i|xi �= 0} = ∑k
i=1 |xi|0. M = (mi j) rep-

resents a matrix in Rm×n. Its frobenius norm is defined as

‖M‖F = (
∑m

i=1

∑n
i=1 m2

i j
)1/2, and its nuclear norm is defined

as ‖M‖∗ = ∑
i σi(M) where σ i(M) is the ith singular value of

M. Nuclear norm is the convex envelope of rank(M), which

makes that ‖M‖∗ can be considered the relaxation of the rank

of M.
Please cite this article as: L. Xu et al., Survey on sparsity in geo
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2.2. Sparse techniques

Generally, there are some basic assumptions in sparse

techniques. For example, a signal can be represented by a

sparse linear combination of dictionary elements, some spe-

cial signals can be approximated by a low rank matrix. In the

following, we will discuss these essential issues and general

models raised in this field.

2.2.1. Sparsity in vector

A vector signal u = (u1, u2, . . . , un)T ∈ Rn can be approx-

imated by a linear combination of dictionary elements {di ∈
Rn}m

i=1
, which can be formulated as

u ≈
m∑

i=1

xidi, (1)

where x = (x1, x2, . . . , xm)T is the coefficient vector. If x is

sparse, it means that signal u can be represented by a lin-

ear combination of few dictionary elements. However there

are also different explanations about sparsity that the vector

becomes sparse under a certain transformation. For instance,

the gradient of natural image is always sparse, and total vari-

ation model catches this observation well. In the following,

we will give three general models which are quite popular in

signal processing.

Sparse coding. Sparse coding method is widely used in com-

puter vision tasks like face recognition, image classification.

It assumes that the input signal can be sparsely represented

by a set of dictionary elements. The target of sparse coding is

to pursuit the sparse coefficient vector x. The formulation is

min
x

λ

2
‖u − Dx‖2

2 + ‖x‖p, (2)

where 0 ≤ p ≤ 1. If p = 0, ‖x‖p is equivalent to the number of

non-zero elements. However ‖x‖0 is a nonconvex norm such

that it is quite hard to obtain the optimal result and most

methods use greedy strategy to get an approximation result

[27,28]. On the other hand, Eq. (2) would be a convex prob-

lem if we set p = 1, and it is the well-known least absolute

shrinkage and selection operator (LASSO) [29]. The relation-

ship of the �1 relaxation and its origin sparse �0 model is an

open problem and [30] proves that under certain conditions

the results are equivalent. Recently researchers develop algo-

rithms solving (2) when 0 < p < 1 which also approximates

the sparse solution. As shown in Fig. 1, the iso-level curve

of ‖x‖p = 1 concentrates toward axes with p decreasing, and

thus model (2) returns more sparse result with smaller p

value.

As shown in Fig. 2, the input signal is a smooth curve with

random noise, and we reconstruct the curve with sparse cod-

ing formulation Eq. (2) with DCT as the dictionary. As shown

in the second row, we can use few dictionary elements to

approximate the signal with the help of �1 norm on the co-

efficient vector x. Sparse coding has been applied on many

kinds of problems [2] as face recognition [31], image super-

resolution [32], image classification [33].

Dictionary learning. As discussed above, the problem of

sparse coding focuses on the searching of sparse coeffi-

cient vector x. And popular basis functions or vectors are
metry modeling and processing, Graphical Models (2015),
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Fig. 1. Four unit �p-balls with different values of p in R
2.

Fig. 2. Signal denoising via sparse coding formulation Eq. (2). The second column is the result with p = 2, and the third column is the result with p = 1. The

second row is the distribution of coefficients x.

Fig. 3. Dictionary learning method (3) results in the most representative dictionary (d) with satisfactory fitting error shown with the green rectangle in (c). (For

interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
considered like Wavelet [5], DCT [34], and Fourier transform

[35]. Every given input vector is solved separately and the

underlying pattern of these vectors is ignored. Therefore a

natural idea is whether it is possible to construct a special

dictionary that consists of basis vectors and then algorithms

of dictionary learning are invented ever since [36]. These al-

gorithms attempt to optimize the dictionary and the coeffi-

cients at the same time. Here dictionary D stands for the set

of dictionary elements which is {di}m
i=1

(Fig. 3(b)(d)) and D

is represented as a matrix D = (d1, d2, . . . , dm). Assume that

we are given a set of input signals {f j}k
j=1

which are repre-

sented by D with coefficient {x j}k
j=1

and energy function for

these vectors is specified as

E(X, D) = λ

2

k∑
j=1

‖f j − Dx j‖2
2 + ‖x j‖p

= λ‖F − DX‖2
F + ‖X‖p,1, (3)
2
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where F = (f1, f2, . . . , fk) and X = (x1, x2, . . . , xk). Compared

to sparse coding problems, these models consider a learn-

ing step of dictionary, so sparse coding can be regarded as a

special case of dictionary learning. Given an initial dictionary

(Fig. 3(b)) whose fitting error is relative large as shown with

the red rectangle in Fig. 3(c), the most representative dictio-

nary (Fig. 3(d)) with satisfactory error in the green rectangle

will be learned with some iterative algorithm.

Sparse regularization and fitting. In both situations discussed

above, we assume that the input signal can be sparsely rep-

resented by a few dictionary elements. Except sparse repre-

sentation, another kind of sparsity is that the signal is sparse

under certain kinds of transformation. Mathematically u may

not be sparse but Tu is sparse where T corresponds to some

transformation T. As shown in Fig. 4(a), the values of the

original signal is not sparse. However, as this signal is piece-

wise constant, its gradient (Fig. 4(b)) is sparse. Based on this

observation, we aim at recovering the signal u from the
etry modeling and processing, Graphical Models (2015),
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Fig. 4. Original signal and its gradient.
observed (input) signal f via the following model:

min
u

λ

2
F(u, f) + ‖Tu‖p, (4)

where F(u, f) is the fitting term which measures the distance

between the restored signal and the input signal. As for the

transform T, it depends on the type of signals. For example, in

total variation model [37,38], T = ∇ as the gradient of natural

image is sparse

min
u

λ

2
F(u, f) + R(∇u),

where R(∇u) = ∑
i, j |∇u(i, j)| demonstrates that the �1

norm of the gradient of output image. So far many variations

of TV model have been introduced like adding mixed regu-

larization [39] directly using the �0 norm of gradient[40] or

using penalty method to solve the problem.

If the input signal is corrupted by impulsive noises or

outliers, the least square formulation of fitting term always

returns unsatisfactory results. To avoid the influence of im-

pulsive or outliers, a better way is to introduce sparsity mea-

surement into the fitting term like

F(u, f) = ‖u − f‖p, p ∈ [0, 1].

It has been successfully applied in image restoration with

noise types like impulsive noise, salt-and-pepper noise [41].

As shown in Fig. 5(a), the sampled points from a circle con-

tains a lot of noises and outliers. To restore the signal, we let

regularization term be ‖Lu‖2
2

where L represents the discrete

Laplacian operator. The reconstructed curve by �2 norm fit-

ting term is very jaggy because of the influence of outliers,

while the reconstructed result by �1 norm fitting term is quite

close to the clean circle benefitted by its sparse property.

Numerical solution. So far we have introduced the sparse

models that have been widely used and now we would like to

show general approaches for solving them. For sparse coding

problem that p = 0 in (2)

min
x

λ

2
‖u − Dx‖2

2 + ‖x‖0. (5)

This problem is NP-hard and optimal solution is unable to

be obtained in polynomial time. Approximating approaches

like matching pursuit (MP) [27], orthogonal matching pur-

suit (OMP) [28,42] greedily and iteratively add the currently

best basis vector to represent u. And Pati el al. [28] prove

that the solution of OMP algorithm converges under certain

conditions. If p = 1, problem (2) is a convex problem which

can be easily solved by convex optimization algorithms like

quadratic programming [43]. However, specially designed
Please cite this article as: L. Xu et al., Survey on sparsity in geo
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method is also widely used, for instance [44] is used for solv-

ing LASSO models.

Classical dictionary learning techniques [36,45] consider

a training set of signals or data F = [f1, . . . , fn] and optimize

the empirical cost function

fn(D) � 1

n

n∑
i=1

c(fi, D), (6)

where D in Rk×m is the dictionary, and c(f, D) is a loss function

that c(f, D) should be small if D represents the signal f well in

a sparse fashion. However K-SVD algorithm [46] specifies the

dictionary learning problem as

min
D,X

‖F − DX‖2
F ,

s.t.‖xi‖0 ≤ s, ∀i = 1, 2, . . . , m, (7)

and iteratively alternates between a process of updating dic-

tionary D to better fit the training data and sparse coding of

X based on current dictionary, just like the traditional pro-

cessing method of separating difficult problems into easier

parts.

The problem of sparse regularization (4) when p = 1 is

convex and a lot of approaches have been invented to solve

it. Alternating direction method of multipliers [47,48] intro-

duces one auxiliary variable v to represent Tu with constraint

that v = Tu. Then an iterative strategy is used to update each

variable with a Lagrangian multiplier. For p = 0, Xu et al.

[40] introduce a variation of penalty method [43] to solve (4)

without any convergency guarantee.

2.2.2. Low rank

Low rank representation attempts to decompose an input

matrix M ∈ Rm×n into a low rank matrix L and a residual ma-

trix S. The residual matrix S may have some specific proper-

ties like the input is corrupted by Gaussian noise or sparse

noise. Under the assumption that M is corrupted by Gaussian

noise, a low rank problem is formulated as:

min
L,S

‖S‖F

s.t. rank(L) ≤ r

M = L + S, (8)

where r 
 min (m, n). The above problem is equivalent to

principle component analysis (PCA) according to [49,50]. This

problem is easily solved by first computing the singular value

decomposition (SVD) of M and then projecting the columns

of M onto the subspace spanned by the r principle left singu-

lar vectors.
metry modeling and processing, Graphical Models (2015),
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Fig. 5. Curve fitting with different type fitting term.
However, PCA assumes that corruption is caused by Gaus-

sian noise. The result of PCA might be far from M if only a few

entries of M is corrupted. Refs. [31,51] show that under some

conditions that the residual matrix S is sparse, one can ex-

actly recover M by solving

min
L,S

‖L‖∗ + λ‖S‖1,

s.t. M = L + S. (9)

The formulation is obtained by relaxing following problem

replacing the matrix rank with nuclear norm and the �0 norm

with the �1 norm:

min
L,S

rank(L) + λ‖S‖0,

s.t. M = L + S. (10)

Refs. [31,52] show the uniqueness of the solution and [53]

discusses efficient algorithm for solving low rank problem.

Generally, problem (9) can be treated as a general convex op-

timization problem and solved by any off-the-shelf interior

point solver (like CVX [54]).

Numerical solution. There have been several popular ways

to solve low-rank (robust PCA) problem (9): The iterative

thresholding approach introduced in [31] solves a relaxed

convex problem of (9); the accelerated proximal gradient ap-

proach [55] is applied to a relaxed version of RPCA problem;

Lin et al. [56] tackle the problem via its dual; the method

of augmented Lagrange multipliers [53] is introduced to effi-

ciently solve RPCA problem.

Here we take a closer look at how augmented Lagrange

multipliers (ALM) is applied on solving (9). According to [57],

the general approach of augmented Lagrange multipliers is

utilized to solve constrained optimization problems:

min f (x),

s.t.h(x) = 0, (11)

here f: Rn → R and h: Rn → Rm. The augmented Lagrangian

function is defined as:

Lag(x,�,μ) = f (x)+ < �, h(x) > +μ

2
‖h(x)‖2

F . (12)

Then x and � are updated iteratively solving sub-problems

(see [58] for more details). Thus the augmented Lagrangian

function of (9) is:

Lag(L, S,�,μ) = ‖L‖∗ + λ‖S‖1+ < �, M − L − S >

+μ‖M − L − S‖2
2. (13)
2

Please cite this article as: L. Xu et al., Survey on sparsity in geom
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Then L, S and � are separately updated by fixing other vari-

ables and minimizing augmented Lagrangian function [53].

Low rank representation or robust principle component

analysis has been successfully applied onto different prob-

lems like face recognition [59], latent object detection [60],

video denoising [61].

In summary, there are mainly three types of sparse tech-

niques: sparse regularization and fitting, dictionary learning

and low rank, according to which we organized our paper.

Certainly, not all the papers have the same formulations as

models (3) (4) (8), we will give some directions making all

the papers align with them. After introducing the notations

and with the basic knowledge of the general models, we will

review the usage of sparsity in geometric modeling and pro-

cessing. Table 1 summaries the effectiveness of sparsity in all

the papers. We can see that many geometric processing prob-

lems achieve state-of-art performance with sparsity tools.

3. Sparse regularization and fitting

From (4), it is clear that sparse regularization and fitting

can be classified into two types:

• Imposing sparsity induced norm on the regularization

term. The main goal is to design the suitable transforma-

tion T for the problems. This type of sparse regularization

is widely used in mesh denoising to preserve sharp fea-

tures, shape matching and deformation to obtain locality.

• Imposing sparsity based measurement in the fitting term.

This type of fitting term works quite well for the dataset

with noises and outliers.

In the following, we will give the details on how sparse

regularization and fitting are applied to geometric processing

problems.

3.1. Mesh denoising

Mesh denoising, just as the name implies, attempts to re-

move noises from the 3D mesh objects. How to distinguish

features from noises has been a challenging problem all the

time.

(1). In image processing, Xu et al. [40], aiming to smooth

images, provide an algorithm for directly optimizing the �0

norm of gradients of image colors to create piecewise con-

stant images corresponding to the case that p = 0 and T = ∇
in (4). Let c be a vector of pixel colors and ∇c be a vector of
etry modeling and processing, Graphical Models (2015),
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Table 1

An overview about the effectiveness of sparsity in all the papers. (SR-Sparse Regularization, DL-Dictionary Learning, LR-Low Rank).

Methods

Applications SR DL LR Effectiveness of sparsity

Point cloud consolidation

LOP [17] � Robust to noises, outliers

WLOP [18] � Robust to noises, outliers

CLOP [19] � Robust to noises, outliers

TV(�1) based/ [20] � Robust to noises, outliers

Subdivision [21] � Robust to noises, outliers

Mesh denoising

�0-norm of edge operator [13] � Sharp feature preserving

�1-analysis compressed sensing [14] � Sharp feature preserving

TV(�1) based [15] � Sharp feature preserving

Shape matching

Rigid [26] � Robust to noises, outliers

Non-rigid [62] � Constraining invariance of intrinsic properties

Co-matching [63] � Cycle-consistent with theoretical guarantee

Segmentation

Single mesh [22] � Improving smoothness of decomposition boundaries

Mesh animation [23] � Versatile with the local controllability

Co-segmentation [24] � Dimension reduction

Labeling [25] � Dimension reduction, correctness improvement

Deformation

SSDR [64] � Low memory, robust to noise

Blend skinning compression [65] � Large reduction of computational cost

Skeletal rigging [66] � Low memory

Constrained mesh editing [67] � Local controllability

�p Deformation [68] � Control distortion distribution/local controllability

Upright orientation

Low rank [69] � Intuitive, relatively robust

Tensor rank [70] � Capturing global symmetry, relatively robust

Other applications

CMM [71] � Local controllability

LBC [72] � Local controllability

Skeleton extraction [73] � Robust to noise and outlier

3D Printing [74] � Reduce the material largely

LRSCPK [75] � Sharp feature preserving

Point cloud compression [76] � High compression ratio, robust to noise

Sharp feature preserving, robust to noise and outlier,

Reconstruction [16] � and unifying geometry and connectivity

Fig. 6. Sparse regularization: mesh denoising [13]. (a) The notation for the

one-ring of an edge. (b) Left: initial surface. Center: surface corrupted by

Gaussian noise in random directions. Right: denoising result. The wireframe

shows folded triangles as red edges. (For interpretation of the references to

color in this figure legend, the reader is referred to the web version of this

article.)
gradients of these colors. They formulate the smooth prob-

lem as

min
c

|c − c∗|2 + |∇c|0,

where c∗ represents the original image colors to provide a

data fidelity term.

A natural extension to triangulated meshes is to design a

discrete differential operator to replace ∇c that is zero when

the surface is flat for arbitrary triangulations. So some form

of second order information rather than the first order infor-

mation provided by ∇c is needed. He et al. [13] generalize

the construction of the vertex-based cotan operator in dis-

crete Laplacian operator [77] to an operator that acts directly

on an edge

T(e) :=

⎡⎢⎣− cot (θ2,3,1) − cot (θ1,3,4)
cot (θ2,3,1) + cot (θ3,1,2)

− cot (θ3,1,2) − cot (θ4,1,3)
cot (θ1,3,4) + cot (θ4,1,3)

⎤⎥⎦
T⎡⎢⎣p1

p2

p3

p4

⎤⎥⎦, (14)

where the notation is shown in Fig. 6(a) and this opera-

tor is also expanded to get a new area-based edge operator.

Fig. 6(b) gives one denoised result with sharp features.
Please cite this article as: L. Xu et al., Survey on sparsity in geo
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(2). Instead, Zhang et al. [15] adopt the sparsity of face nor-

mals differences and propose a two-phase method including

face normal filtering and vertex updating. They filter face nor-

mals with a TV based variational denoising method based

on another kind of differential operators on triangulated
metry modeling and processing, Graphical Models (2015),
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Fig. 7. Sparse regularization: mesh denoising [14]. (a) is the two-dimensional illustration for their key observation. (b) is a denoising example.

Fig. 8. Sparse regularization: TV based mesh denoising [15]. (a) Clean

meshes. (b) Noisy mesh(Gaussian noise). (c) Denoising result.
surfaces

T(n|e) = wele

√
3∑

i=1

|[ni]e|2, (15)

where, we and le are scalar parameters, [ni]e is the gradient

operator of normals {n} defined on edge e

[ni]e =
{∑

e≺τ

ni|τ sgn(e, τ ), e � ∂M,

0, e ⊆ ∂M.

Here, e≺τ indicates that e is an edge of triangle τ , M is

the triangulated surface and sgn(e, τ ) = 1 indicates that the

orientation of e is consistent with the orientation of τ , other-

wise −1.

With {n} as the optimization object, minimizing the �1

norm of the new operator (4) along all edges iteratively and

updating vertex using previous method, the denoising results

can be obtained as shown in Fig. 8.

Like many other optimization problem, the optimal val-

ues of the parameters like λ in (4), are given by the exper-

imental data and there is of course no theoretical conver-

gence guarantee. Thus how to tune this kind of parameters
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is an interesting and meaningful work that has not been well

addressed. So the next work of Wang et al. [14] tries to im-

prove this situation also with a two-phase approach for de-

coupling features and noises on discrete surfaces.

(3). Fig. 7 (a) gives a planar curve as the illustration for their

key observation: any surface is piecewise C2, that is, a sur-

face consists of two parts: C2 smooth part and C0 feature part

which can be transformed into a sparse signal by applying

the Laplacian operator. Here C2 smooth part means the part

is at least C2 smooth. As such, the denoising problem is di-

vided into two phase: smooth part (base mesh) estimation

and features recovering from the corrupted feature part.

They first get a base mesh by denoising the input data

using a global Laplacian regularization smoothing optimiza-

tion, in which the smoothness parameter is automatically

chosen by adopting the generalized cross-validation scheme,

then decouple the features u and noises simultaneously from

the noisy feature part f via the �1 analysis compressed sens-

ing optimization

min
u

‖Lu‖1, s.t.‖f − u‖2 ≤ ε, (16)

that is, T = L, p = 1 in Eq. (4), here L is the Laplacian ma-

trix. Finally, combining the denoised feature part and the ob-

tained base mesh reduces the final denoising result.

Note that it is the first time noise and features are

analyzed and separated in such an elegant manner with guar-

antees by statistical theory which is much exciting and sight-

worthy in the smoothing optimization.

3.2. Shape matching

Shape matching aims at finding the set of corresponding

points on source and target point set as shown in Fig. 9. Rigid

registration is a fundamental task in geometric processing

where the two data sets are transformed globally with a rigid

transformation, generally the main goal is to deal with the

data artifacts like outliers and noises. But in non-rigid regis-

tration, the intrinsic information of geometric data should be

considered which directly brings more challenges.
etry modeling and processing, Graphical Models (2015),
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Fig. 9. Sparse regularization: rigid registration results using sparse ICP [26]

under different �p norms.

Fig. 10. Sparse regularization: local functional basis [71]. The proposed

compressed manifold modes (CMMs) have local support and are confined to

specific local features like protrusions and ridges. 8 of the CMMs were found

for the 8 protrusion at the corner(2 shown here), 6 concentrate at each of

the dents (2 shown here), and 12 CMMs automatically form at the valleys

between the protrusions.
3.2.1. Rigid registration

For rigid registration, the classical algorithm Iterative Clos-

est Point (ICP) addresses it by assuming the input data to be in

coarse alignment. Under this assumption, a set of correspon-

dences can be obtained by querying closest points on the tar-

get geometry. Given two surfaces X , Y, it is formulated as

argmin
R,t

∫
X

F(Rx + t,Y)dx + ISO(k)(R),

where x is the point on the source geometry, t is a trans-

lation vector, R is a rotation matrix which is constrained

using ISO(k)(R) to get the rigidity of the transformation. Clas-

sical ICP is in a least-square sense with the metric F(u, f) =
‖u − f‖2

2
which would fail with outliers.

Now that sparse regularization methods excel in process-

ing data set with noises or outliers, Bouaziz et al. [26] try

to formulate the local alignment problem as recovering rigid

transformation that minimizes the number of zero distances

between two correspondences. Just like the fitting term

F(u, f) in (4), they adopt �p(0 ≤ p ≤ 1) norm to obtain an

heuristic-free, robust rigid registration algorithm by modify-

ing

F(u, f) = ‖u − f‖p
2
. (17)

About �p norm, Chartrand et al. [78] show that �p norms

with p < 1 outperform the �1 norm in inducing sparsity and

Elad [1] also illustrates the tendency of �p (0 < p < 1) norm

to drive results to become sparse. Fig. 9 is the registration

results of sparse ICP under different values of p among which

it can be found that 0 < p < 1 induces better results, but the

value of p is selected according to the experiments to offer

a trade-off between performance and robustness which may

make the sparse ICP unpractical.

3.2.2. Non-rigid shape matching

(1) Local functional basis. For a 3D surface, the invariance of

intrinsic properties to extrinsic transformations should al-

ways be handled. The eigenfunctions of the Laplace–Beltrami

operator just define this kind of basis called manifold har-

monic basis (MHB), which is unique and characteristic of the

geometric and topological properties of the shape. Now we

first have a look at one work about it, followed by a closely

related non-rigid shape matching algorithm.

The Laplace–Beltrami operator � on a 2D manifold sur-

face embedded in 3D space induces the eigenfunctions {φk}

satisfying the equations

−�φk = λkφk, k ∈ N, λk ∈ R, (18)

where λk are the eigenvalues of the operator. With their

global spatial support, MHB has been used for many

applications.
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But as we have known that many times locality may in-

duce better result, like deformation [72] in Section 3.5.1. To

produce an intrinsic shape basis with local spatial support

and take advantage of MHB, Neumann et al. [71] propose

the compressed manifold basis (CMB) obtained with a spar-

sity inducing �1 norm of the individual basis functions {φk} as

following:

min
φk

∑
k=1

〈φk,�φk〉 + μ|φk|1,

s.t. 〈φk, φ j〉 = δk j. (19)

Here, with the same optimization problem (4), the spar-

sity is directly defined on the basis functions.

For a triangle mesh, discretizing the Laplacian � using a

sparse matrix L with cotangent weights defined in previous

work, and incorporating a lumped mass matrix M that con-

tains the vertex areas along its diagonal making the eigenba-

sis independent of the mesh resolution, the discretization of

(19) becomes

min
�

Tr(�T L�) + μ‖�‖1,

s.t. �T M� = I, (20)

where � contains the first several eigenvectors. Solving (20),

the obtained orthogonal CMMs could automatically iden-

tify key shape features of the underlying mesh as shown in

Fig. 10. As such, it can be used for shape matching which in-

volves robust feature detection.

(2) Non-rigid matching. Matching of deformable shapes is a

notoriously difficult problem which results in the number of

degrees of freedom growing exponentially with the number

of matched points.

Recently, Ovsjanikov et al. [79] introduce a functional rep-

resentation for correspondences which are modeled as the

correspondences between functions on two shapes rather
metry modeling and processing, Graphical Models (2015),
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Fig. 11. Sparse regularization: non-rigid shape matching [62]. (a) The re-

gions detected for two non-isometric shapes. (b) The final point-to-point

correspondences result of shapes in (a). (c) More correspondence results be-

tween SHREC shapes undergoing nearly isometric deformations and noise.

Fig. 12. Sparse regularization: co-matching [63]. Comparison between the

input maps and the optimized maps from a source shape to selected target

shapes shows the consistent correspondences across the shapes.
than points. They encode the correspondences with one ma-

trix C that satisfies bT = aTC, where a, b are the linear combi-

nation coefficient vectors for the functions under the respec-

tive bases.

If two shapes are isometric and the bases are constructed

with the discretized eigenfunctions of the Laplace–Beltrami

operator introduced in above work, due to the intrinsic prop-

erty, every low-distortion correspondence can then be repre-

sented by a nearly diagonal, and very sparse matrix C.

Based on this observation, Pokrass et al. [62] first get two

collections of similar functions {fi} and {gj} for shape X and

Y using some region detection process like [80]. As shown in

Fig. 11(a), different colors represent different functions, but

it is unknown to which gj in Y a fi in X corresponds. Thus the

unknown permutation matrix � is adopted to express this

ordering, finally the robust permuted sparse coding is formu-

lated as following:

min
C,O,�

1

2
‖�B − AC − O‖2

F + λ‖W � C‖1 + μ‖O‖2,1, (21)

where T = W with p = 1 is assigned with larger weights in

off-diagonal part and small weights in diagonal part to pro-

mote diagonal solutions, � denotes element-wise multipli-

cation, ‖O‖2, 1 is for the case that the rows of A having no

corresponding rows in B. Solving (21), the final point-to-

point correspondence result will be obtained (Fig. 11(b)) and

Fig. 11(c) shows more results undergoing nearly isometric

deformations and noise. From the formulation we know that

this method relies on the region detection technique and as-

sumption: near-isometric shapes.

3.2.3. Co-matching

Here, we use co-matching to denote the consistent shape

maps in a collection of shapes. Based on the fact that compo-

sitions of maps along a cycle of shapes could approximately

the identity map, Huang et al. [63] represent the point-to-

point map as a binary matrix X which stores all the maps

in blocks between two shapes as shown in the right figure

from the paper where Si is an input shape, then they

formulate the problem of estimating the cycle-consistent

maps as finding s closest positive semidefinite matrix X to
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an input initial map matrix Xin

min
X

∑
(i, j)∈E

‖Xin
i j − Xi j‖1, (22)

with some constraints for the cycle-consistency, and E spec-

ifies a collection of input maps {φin
i j

: Si → S j|(i, j) ∈ E}. Here

they only use the fitting term of (4) with p = 1. It is worth

noting that there is theoretical guarantee to recover the

ground-truth maps by solving (22) with its convex relax-

ation. Fig. 12 shows some representative results on the Hand

datasets.

3.3. Segmentation

Segmentation means segmenting one mesh or a group

of meshes (co-segmentation) into meaningful or semantic

parts that consistent with user intension, geometric mesh

attributes, and human shape perception. Generally, the ele-

ments within the same segment should have high similarity,

the segment boundary should be tight and smooth as well as

matching human perception, and the segmentation should

reflect significant features.

3.3.1. Single object segmentation

Motivated by the preceding observation, Zhang et al.

[22] attempt to find a partition M = ⋃
k
i=1

Mi, where Mi are

pairwise disjoint by convexifying the Mumford-Shah model

(M-S model) [81] that has been proven successful in image

segmentation to 3D meshes,

min
u∈K,χi

{∫
M

〈u(x), s(x)〉 + μg(x)|∇Mu(x)|dσ
}
, (23)

here K is the set of vector functions u(x) =
(u1(x), . . . , uk(x))T : M → Rk which just corresponds to

each segment, the second regularization term uses ∇ as

T in (4) to constrain the segment boundary quality, s(x) is

a k-dimensional vector with si(x) indicating the affinity of

x with segment Mi and g(x) is an edge detection function.

By defining u(x) = ∑
vi∈V u(vi)ϕi(x) as a piecewise linear

function where ϕi is a hat function that is linear on each

triangle, the energy functional in (23) will be discretized to

be the final optimization problem for solving u.
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Fig. 13. Sparse regularization: mesh segmentation [22]. The segmentation

results match human perception well in not only the cutting boundaries but

also the number of segments.

Fig. 14. Sparse regularization: co-segmentation [24]. (a) Colormaps of AGD

features of two tables with over-segmented patches. The AGD feature vec-

tors of the two patches (marked in rectangles) from each table’s leg have

similar distribution, as shown in histograms in the middle. (b) Left shows

the over segmented patches that will be clustered to get the right co-

segmentation result. (For interpretation of the references to color in this fig-

ure legend, the reader is referred to the web version of this article.)

Fig. 15. Sparse regularization: mesh sequence decomposition [23]. A new

facial expression is generated by summing deformation components, the

method automatically separates spatially confined effects like separate eye-

brow motions from the data.
Then with some following processing work, final segmen-

tation can be obtained. Different kind of segmentation results

are shown in Fig. 13. Since the regularization term is for con-

straining the boundary with some geometric difference in-

formation between segments, this optimization may fail for

the relative smooth models.

3.3.2. Co-segmentation

As Fig. 14(b) shows, co-segmentation consistently seg-

ments a group of shapes, where corresponding parts are la-

beled in the same colors. To be more intuitive and efficient,

Hu et al. [24] process co-segmentation on patch-level instead

of face-level.

They first over-segment all the models (left in Fig. 14(b))

followed by calculating their feature vectors using some fea-

ture descriptors. For example, Fig. 14(a) shows the colormaps

of average geodesic distance (AGD) features of two tables

with over-segmented patches. By defining the feature vector

as a histogram of the feature measurement on the triangles

of one patch (middle), it is obvious that two correspond-

ing patches have similar distributions, that is, their fea-

ture vectors lie in a common subspace. So they regard co-

segmentation as a subspace clustering problem since the

final segments are all clustering of over-segmented patches.

Since each feature vector in a union of linear subspaces

can always be represented as a linear combination of the fea-

ture vectors belonging to the same linear subspace, the com-
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bination will be sparse if the feature is written as a linear

combination of all other feature vectors. Following [82,83],

for the hth feature descriptor, finding the sparse combination

matrix for the single-feature co-segmentation is formulated

as

min
Wh

‖XhWh − Xh‖2
F + λ‖WT

h Wh‖1,1,

with some constraints for Wh. The feature matrix Xh is con-

structed with the feature vector. The �1, 1 penalty item fa-

vors the sparsity of the optimal solution Wh of which each

entry measures the linear correlation between two points

in the meshes. After defining the affinity matrix S = (si j) as

si j = |whi j| + |wh ji|, the NCut method [84] is applied to get

the co-segmentation results.

Considering the universality for different categories of

models, they add a consistent multi-feature penalty by

combing some selected feature descriptors

min
{Wh}

∑
h=1

F(Wh) + α‖W‖2,1 + β‖W‖1,1, (24)

where the matrix W is formed by concatenating {Wh}(each

matrix in one row) together:

W =

⎡⎣(W1)11 (W1)12 · · ·
(W2)11 (W2)12 · · ·

...
...

...

⎤⎦,

in two regularization terms, T in (4) equals to I, the �2, 1

penalty induces column sparsity of W such that the corre-

sponding pairs of patches will likely not be in the same clus-

ter. The �1, 1 penalty induces the sparsity within each column,

then for each similar patch pair, only a subset of features are

actually used to measure their similarity. Combining these

two penalties enables the prominent features to pop up and

guarantees the sparsity consistency of the matrices {Wh}.

3.3.3. Time varying mesh segmentation

In Fig. 15, a new facial expression is generated by sum-

ming deformation components. To decompose any mesh an-

imations like performance faces into sparse and localized

deformation modes (shown in blue), Neumann et al. [23]

propose an efficient, easy-to-implement, and versatile data-

driven approach inspired by matrix decomposition methods

like sparse PCA [85].

Given a mesh animation with several frames each of

which consists of the same vertex size, a single animation

matrix X is constructed by assembling the vertices of all

frames in a row-wise fashion

X =

⎡⎢⎣(p(1)
1

)T (p(1)
2

)T · · ·
(p(2)

1
)T (p(2)

2
)T · · ·

...
...

...

⎤⎥⎦.
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Fig. 16. Reconstruction by projection operator [17]. (a) Noisy point-set P

(green) and an arbitrary point-set Q (red) that will be projected to P to ap-

proximate P. (b),(c) are two iterative projection results. (d) is the final projec-

tion. (For interpretation of the references to color in this figure legend, the

reader is referred to the web version of this article.)
After some preprocessing for X, following the framework of

Zou et al. [85], they formulate the matrix factorization into K

deformation components C with weights W as a joint regu-

larized minimization problem

argmin
W,C

‖X − W · C‖2
F + �(C), s.t. V(W). (25)

Observing that each triplet in the rows of C forms a

three-dimensional vector c
(i)
k

= [x, y, z]
(i)
k

, every such triplet

corresponds to the x, y, and z displacement of vertex i in

component k. To make the dimensions vanish simultane-

ously to get sparsity, �(C) is formulated by acting �1 norm

on the lengths of the displacement vectors

�(C) =
K∑

k=1

N∑
i=1

�ki‖c(i)
k

‖2.

The spatially-varying regularization parameters �ki make it

possible to enforce local support for the deformation compo-

nents which is and exciting innovation. As a result, this sparse

localized deformation components for space-time mesh an-

imation data is applicable to many settings: editing, control,

scan alignment, construction of static and parametric shape

models, etc.

However, it is mentioned in this paper that several param-

eters in the formulation are specified by users, we are still

not clear that whether the users should have knowledge of

graphics or whether it is easy for the users to give the suit-

able values.

3.4. Point cloud consolidation

Point cloud consolidation, known as reconstructing the

geometry of a shape from scanned data, is a convenient and

direct way to obtain 3D models. It can be a preprocessing

phase for some geometric problem, e.g., surface reconstruc-

tion whose result is a mesh object, with functionalities such

as denoising, outlier removal, orientation, and redistribution

of the input points. However, even with high-fidelity scan-

ners, a variety of acquisition errors, like noise, outliers, miss-

ing data (holes) or registration artifacts, are inevitable in the

produced large amount of raw, dense point sets. And differ-

ent from mesh denoising, there are not vertex connectivity

and triangle quality which can be used or considered. Then

finding a robust consolidation technique has always been an

active researching area.

3.4.1. Projection operator based

Reconstruction by a projection operator, as shown in

Fig. 16 from [17], is to approximate the origin point set

(green) by iteratively projecting an arbitrary point set (red)

onto itself while removing the noises or outliers. One im-

portant virtue is that it defines a consistent geometry based

on the data points, and provides constructive means to up-

sample it.

�1 median [86,87], closely related to projection opera-

tor, is a statistical tool applied globally to multivariate non-

parametric point-samples in the presence of noises and

outliers. Briefly, it is a robust global center of an arbitrary set

of points. Given a data set P = {p j} j∈J ⊂ R3 where J denotes

the indices set, the �1 median is defined as the point q ob-

tained by minimizing the sum of Euclidean distances to the
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data points

q = argmin
x

{∑
j∈J

‖p j − x‖
}

. (26)

It is just the fitting term in (4) with �1 norm.

(1). Lipman et al. [17] apply this tool locally to consti-

tute a parameterization-free local projection operator (LOP).

Starting with an arbitrary initial point set X0 = {x0
i
}i∈I ⊂

R3(typically |X| 
 |P|, | · | is the number of point set) where

I is also the indices set, LOP computes the target point posi-

tions X by performing a fixed-point iteration

Xk+1 = argmin
X={xi}i∈I

{E1(Xk, P) + E2(Xk)}, (27)

where,

E1(Xk, P) =
∑
i∈I

∑
j∈J

‖xi − p j‖θ(‖xk
i − p j‖),

E2(Xk) =
∑
i′∈I

λi′
∑

i∈I\{i′}
η(‖xi − xk

i′ ‖)θ(‖xk
i − xk

i′ ‖). (28)

The term E2 which is unrelated with sparsity keeps the dis-

tribution of the points X fair by incorporating local repulsion

forces. The term E1 is in fact a localized version of (26) by

using a fast-decaying weight function θ(r) = e−r2/(h/4)2
with

the finite support radius h, and thus it is just E1 that drives

the projected points X to approximate the geometry of P.

Actually, the projection for point xk+1
i

has an explicit rep-

resentation:

xk+1
i

= F1(xk
i , P) + F2(xk

i , X
′
i). (29)

Intuitively, LOP distributes the points by approximating

their �1 median to achieve robustness to outliers and data

noises without any local orientation information nor a local

manifold assumption. But, also because of the use of the lo-

cal density parameter h, it may not work well when the dis-

tribution of the input points is highly non-uniform and can

fail to converge. By making some improvements on these

two terms, the next two works obtain better consolidation

results.
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Fig. 17. Sparse regularization: point cloud consolidation. (a) LOP [17]. (b)

WOLP [18]. (c) CLOP [19]. (d) Avron et al. [20].
(2). Like LOP, many consolidation methods try to obtain the

resulted geometric object without estimation of normals due

to the unreliability resulting from the noisy data as oppose to

the fact that oriented normals at the points play a critical role

in geometry reconstruction.

To achieve a better normal estimation that requires the

sampling points to be uniformly distributed, Huang et al. [18]

propose the WLOP method by incorporating locally adaptive

density weights (scalar parameters) into the explicit repre-

sentation (29).

The obtained uniformly distributed point set can largely

improve the reliability of normal initialization for a second

normal estimation phase. Practically, due to the high compu-

tational effort, it may not be a preferable choice to use this

consolidation technique as a preprocessing method for sur-

face reconstruction, even though some high quality surface

can be reconstructed.

(3). In LOP/WLOP, the majority of the time is spent on the

evaluation of the attractive forces from all points in P, Preiner

et al. [19] efficiently reduce the set P of unordered input

points to a much more compact mixture of Gaussians M =
{ws,�s} that reflects the density distribution of the points.

That is, M defines a probability density function (pdf) as a

weighted sum of |M| Gaussian components

f (x|M) =
∑

s

wsg(x|�s),

where the �s = (μs,
∑

s ) are the Gaussian parameters, ws

are their corresponding convex weights, and g denotes the d-

variate Gaussian pdf. Then they define a continuous F1 corre-

sponding to F1 in (29) changing the convex sum of 3D points

pj (28) into a convex combination of the product Gaussians

means μsk with weights wsk.

This continuous method is up to 7 times faster than an

optimized GPU implementation of LOP/WLOP, and achieves

interactive frame rates for moderately sized point clouds

though it cannot automatically get the best choice of the pa-

rameters for different point set.

(4). Similar to the sparse gradient minimization, and based

on the observation that the gradients (normal differences) of

smooth surface normals are sparse, Avron et al. [20] formu-

late the piecewise smoothness reconstruction problem as a

sparse minimization of orientation differences and position

projections as following:

Nout = argmin
N

∑
(pi,p j)∈E

wi, j‖ni − n j‖2,

Xout = argmin
X

∑
(pi,p j)∈E

wi, j|ni, j · (xi − x j)|, (30)

where {ni} denote the surface normals, {xi} denote the point

positions and {wi, j} is a set of the weight whose role is to

achieve lower-than-�1 sparsity.

Convexity of these two problems allows for finding a

global optimum and deriving efficient solvers. Due to the

global nature, this algorithm is extremely slow. And it may

fail for the point set with severe noises and outliers.

Fig. 17 shows the results of these � based methods.
1
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3.4.2. Subdivision

Due to the robustness to noises and outliers of �1 norm,

Mustafa et al. [21] develop an �1 regression based subdivi-

sion algorithm for curve and surface fitting, where the size of

target point cloud is largely more than that of origin data in

contrast to the previous consolidation works.

For curve fitting corresponding to fitting term in (4), they

try to find the best fit straight line f (x) = β1 + β2x with

observations(xr = r, fr), r = −n + 1, . . . , n. The �1 regression

optimization is simply formulated as

β1, β2 = argmin
β1,β2∈R

n∑
r=−n+1

| fr − (β1 + β2r)|

= argmin
β1,β2∈R

F(β1, β2), (31)

because of the lack of differentiability, they regularize F with

a family of convex functional Fδ , δ > 0,

Fδ(β1, β2) =
n∑

r=−n+1

hδ( fr − β1 − β2r), where

hδ( fr − β1 − β2r) = [( fr − β1 − β2r)2 + δ]1/2.

Then for a given δ, the solution of (31) is approximated by

β1, δ and β2, δ . By substituting optimum β1, δ , β2, δ into f(x)

and evaluating this function at 1/4 and 3/4, the closed form

of �1 scheme for curve fitting is obtained.

With the closed form, �1 scheme D2n first iteratively as-

signs weights to only 2n local initial points, then gets the fi-

nal fitting result through subdivision rule for locations of ver-

tices of the new mesh and topological rule for size of added

vertices and their connectivity. Fig. 18 gives an curve fitting

result. By generalizing this �1 scheme to 3-dimensional case,

it can be used for surface fitting.
metry modeling and processing, Graphical Models (2015),
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Fig. 18. Sparse regularization: �1 based subdivision [21]. Parametric curve

reconstructed by �1 scheme from highly corrupted data with three outliers.

Fig. 19. Sparse regularization: constraint modeling [67]. Comparison of �2, 1

regularization with classical local editing approaches. �2, 1 regularizer pro-

vides a more local edit. The colormap denotes the lengths of vertices dis-

placements. (For interpretation of the references to color in this figure leg-

end, the reader is referred to the web version of this article.)

Fig. 20. Sparse regularization: Lp shape deformation [68]. (a) The input sur-

face, the blue points are handles to control the deformation. (b) Deformation

result. (c) Color map of distortion distribution(distortion increase from blue

to red). (For interpretation of the references to color in this figure legend, the

reader is referred to the web version of this article.)
3.5. Other applications

3.5.1. Deformation

Constrained modeling is an important tool for the modi-

fication of 3D geometric models. Local control, in contrast to

some global algorithms, is designed for adjusting as few ver-

tices as possible in order not to influence the regions that are

already satisfactory. To automatically explore a local defor-

mation which satisfies all constraints, Deng et al. [67] give a

novel framework using �2, 1 sparse regularization penalty as

following:

min
d

ωh

2

∑
i∈�

‖di − d̃i‖2
2 + ωs

2

∑
i/∈�

‖di‖2 + ω f

2
‖Ed‖2

2,

s.t. Ej(p0 + d) = 0, j = 1, . . . , m, (32)

where p = [· · · , pT
i
, · · · ]T is the position vector, E j(p) =

0( j = 1, . . . , m) denotes the constraints satisfactory, d =
[· · · , dT

i
, · · · ]T is the displacement with dk corresponding to

vertex vk. The second �2, 1 term minimizing the �1 norm of

vector [· · · ,‖di‖2, . . . , ] induces the sparsity of d, that is,

T = I. d̃i is the target displacement of the handle vertex vi and

the last term is for a smooth displacement for a nice shape.

To enrich the single solution with fixed weight ω =
(ωh,ωs,ω f ) to give more choices for users, based on the

modified mesh p0 + d, they compute a local modification

space spanned by an orthonormal basis {φ1, . . . , φs}:

min
φ

β f

2
‖Ed‖2

2 + βh

2

s∑
i=1

‖φi‖2
2 + βs

2
‖φ‖2,1 − βc

2
C(φ).

(33)

Obviously, the third term is for the sparse displacement φ
with the first two term for shape quality and the last term for

the sparsity of d + φ.

After the interactive exploration, the final result is opti-

mized to fully satisfy the set of constraints. Fig. 19 shows the

advantages of �2, 1 norm over manually fixing vertices or us-

ing an �2 norm closeness energy term.

In addition, Gao et al. [68] give another surface deforma-

tion method based on �p norms. It aims at controlling the dis-

tribution of unavoidable distortions (Fig. 20) which also can

be explained as local controllability.

3.5.2. Barycentric coordinates

Barycentric coordinates are designed for interpolating

values from a set of control points over the interior of a do-

main, using weighted combinations of values associated with

different control points.

Mathematically, given a set of control points c1, . . . , cn

which are the vertices of a closed control cage that bounds
Please cite this article as: L. Xu et al., Survey on sparsity in geom
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a domain �. The goal is to find a function wi: � → R for

each ci, such that [w1(x), . . . , wn(x)] is a set of generalized

barycentric coordinates of x ∈ � with respect to the con-

trol points {ci} and is used for interpolating function values

f (c1), . . . , f (cn) at control points on the interior of � by

f (x) =
n∑

i=1

wi(x) f (ci),

many barycentric coordinates typically get a interpolated

value depends on many, potentially all, control points.

Except for the properties satisfied in many barycentric co-

ordinate schemes, like reproduction and partition of unity,

Zhang et al. [72] prefer a target convex functional that also re-

flects locality and smoothness for the coordinate functions, so

a novel method to derive local barycentric coordinates (LBC),

which depend only on a small number of control points, is

proposed.

For the functions wi, using the perimeter of each super-

level set {wi > s} := {x|wi(x) > s} to regularize the smooth-

ness of its boundary level curve/surface while the perimeter

of {wi > 0} to penalize the area of the influence region which

results in the locality, the convex functional is exactly the to-

tal variation of {wi} where T = ∇, p = 1 for (4):

min
w1,...,w2

n∑
i=1

∫
�

| � wi|, (34)
etry modeling and processing, Graphical Models (2015),
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Fig. 21. Sparse regularization: Local barycentric coordinates [72]. Local 3D

deformation. A set of control points near the left hand of armadillo model

are moved with the deformed cage edges shown in red. The color-coding

shows the magnitudes of mesh vertex deformations. (For interpretation of

the references to color in this figure legend, the reader is referred to the web

version of this article.)

Fig. 22. Sparse regularization: skeleton extraction [73]. Given an unorga-

nized, unoriented, and incomplete raw scan with noise and outliers (b), a

complete and quality curve skeleton is extracted (c).

Fig. 23. Sparse regularization: cost-effective 3D printing [74]. Left: results

produced by the method of Stava et al. [89] by adding external struts; Mid-

dle: the new skin-frame (with half-naked rendering); Right: printed objects.
with some barycentric qualities as the constraints, such as

partition of unity, non-negativity. Discretely, after triangulat-

ing the domain �, each wi is represented a function that is

linear within each cell (triangle in 2D or tetrahedron in 3D)

and then the gradient of wi is constant on each cell. Solving

an induced discrete energy function, {wi} will be solved.

Fig. 21 shows a cage-based deformation example with

lower computational and storage requirement since each

point on the target shape is only determined by a small num-

ber of control points. Whatever, from the observation, we can

see that there is a trade-off between locality and smooth-

ness which is a common troubling issue for so many existing

works.

3.5.3. Skeleton extraction

In Section 3.4.1, we have introduced much information

about �1 median and its success in point cloud consolidation.

Except for inducing geometry surface that approximates ori-

gin point set, Huang et al. [73] find that adapting �1 medians

locally to a point set which represents a geometric shape also

gives rise to a one dimensional structure, named medial curve

skeleton, which can be used for shape analysis and manipu-

lation [88]. Intrinsically, it is a localized center of the shape.

Without building any point connectivity or estimating

point normals, by modifying the repulsion term E2 in Eq.

(28) and proposing a different weighted density parameter

that can also be named WLOP [18], they project point sam-

ples onto their local centers with growing neighborhood and

push the projected samples via conditional regularization

to obtain a uniform distribution of samples along skeleton

branches. To deal with some data errors like holes, they also

do more processing which is out of our scope. Fig. 22 shows

an example.

3.5.4. Cost-effective 3D printing

3D printing enables fabrication of physical objects from

digital models with the expensive cost of the material which

is generally much too high. To reduce the material used in

printing is then an important and practical problem.

Wang et al. [74] design a skin-frame structure by an multi-

objective optimization scheme which significantly reduces

material volume

min
r,V

int
,E

int
Vol(r, V, E)&|Eint|,

with the constraints making the printed objects physically

stable, geometrically approximate, and printable. Here r de-
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notes strut radii whose �0 norm |Eint| is used to reduce the

number of struts

min
r

|Eint| = ‖rint‖0, (35)

that is, they directly use the sparsity of signals to be the

regularizer.

Fig. 23 shows the printed objects with the comparison

with other method. It is so clear that this automatic method

largely reduces the material and maintains physical stabil-

ity. To be more applicable, the computation cost of the itera-

tively optimization of the multi-objective scheme cannot be

ignored, as well as the size of 3D objects.

4. Dictionary learning

From the definition of sparse representation, it is obvious

that the choice of the dictionary will directly affect the signal

processing result. As mentioned in Section 2.2.1, dictionary

can either be chosen as a prespecified set of functions (e.g.,

Wavelet) or designed by adapting its content to fit a given

set of signal examples. From the performance of existing dic-

tionary learning based works, the learned dictionaries used

to outperform predefined dictionaries. Actually, dictionary

learning techniques can be directly used to deal with some

geometric problems, such as reconstruction, compression of

point cloud and rendering.
metry modeling and processing, Graphical Models (2015),
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Fig. 24. Dictionary learning: skinning results. (a) [64], Left: a set of exam-

ple poses are decomposed into rigid bone transformation B and a sparse,

convex bone-vertex weight map W. Right: results of SSDR on elastic models.

(b) [65], Left: two-layer scheme. Right: an animated mesh sequence and its

corresponding compressed skinning model. (c) [66], Result of rigging var-

ious models such as quadrupled animals, humans, and highly deformable

models.
In this section, in addition to (37), (39) which have some

variations compared with (3), the others have the same for-

mulation. Here, we also regard sparse matrix decomposition,

which decomposes a dense matrix into the multiplication of

a simple matrix (e.g., transformation matrix [64]) and the

correspondent coefficient matrix that is as sparse as possi-

ble, as dictionary learning. Generally, this decomposition is

achieved with some iterative algorithm just like the dictio-

nary learning algorithm, so we also call the resulted simple

matrix dictionary though it may not be overcomplete. Here,

it is all about the Blending Skinning.

4.1. Blend skinning

In this section, the deformation methods are all about

blend skinning. Among many proposed techniques, Linear

Blend Skinning (LBS), driving skin deformation by a set of

bones, is the most popular skinning computational model

due to its efficiency, simplicity, and effectiveness. In the LBS

model, every vertex is associated with the bones via a bone-

vertex weight map which quantifies the influence of each

bone to the vertices. The skin is deformed by transforming

each vertex through a weighted combination of bone trans-

formations from the rest pose.

Assume wij is the influence of jth bone to the ith vertex,

pi is the position of the ith vertex at the rest pose, |B| is the

number of bones, and Rk
j

and tk
j

are the rotation matrix and

translation vector of the jth bone at the kth configuration, re-

spectively, then the deformed ith vertex, xk
i
, can be computed

as follows:

xk
i =

|B|∑
j=1

wi j(Rk
j pi + tk

j). (36)

By posing sparseness constraint on the weight map, the num-

ber of non-zero bone weights per vertex can be limited. The

orthogonal constraint on Rk
j

avoids any shearing or scaling

effect on the bone transformations, thus put the transforma-

tion into rigid group. Thus the bone transformation with or-

thogonal rotation matrix is called the “rigid bone”.

(1). Le et al. [64] introduce Smooth Skinning Decomposition

with Rigid Bones (SSDR), an automated algorithm to extract

the linear blending skinning, i.e., it aims to solve the inverse

problem of the LBS model.

Suppose there are |k| example poses of a |X|-vertices

model, taking {xk
i

: k = 1..|k|, i = 1..|X|} as input, SSDR de-

composes them to bone transformations (Rk
j
, tk

j
) and the

bone-vertex weight map (as Fig. 24(a) left shows)

min
w,R,t

E = min
w,R,t

|k|∑
k=1

|X|∑
i=1

‖xk
i −

|B|∑
j=1

wi j(Rk
j pi + tk

j)‖2,

s.t.|{wi j|wi j �= 0}| ≤ |K|, ∀i&C(w, R), (37)

where C(w, R) contains some other constraints about w

and R.

With the sparseness constraint on the weight map, SSDR

can be used for traditional skinning decomposition tasks

such as animation compression and hardware-accelerated

rendering. Fig. 24(a) right shows an approximation result
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of highly deformable model. However, the sparseness con-

straint also poses certain limitations to skinning models, e.g.,

it is difficult to handle exceptional vertices that are naturally

associated with more than |K| bones or control points. And

the relatively high computational cost makes it impractical

to some degree.

(2). To address these above limitations, Le et al. [65] intro-

duce an efficient two-layer compression technique that is

clearly explained using the left figure of Fig. 24(b). This gives

a clear explanation about the new technique.

Let W ∈ R|B|×|X| be the weight matrix of an input skin-

ning model with |X| vertices and |B| bones, as illustrated in

the top left. At master bone blending layer, they calculate and

cache the transformations of m virtual bones by blending the

transformations of |B| original bones (called master bones). At

virtual bone blending layer, they calculate the position of each

vertex by blending the transformations of the virtual bones

and applying the resultant transformation to the vertex. Im-

posing a sparseness constraint on each blending layer, the

optimization problem is formulated as

min
D,A

�2
W = min

D,A

1

|B||X|‖DA − W‖2
F ,

s.t.card(ai) ≤ 2, card(di) ≤ c,∀i, (38)

where ai and di are the columns of A and D respectively.

By employing virtual bones to cache transformation blend-

ing of master bones, this approach significantly reduces com-

putation of LBS with dense weights, with insignificant loss

of accuracy of the original skinning model. But it requires

additional storage space for caching virtual bone transfor-

mations. Intrinsically, the transformation blending cannot go

beyond certain limitations of the LBS model, among which
etry modeling and processing, Graphical Models (2015),
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Fig. 25. Dictionary learning: reconstruction [16]. Left: (Top) an illustration

of the reconstruction problem. Given point set P (blue) sampled from surface

S, they approximate S with piecewise linear surface M with vertices V(red)

and triangles F. (Bottom) The reconstruction problem where P is the position

of sample point set. V is the dictionary and B (green) is the sparse coding

matrix that encodes triangles F. Right: reconstruction result of the Merlion

model. (For interpretation of the references to color in this figure legend, the

reader is referred to the web version of this article.)
sophisticated deformation effects such as muscle bulges or

skin wrinkles cannot be captured well. The right figure in

Fig. 24(b) shows an expressed skinning model.

Actually, these two above methods are both not quite

suitable for animation editing purposes since their extracted

bone transformations are not organized in any skeletal struc-

tures based on which the mesh deformation is a widely-used

method for animating articulated creatures such as humans

and animals.

(3). Attempting to take advantage of example poses for com-

putation reduction, taking a set of example poses as input, Le

et al. [66] introduce a robust and accurate rigging framework

producing its corresponding Skeleton-based LBS model in-

cluding skeletal structure, skinning weights, joint locations,

and bone transformations corresponding to all the example

poses.

After initializing bone transformations and determining

the skeleton topology, they get the optimized LBS model by

minimizing function

E = ED + wES + λEJ,

with the same set of constraints (37) including the sparse-

ness constraints (no more than 4 non-zero weights per vertex)

there and the term ED is also similar to their work

ED = 1

|k||X|
|X|∑
i=1

|k|∑
k=1

‖xk
i −

|B|∑
j=1

wi j(Rk
j pi + tk

j)‖2. (39)

The term ES favors the smoothness of skinning weights and

drives the removal of redundant bones and EJ keeps any two

connected transformations rotate around their common joint

(refer to [66] for the formulation).

The output can be directly used to set up skeleton-based

animation in various 3D modeling and animation software

as well as game engines (Fig. 24(c)). Despite the achieved ac-

curacy and robustness, this approach has several limitations

including the aforementioned low computational efficiency,

example data dependency, and limited approximation power

of the LBS model.

4.2. Reconstruction

Surface reconstruction takes a set of dense unorganized

points, which are sampled from a subjacent, piecewise

smooth surface, as input and outputs a triangular mesh to

approximate the surface. Existing methods often realize re-

construction via a few phases with respective goals, e.g.,

point cloud consolidation (Section 3.4) can be a preprocess-

ing phase to denoise, remove outlier and thus reduce more

reliable normal estimation. However, integration of process-

ing phases may not give an optimal solution. To avoid the in-

herent limitations of multi-phase processing, Xiong et al. [16]

propose a unified framework that treats geometry and con-

nectivity construction as one joint optimization problem.

As Fig. 25(a) shows, given a point set P =
{p1, p2, . . . , pn}(blue) sampled from a piecewise smooth

surface S, they attempt to find a triangular mesh M = {V, F}
with vertex set V = {v1, v2, . . . , vm}(red) and triangle set

F to approximate the underlying surface S such that the
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approximation error is as small as possible

min
B,V

1

n

n∑
i=1

‖pi − Vbi‖q
2

+ Ereg,

s.t.‖bi‖0 ≤ 3, ‖bi‖1 = 1, bi ≥ 0, ∀i, (40)

where V = [v1, v2, . . . , vm] is the vertex positions matrix,

then Ereg regularizes the reconstructed mesh to produce good

mesh quality, each column of sparse coding matrix B corre-

sponds to a triangle in mesh. Finally, all the points sampled

from the region approximated by a triangle can be repre-

sented as a convex combination of the same three vertices.

Fig. 25 (b) shows the reconstruction result, with high tri-

angle quality, of the Merlion model with various geometric

features such as sharp and semi-sharp features and different

levels of surface details. Despite these high quality results,

the nonconvex optimization model makes it difficult for the

solver to theoretically guarantee convergence or produce a

global optimal solution. And it can fail when the point cloud

has large holes or is highly non-uniform due to the current

sampling method.

4.3. Compression

Also due to the drastic improvement in scanner acquisi-

tion devices yielding point sets of tens of millions of points

at high precision, point cloud processing problems generally

require much higher storage capacity which results in the ex-

pensive cost.

In the work of Digne et al. [76] for point cloud compres-

sion, after selecting a subset of points (the seeds) that will

serve as center points to cover the surface with local patches,

they compute patch descriptions which are the observations

Y in Eq. (7) using a new neighborhood descriptor (Fig. 26(a)),

then directly using the K-SVD algorithm [46] to solve (7): it

is easy to exploit the self-similarity of the descriptions and

build a custom dictionary D (Fig. 26(b)) over which all de-

scriptors will be decomposed sparsely with A. Here Y corre-

sponds to the patch descriptions.

Briefly, selected patch descriptions deduce the dictionary.

Thus a new seed selection strategies or patch descriptors may

result in higher performance, this just tells the unrobustness

of heuristic methods. This compression is done at the reso-

lution of the scanner enabling improved control of the point
metry modeling and processing, Graphical Models (2015),
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Fig. 26. Dictionary learning: point cloud compression [76]. (a) The local

neighborhood description: a height map over a radial grid. (b) Dictionary

built for the Lovers model shown in (c). (c) The Lovers model containing

15.8 million points is compressed down to 1.15 MB, the left side of the blue

line is the original data while the right side is the decompressed result. (For

interpretation of the references to color in this figure legend, the reader is

referred to the web version of this article.)
cloud resolution. It achieves a filtering of noise whose mag-

nitude is smaller than the scanner precision. Fig. 26(c) gives

one compression result.

5. Low rank

So far, low rank is mainly used in subspace segmentation

or clustering for which there have been much works. Based

on it, Zhang et al. [75] successfully estimate the point cloud

normals by segmenting the neighborhoods of the points

around the sharp features into some smooth subneighbor-

hoods, and thus it can well detect sharp features. Upright

orientation is actually an intrinsic application due to the im-

age projections which can be regarded as matrices as Fig. 27

shows.

5.1. Upright orientation

Most man-made models can be posed at a unique upright

orientation which is consistent to human sense. Given a 3D

digital model, finding its upright orientation and posing it at

the right orientation is vital for users to recognize it.

Fig. 27 shows the axis-aligned projections of an in-

put man-made model with arbitrary (a) and axis-aligned
Fig. 27. Low rank: upright orientation observation [69]. (a) Input model (left) at ar

blue) coordinate system. Projections from left to right y-z, z-x, and x-y plane project

model (left) and its projections with matrix ranks. (c) The model (gray) posed at th

figure legend, the reader is referred to the web version of this article.)
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orientation (b) onto the y-z, z-x, and x-y plane in the x-

y-z coordinate system. Regarding these projections as two-

dimensional matrices, it is clear that the ranks of projection

matrices in (b) are significantly lower than those in (a). And,

the upright orientation (c) should be one of the six orienta-

tions determined by the six axis-aligned candidate bases, i.e.,

top, bottom, left, right, front and back surface of the bound-

ing box of the model. Briefly, ranks of projection matrices at

axis-aligned orientations are lower than their counterparts at

other orientations, since man-made models are mainly com-

posed by horizonal and vertical edges and shapes.

(1). Based on this observation, Jin et al. [69] present an un-

supervised approach for finding the upright orientation of

man-made models. Taking the x-y plane projection as an ex-

ample, they binarize the projection as black and white to gen-

erate the projection image ג with fixed resolution which can

also be referred as a two-dimensional matrix. To avoid affect

of noise, ג is modeled as a low-rank version L with sparse-

error matrix S. And the problem is formulated as (9) with a

little difference in constraint ג ◦ R = L + S where R is a rigid

rotation transformation matrix used to rectify ג to recover

the optimal low-rank representation of x-y plane projection

from an arbitrary orientation.

For the whole algorithm, after selecting which projection

should be rectified from x-y, y-z and z-x, using the low rank

formulation the man-made model will be aligned with some

axes followed by final upright orientation selection from six

orientations as mentioned above. However, whether a model

fits for this algorithm depends on if the model contains

dominant parts parallel to the supporting base, then it will

fail if the model is composed by several equivalently main

parts which have their own low-rank observation in different

orientations.

(2). The above method uses the information of projected im-

ages on three axes planes which contains not only the bound-

ary but also the internal of the projected model. It is very

natural to generalize this method in 3D space to construct
bitrary orientation and its axis-aligned projections in the x-y-z(red-green-

ion, accompanied with their corresponding matrix ranks r. (b) Axis-aligned

e upright orientation. (For interpretation of the references to color in this
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Fig. 28. Low rank: unsupervised upright orientation. (a) Local method [69].

(b) Global method [70].

Fig. 29. Low rank: normal estimation [75]. (a) The oil pump module with

normal computed by PCA. (b) Initial detected candidate feature points. (c)

The classified subneighborhoods. The neighborhood within the red box con-

tains three subneighborhoods rendered in blue, green and brown and the

zoomed view is from left. (d) Estimated normals. (For interpretation of the

references to color in this figure legend, the reader is referred to the web

version of this article.)

Fig. 30. Low rank: segmentation and labeling [25]. (a) The labeled examples

with mislabeled meshes marked by rectangle. (b) The results of the low rank

based method where the meshes marked by rectangles are the relabeling

results for the mislabeled examples.
three-order tensor (multidimensional array) with volume of

the 3D model, i.e., the three-order tensor ought to have a

low rank behavior. Wang et al. [70] construct this three-order

tensor using the bounding box of the 3D model since the

bounding box parallels the coordinate planes and contains

the whole model. By translating the barycenter of the input

model to the origin of the coordinate system, they just need

to find and optimal rotation matrix R to align the model with

three axes by following optimization model:

R∗ = argmin
R

(‖χ(V ◦ R)‖∗), (41)

where V and V◦R respectively indicate the point coordinates

of input model and the rotated model, χ ( · ) is the three-order

tensor. Similar to [69], after aligning the model with three

axes, they select the upright orientation from six orientations

by analyzing the geometric properties. Fig. 28 shows the re-

sults of these two methods.

5.2. Point cloud normal estimation

As mentioned above, good normal estimation from noisy

data would induce better geometric processing results, like

reconstruction, rendering.

Considering that, the neighborhood of a point in a smooth

region can be well approximated by a plane, it is then easy

to get a robust normal estimation. Thus using the robust re-

sults in smooth regions as prior knowledge, Zhang et al. [75]

estimate the point normals around the sharp regions by low-

rank clustering (LRSCPK).

In Section 3.3.2, we have given an overview about sparse

subspace clustering. Low-rank subspace clustering, for cap-

turing the global structure of the whole data, is a modifica-

tion as

min ‖Z‖∗, s.t. X = XZ.
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With an input noisy point cloud P = {pi}n
i=1

, they first

detect the candidate feature points (Fig. 29(b)) by covari-

ance analysis of the point neighborhoods. To segment each

neighborhood into several isotropic subneighborhoods, for

each candidate point pi, they select a larger neighborhood. By

defining sampling matrix X = [· · · , pi j, · · · ], where pij is the

neighbor point of pi containing point coordinates and normal

computed by PCA in the local coordinates with pi as the ori-

gin, the optimal coefficient matrix Z is computed by solving

min ‖Z‖∗ + β‖P�(Z)‖1 + γ ‖S‖2,1,

s.t. X = XZ + S, (42)

where, P� is related to �(0 ≤ �(i, j) ≤ 1) which is a guid-

ing matrix constructed according to the distance relation

between each two neighbor points for current candidate

point. After getting Z, by defining the affinity matrix like

Section 3.3.2, this larger neighborhood is segmented into

several subneighborhoods (Fig. 29(c)) in which a consis-

tent subneighborhood is used to estimate the current point

normal.

5.3. Segmentation

With the same optimization model as (42), Liu et al. [25]

propose a low rank and example based method for mesh seg-

mentation and labeling.

With the labeled example models and like the co-

segmentation work [24], they first oversegment all the la-

beled and unlabeled meshes followed by the feature vector

construction through accumulating the histograms of sev-

eral selected feature descriptors, then each feature vector is

used to be one column of the feature matrix X in (42). Here,
metry modeling and processing, Graphical Models (2015),
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Table 2

Some applications in geometric processing with problems to adapt sparsity.

Applications Effectiveness in image Problems in geometry

Group images into What should be the proper dictionaries?

Classification meaningful categories What should be the proper atom size for capturing geometry features?

with robustness to noises How to deal with the orientation?

Fill in missing pixels What should be the proper dictionaries?

in known locations What should be the proper atom size for capturing geometry features?

in the image with What is the essence of linearly combining the learned dictionary atoms?

Inpainting robustness to noises Whether the symmetry information can be captured?

Separation Cartoon+texture What should be the proper dictionaries?
P�(Z) = � � Z where � is a guiding matrix, and it is esti-

mated according to the labels of the labeled examples and

the geometric similarity between the labeled and the un-

labeled patches through the affinity of another feature de-

scriptor different from those mentioned above. After solving

Eq. (42), the relationship matrix Z would be used to achieve

the final labeling processing which is also out of our scope.

Fig. 30 shows some labeling examples.

6. Discussion

Sparse techniques, as the effective tools for signal pro-

cessing such as denoising, reconstruction and segmentation,

have shown great potentials in geometric processing related

applications. Its robustness to outliers and the ability to pre-

serve sharp features are attracting more and more attentions

from geometric processing community. As a summary, we

want to discuss the usage of sparsity in geometric process-

ing and propose some open questions for future study.

Summary. The effectiveness of sparsity in geometric pro-

cessing can be categorized into the following parts:

• Point cloud processing. As the point cloud scanned by

sensors like Kinect and PrimeSense always contains a lot

of noises and outliers, sparsity based fitting method can

be employed to detect the outliers and reconstruct a clean

point cloud [16–21,76].

• Local control. Mesh editing is a quite popular method

in geometric modeling. Local deformation is strongly

needed to preserve last editing, and thus sparsity regu-

larization is a very suitable tool to achieve this purpose

[67,68,71,72].

• Feature preserving. In many mesh reconstruction and

editing applications, sharp features should be preserved

after processing. As sharp feature is always sparse,

sparsity formulation catches this observation well and

achieves state-of-art performance [13–15,75].

• Variable selection. Variable selection is a classical prob-

lem in statistics and can be formulated as a sparsity

based problem. Variable selection can be applied in many

geometric processing problems. For example, the co-

segmentation problem [24] selects the suitable feature

for different part.

• Repeated pattern. The 3D shape models always contain a

lot of repeated pattern, for example, street building con-

tains the same shape of windows. By concentrating the

similar repeated pattern together, we can get a low-rank
Please cite this article as: L. Xu et al., Survey on sparsity in geom
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matrix, and thus low-rank method [25,69,70,75] can ef-

fectively deal with this type of 3D model well.

Inspirations. Although the concept of sparsity has attracted

a lot of attention in recent years, many problems still remain

to be solved and many other applications can be applied on:

• Sparse coding or representation, that use basis to repre-

sent given input signal requires that basis and signal have

the same expression form or simply have the same di-

mension. This is the main reason that this approach is

hardly used in geometry and only [76] adopts a simple

strategy to resample input point cloud. Therefore it is a

basic and remaining problem needed to be addressed of

applying sparse coding.

• Another important problem is that the design of T in

(4). Total variation model is a widely used and respected

model for computer vision where T is the gradient op-

erator. However in geometry related problems the com-

putation of such an operator is a basic problem and the

operator should be suitable for current application.

• Finally, there are a huge amount of applications with

high performance in images [1] but with much difficulties

to achieve in geometric processing except for the three

items mentioned in Section 1. Table 2 lists some of them

we are interested in and the corresponding problems. And

it can be seen that what should be the proper dictionary is

the common problem among them as oppose to the low

dimensional images where the pixel colors can be used

directly. In addition, the computation and memory cost

should also be considered when selecting the dictionary.

How to resolve these problems may give much chances as

future works.
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