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a b s t r a c t 

Posing objects in their upright orientations is the very first step of 3D shape analysis. How- 

ever, 3D models in existing repositories may be far from their right orientations due to var- 

ious reasons. In this paper, we present a data-driven method for 3D object upright orienta- 

tion estimation using 3D Convolutional Networks (ConvNets), and the method is designed 

in the style of divide-and-conquer due to the interference effect . Thanks to the public big 

3D datasets and the feature learning ability of ConvNets, our method can handle not only 

man-made objects but also natural ones. Besides, without any regularity assumptions, our 

method can deal with asymmetric and several other failure cases of existing approaches. 

Furthermore, a distance based clustering technique is proposed to reduce the memory cost 

and a test-time augmentation procedure is used to improve the accuracy. Its efficiency and 

effectiveness are demonstrated in the experimental results. 

© 2016 Elsevier Inc. All rights reserved. 
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. Introduction 

Most objects are usually posed in their upright orien-

ations, which makes them easily recognizable. Also, it is

he very first step to pose the given 3D shapes in their

pright orientations ( Fig. 1 ) in many graphics and robotics

asks, such as matching [2] , retrieval [13,28] , shape analy-

is [34] and placement planning [17] . Moreover, it can be

sed to generate recognizable object thumbnails, helping

he management of 3D shape repositories. Due to various

easons such as modeling platforms or scanning systems,

any models in existing databases are not in their upright

rientation. Therefore, a number of approaches have been

roposed to handle this problem. However, these meth-

ds are usually limited to shapes with some regularity and

ake several seconds to process each shape. Thus more ef-

cient and effective methods are needed. 
∗ Corresponding author. 
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In this paper, we present a learning based method

to predict the upright orientation using 3D Convolutional

Networks (ConvNets). Given voxel representations of 3D

shapes and corresponding orientation vectors, this predic-

tion task can be formulated as a regression problem. Lever-

aging the learning ability of deep neural networks, general

categories of 3D shapes can be handled without making

any assumptions such as symmetry or parallelism. Besides

mesh models, the proposed method can deal with shapes

represented in other types that can be voxelized, such as

implicit surfaces and point clouds, without surface recon-

struction [7] . 

Compared with the ConvNets based approach, existing

methods are limited by their predefined rules. For exam-

ple, the method proposed by Fu et al. [8] is based on

the observation that man-made object should have a sup-

porting base on which it can be steadily positioned. Nev-

ertheless, this observation is not applicable to all shapes,

especially natural ones. Thus learning based methods are

appreciated to deal with general objects. Although the idea

of data-driven is adopted in Fu et al. [8] , the learning

procedure is based on the hand-crafted features such as

http://dx.doi.org/10.1016/j.gmod.2016.03.001
http://www.ScienceDirect.com
http://www.elsevier.com/locate/gmod
http://crossmark.crossref.org/dialog/?doi=10.1016/j.gmod.2016.03.001&domain=pdf
mailto:zishun@mail.ustc.edu.cn
http://dx.doi.org/10.1016/j.gmod.2016.03.001
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Fig. 1. Upright orientation estimation. 
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tability, visibility and parallelism, which fall into the field

f feature engineering. In one word, it is hard to define a

niversal rule to upright general 3D shapes effectively. By

ontrast, neural networks work in the style of end-to-end

earning. High-level knowledges can be captured from raw

ata, without relying on object’s regularity such as explicit

ymmetry. 

However, a single ConvNet does not work well for all

ypes of shapes. The key challenge is that each shape cate-

ory exhibits particular characteristic on the upright ori- 

ntation, for example, cars tend to be horizontal while

icycles are likely to be vertical. This is referred to as inter-

erence effect [14] which will lead to poor generalization. In

ther words, different strategies should be taken to han-

le diverse categories. Thus a divide-and-conquer scheme 

s used in our system. Each shape is first classified by

 network and then fed into one of the orientation re-

ression networks that are trained on each of the cate-

ories. Furthermore, a distance based clustering method is

roposed to reduce the number of networks and a novel

est-time augmentation procedure is used to improve the 

ccuracy. 

The efficiency and effectiveness of this approach 

re demonstrated by extensive experiments. Our system 

chieved the accuracy of more than 90% on the test data

nd showed the generalization capability of inferring up- 

ight orientations for shapes not belonging to the training

ategories. Also experimental results showed that our sys- 

em is able to handle several cases that other methods fail.

oreover, estimation for each shape took no more than

.15 s on average, which is much faster than existing ap-

roaches, thus applicable to robotics tasks in which imme-

iate feedback is required. 

The main contributions of our approach are summa-

ized in the following. 

• General objects can be handled by this approach thanks

to the learning ability of ConvNets, including asymmet- 

ric shapes. 
• The proposed method is at least 30 times faster than

existing methods. 

The remainder of this paper is structured as fol-

ows. Section 2 briefly reviews several related works. In

ection 3 our network system is specified. The experi-

ental results and comparisons with related works are

emonstrated in Section 4 . Finally, Section 5 presents our
onclusions and directions of future work to improve our

ethod. 

. Related work 

Orientation of images. Images may differ from their

orrect orientations by 0 °, 90 °, 180 °, or 270 ° [3,23,24,32] .

herefore, the image orientation detection problem can be

ormulated as a four-class classification problem. Most of

he existing approaches extract high dimensional feature

ector in each possible orientation and then train support

ector machines (SVM) [23,32] or other classifiers [3] on

eature vectors to detect correct orientation. However, it is

ifficult to reduce the two-dimensional orientation space

o a few candidates for general 3D objects. Thus we for-

ulate the upright orientation estimation of 3D models as

 regression problem. 

Upright orientation of 3D models. In computer graph-

cs, several methods have been proposed to estimate up-

ight orientation or align the given models. One com-

only used method is the principal component analysis

PCA) [19] which is inaccurate and not robust for many

odels, especially asymmetric ones. In Fu et al. [8] and

in and Tai [22] , upright orientation is estimated using

upporting base candidates on which a 3D model can

tand upright. These methods work well for most of the

an-made models while not applicable to natural ob-

ects whose supporting bases are not well defined. An-

ther type of method is based on the observation that

he coordinate matrix of the 3D object with upright ori-

ntation should have reduced rank. Inspired by [37] , Jin

t al. [18] present an algorithm in which a 3D shape is

ligned with axes by iterative rectification of axis-aligned

rojections as low-rank matrices independently. In Wang

t al. [31] , a method is proposed by minimizing the tensor

ank of the 3D shape’s voxel representation. Both methods

an handle shapes that have some kinds of symmetries.

e can see that none of the above methods is able to deal

ith general objects. 

Viewpoint selection. Representative viewpoint pro-

ides the most informative and intuitive view of a 3D

hape, which benefits many geometry processing applica-

ions like shape retrieval. Most approaches select represen-

ative viewpoints using geometric information of the 3D

odels, such as number of visible polygons [25] and sil-

ouette contours [1] . Some works are based on informa-

ion theory, such as viewpoint entropy [29] , multi-scale

ntropy [30] , and viewpoint mutual information [6] . It will

e much easier to select the representative views for 3D

odels if they are posed at the upright orientation by our

ethod. 

3D shape matching, retrieval and registration. 3D

hape retrieval [13,28] and matching [2] techniques at-

empt to find the similar shapes from databases with

ueries. 3D shape registration techniques [36] make ef-

orts to find corresponding parts of multiple models. These

ethods are trying to design a robust and efficient method

or measuring the similarity between two shapes or parts

ver the space of all transformations [19] . To address

his issue, most techniques pre-align the models into a

ommon coordinate frame, typically using PCA alignment.



24 Z. Liu et al. / Graphical Models 85 (2016) 22–29 

S  

s  

t  

o

 

n  

d  

(  

f  

v  

n  

3  

[  

f  

t  

r  

s  

3  

(  

o  

[  

a

3

3

 

c  

f  

r  

v  

u  

 

p  

h  

t  

g  

w  

T  

o  

o  

w  

n  

i  

i

3

 

g

 

3  

r  

r  

l  

b  

(  

T  

a  

Fig. 2. System overview. Input data is propagated through the classifica- 

tion network (blue part) and a class label prediction i ∈ { 1 , . . . , n } is ob- 

tained. After that, the input data is fed into the i th regression networks. 

The 3D output vector of the regression network is the predicted upright 

orientation. Each of the n + 1 networks can be trained independently. (For 

interpretation of the references to colour in this figure legend, the reader 

is referred to the web version of this article.) 

Fig. 3. Architecture of the regression network. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ince our orientation estimation approach predicts a con-

istent upright orientation for models, it is able to reduce

he orientation alignment problem from two to one degree

f freedom. 

Deep neural networks. For computer vision tasks, deep

eural networks, especially convolutional networks, have

emonstrated excellent performance, by taking 2D images

RGB or RGBD) as input [9,20] . It is only very recent that a

ew works attempt to tackle 3D shapes related problems

ia deep learning methods, such as classification, recog-

ition and retrieval. However, most of the works treat

D shape as a series of multi-view color/depth images

5,27,38] , discarding the 3D relationship between different

rames. To the best of our knowledge, Wu et al. [33] is

he first paper that take volumetric data as input of neu-

al networks, which propose to represent a geometric 3D

hape as a probability distribution of binary variables on a

D voxel grid, using a Convolutional Deep Belief Network

CDBN), obtaining good results on shape classification. An-

ther type of 3D Convolutional Network is proposed by

15] for human action recognition in videos, treating time

s the third dimension. 

. Approach 

.1. System overview 

Taking n classes of 3D shapes C i (i = 1 , . . . , n ) into ac-

ount, the problem of upright orientation estimation is

ormulated as a regression task. Given a quantity of voxel

epresentations V of 3D shapes and corresponding unit

ectors u of upright orientation, a function u ≈ f β( V ) with

nknown parameters β should be estimated to fit the data.

3D ConvNets can be straightforwardly applied onto this

roblem. However, due to different shape categories ex-

ibit particular characteristics on their upright orienta-

ions, strong interference effects occur that lead to poor

eneralization [14] . It is difficult to train a universal net-

ork which works well for all the n shape categories.

herefore, this task should be accomplished in the style

f divide-and-conquer , namely, training different networks

n different shape categories. Naturally, n regression net-

orks can be trained separately. Moreover, a classification

etwork should be trained to work as a gate by predict-

ng which regression network should be applied onto the

nput shape. Fig. 2 shows the test stage of the system. 

.2. 3D Convolutional Networks 

We use the standard architecture of ConvNets for re-

ression and classification. 

The regression network takes voxel representations of

D shapes as input, and the 3D vectors of predicted up-

ight orientation as the output. As illustrated in Fig. 3 , the

egression network consists of a number of 3D convolution

ayers and fully-connected layers, each of them is followed

y a layer of activation units. The hyperbolic tangent tanh

 ·) is chosen as the activation function in the output layer.

o avoid slow learning when output values are close to 1

nd −1 , the orientation vectors u are rescaled by 0.5. In
the other layers, we choose rectifier [21] 

ReLU (x ) = max (0 , x ) 

as the activation function. In the end, this network is

trained to minimize the Euclidean loss function, using

mini-batch gradient descent with batch size N . 

Loss = 

1 

2 N 

N ∑ 

i =1 

‖ ̂

 u i − u i ‖ 

2 
2 , 

where ˆ u i is the ground-truth three dimensional orientation

vector and u i is the corresponding regression value. 

The classification network shares a similar architecture

with the regression networks. The differences are that the

output of the last fully-connected layer is fed to a n -way

softmax which produces a distribution over the n class la-

bels, and a multinomial logistic loss layer is used. 

3.3. Clustering of shape categories 

Although different shape categories exhibit particular

characteristics, some categories, such as chair and table,

may be handled by similar strategy to find their upright

orientations. Those categories can be clustered together

and processed with the same regression network. As a re-

sult, redundant networks can be removed and then the

memory cost can be reduced. 

However, it is nontrivial to determine which categories

are consistent and which are not. If a network is trained on

inconsistent categories, the sacrifice of accuracy would be

dramatic compared to the networks trained on each cate-

gory separately. We propose a clustering strategy based on
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Fig. 4. Shape category clustering based on the distance measure defined 

by error rate. Left: original distance matrix. Right: agglomerated cate- 

gories are collected in blue squares after clustering. (For interpretation 

of the references to colour in this figure legend, the reader is referred to 

the web version of this article.) 
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Fig. 5. Angle error (in degrees) distribution when using 10 regression 

networks. Blue curve shows the cumulative distribution function of er- 

rors. Small circles represent the error of different shapes with varying 

poses. We sampled 10 shapes from the test set. Circles in the same color 

represent the results of the same shape’s different poses. (For interpreta- 

tion of the references to colour in this figure legend, the reader is referred 

to the web version of this article.) 
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he distance measure defined by the error rate of each re-

ression network on the other shape categories. 

To define the distance measure, we first evaluate the

 regression networks on all of the n categories to get a

quare matrix E in which E ( i , j ) is the error (i.e., ∠ (u , ̂  u ) is

arger than some threshold) rate of regression network R i 

n shape category C j . Then we get the symmetric matrix

 = (E + E 

T ) / 2 in which D ( i , j ) measures the distance be-

ween shape categories C i and C j . The shorter between two

bject categories, the more likely their upright orientations

an be estimated with the same network. 

Once we obtain the distance matrix, a hierarchical ag-

lomerative clustering algorithm [11] is performed, after 

hich a cluster tree is constructed. Then, we should de-

ermine where to cut the hierarchical tree into a num-

er of clusters. At last, new regression networks should

e trained on agglomerated shape category clusters while

hose nets for categories left in their own cluster can be

ept. Also, the classification network do not need to be re-

rained. 

.4. Test-time augmentation 

For classification tasks, test-time augmentation (TTA) 

as been proposed to improve the accuracy by taking av-

rage of the output from many virtual samples in [4] .

rom the points of prediction error in Fig. 5 , we find some

utliers from the results of shape’s different input poses.

herefore it would be helpful to take test-time augmenta-

ion and average the results in someway robust to outliers,

uch as taking their median, i.e., 1-norm average. 

Given a test shape S, we augment it by transform-

ng with randomly generated rotation matrices R i (i =
 , . . . , m ) . Then m correspondence voxel representations V i 

re fed into the network system. We classify them into the

ame class by majority voting of m predicted labels and

ut them into the same regression network. After getting

 regression predictions ˜ u i , we map them back into the

oordinate frame of S as u i = R 

−1 
i 

˜ u i . By minimizing the ob-

ective function defined below, 

 

∗ = argmin ‖ u ‖ =1 

m ∑ 

i =1 

∠ (u , u i ) , 

 better prediction u 

∗ is expected to be obtained. In exist-

ng works, Weiszfeld algorithm [10] was proposed to solve
his optimization problem in an iterative manner. However,

e replace it with the following reduced version, which is

uch simpler to solve and works well. 

 

∗ = argmin u j , j=1 , ... ,m 

m ∑ 

i =1 

∠ (u j , u i ) . 

. Experiments 

.1. Implementation 

We chose 10 common object categories with unam-

iguous upright orientation from Princeton ModelNet [33] .

ach category contained 100 shapes and was split into

raining set and test set randomly. The training shapes

ere rotated 100 times for data augmentation. The test

ata was also rotated 20 times to study the robustness of

his approach to the pose of input shape. Fig. 6 displays

ome objects sampled from our test set. All experimental

esults presented in this paper have been tested on a desk-

op with an Intel(R) Core(TM) i5-4570 CPU @ 3.20 GHz, 8

B RAM and an NVIDIA GeForce GTX 760 GPU. 

A 3D shape is represented as a 24 × 24 × 24 voxel

rid. The architecture of our regression network is briefly

llustrated in Fig. 3 . First we place three convolutional lay-

rs, and each of them is followed by a layer of rectified

inear units (ReLU). Then two more fully-connected layers

re appended. Dropout [26] is applied on the first fully-

onnected layer. The last layer has 3 output units cor-

esponding to the 3-dimensional orientation label. Such

 networks contains 10.6 million floating point parame-

ers, costing 42.6 MB memory. The classification network

hares a similar architecture. The details of the designed

etworks are listed in Tables 1 and 2 . We select the net-

ork architectures experimentally. Results in different ar-

hitectures are presented in the supplementary material.
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Fig. 6. Example shapes from the test set posed in their correct upright orientations found by our method (using five regression networks, without test-time 

augmentation). 

Table 1 

Architecture of regression network. FC is for fully-connected 

layer. 

Ind Type Filter size Num Stride Pad 

1 Conv 6 × 6 × 6 64 2 3 

2 ReLU – – – –

3 Conv 5 × 5 × 5 160 2 0 

4 ReLU – – – –

5 Conv 4 × 4 × 4 512 1 0 

6 ReLU – – – –

7 FC – 10 0 0 – –

8 ReLU – – – –

9 Dropout (rate 0.5) – – –

10 FC – 3 – –

11 TanH – – – –

Table 2 

Architecture of classification network. 

Ind Type Filter Size Num Stride Pad 

1 Conv 6 × 6 × 6 64 2 3 

2 ReLU – – – –

3 Conv 5 × 5 × 5 256 2 0 

4 ReLU – – – –

5 FC – 512 – –

6 ReLU – – – –

7 Dropout (rate 0.5) – – –
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he networks were implemented with the deep learning

ramework Caffe [16] . 

After training the networks for classification and re-

ression, the distance matrix on the shape categories was

omputed. Based on the distance measurement, we per-

ormed the agglomerative clustering algorithm. As a re-

ult, 10 shape categories were partitioned into five clus-

ers. (We cut the cluster tree into five clusters empirically.
Intuitively, the fewer clusters are left, the stronger in-

terference effect would arise.) Then new regression net-

works were trained with the same architecture and half

of the parameters for regression were saved. The four-

legged/wheeled object categories (i.e., car, chair, dog and

table) were collected into the same cluster, while the

cup-shaped shape categories (i.e., bathtub and cup) were

collected into another cluster (this cluster also contains

airplane). As each regression network costs 42.6 MB mem-

ory and five networks were used instead of 10, about 213

MB memory was reduced. The threshold used for distance

measurement was 15 °, which should be enough for most

graphics and robotics tasks. The distance matrix and result

of clustering are shown in Fig. 4 . 

The classification network was trained eight epochs and

achieved the accuracy of 95.6%. Each regression network

was trained around 30 epochs. The final accuracy tested

on each category of the entire system, which was com-

bined with the classification network and the regression

networks, is listed in Table 3 . Error distribution in degrees

is presented in Fig. 5 . The results of test-time augmen-

tation are also shown in Table 3 . We rotated each input

shape 10 times and the accuracy was improved about 6%.

Moreover, TTA would help to give a reasonable result if

the regression network’s output of some pose degenerates,

i.e., producing zero vector (although it had never arisen

through our experiments). 

4.2. Performance analysis 

Interference effects. To demonstrate the effect of inter-

ference, we compared the training of regression networks

on two groups of shape categories using the same architec-

ture as before ( Table 1 ). The first group (group A) contains
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Table 3 

Accuracy of the entire system in a variety of settings. The test cases in which ∠ (u , ̂  u ) < 15 ° are accounted as correct. Nets-10 is 

for the system with 10 regression networks for every shape categories. Nets-5 is for the system with five regression networks for 

every category clusters. TTA is for systems with test-time augmentation. 

Airplane Bathtub Bicycle Car Chair Cup Dog Fruit Person Table Overall 

Nets-10 0.960 0.925 0.793 0.908 0.898 0.930 0.845 0.528 0.855 0.990 0.863 

Nets-10 (TTA) 0.993 0.965 0.830 0.920 0.943 0.993 0.923 0.755 0.893 1.0 0 0 0.921 

Nets-5 0.930 0.893 0.793 0.810 0.880 0.905 0.778 0.528 0.858 0.975 0.835 

Nets-5 (TTA) 0.983 0.950 0.830 0.823 0.925 0.973 0.875 0.755 0.893 1.0 0 0 0.901 

Fig. 7. Interference effect. Learning curves are plotted to display the val- 

ues of loss function in different iterations. Left: trained on inconsistent 

categories (airplane and person). Right: trained on automatically clustered 

categories (car, chair, dog and table). Testing loss on consistent categories 

is apparently lower than that on inconsistent ones. 
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Fig. 8. The prediction results will be different if some voxels are hol- 

lowed out at different positions. The prediction error (in degrees) af- 

ter hollowing is illustrated by color mapping. The hotter a voxel is, the 

more sensitive the network is to the region around it. In these examples, 

the network always responds strongly to the torsos of human models as 

the posture and orientation vary, indicating the features extracted by the 

regression network for person category are orientation- and structure- 

aware. 
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e  
wo shape categories: airplane and person. The second

roup (group B) contains four categories: car, chair, dog

nd table, which were clustered together by our method.

he learning process is plotted in Fig. 7 . The final training

oss of the two groups are similar while the testing loss of

roup A is apparently higher than that of group B. From

he perspective of accuracy, we got 0.713 from the test set

f group A and 0.861 from group B, while they were ex-

ected to be comparable based on the first row (Nets-10)

n Table 3 . As a consequence, strong interference effects

ade the network for group A hard to generalize while its

mpact on the group clustered by our method is signifi-

antly lower. In other words, it is nontrivial to determine

he clustering criterion. 

Network visualization. Inspired by [35] , we visualize

he network’s response to different portions of the voxel

rid. We hollowed out a 7 × 7 × 7 cube around each

oxel, and computed the angle error between the predic-

ion for the disturbed data and the ground truth to mea-

ure the network’s sensitivity to the hollowed region. As

hown in Fig. 8 , the regression network for the person cat-

gory always responds strongly to the torsos of the human

odels while shows insensitivity to arms, legs and objects

eld in hands. These examples demonstrate that this Con-

Net has strong ability to learn orientation covariant and

osture invariant high-level features. Although upright ori- 

ntation is the only supervision information, our system is

ble to locate shape parts with semantic meanings. If more

pecific labels are available, more semantic and representa-

ive features could be learned. A similar example is shown

n Fig. 9 . 
Generalization capability. Finally, we present an illus-

ration on how the data-driven method can be used to pre-

ict upright orientation for shapes not shown in the train-

ng dataset, thus illustrating the generalization ability of

he proposed method. As for the examples in Fig. 10 , our

ystem classified bird as airplane, piano as table, bed as

athtub and house as cup. The first three cases are pre-

icted correctly while the last one is failed. Our system

as generalization ability to some degree, while it would

e much better to train new networks for unseen shape

ategories. 

.3. Comparison 

Compared with existing approaches, our system can

andle more general object categories. The method pro-

osed in Fu et al. [8] is based on the observation that

 man-made object should have a supporting base on

hich it can be steadily positioned and the supporting

olygons correspond to faces of the object’s convex hull.

evertheless, this observation would fail on some objects,

specially natural ones. Several such examples handled by
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Fig. 9. As same as Fig. 8 , the prediction error (in degrees) after hollowing 

is illustrated by color mapping. In these examples, the network is sensi- 

tive to the top of table while invariant to the shape of legs. 

Fig. 10. Demonstration of the generalization capability of our method, 

where we predict upright orientation for shapes not belong to the train- 

ing categories. The first row shows the models with random orientations. 

The second row displays the results obtained by our system Nets-5. The 

first three cases are predicted correctly while the last one is failed. 

Fig. 11. Our method is able to handle shapes whose supporting base is 

not well defined or do not lie on its convex hull. In each pair, the left one 

is posed in the random orientation while the right one is posed in the 

correct orientation predicted by Nets-5. The boat not belonging to our 

dataset is classified as bathtub. 

o  

v  

t  

a  

i  

Fig. 12. Comparison with Wang et al. [31] . In each pair, the left one, 

which is posed in its upright orientation predicted by Nets-5, has a higher 

tensor rank, while the right one posed in incorrect orientation has a lower 

rank. The rank values are shown below. 

Table 4 

Timing (in seconds) of our system Nets-5 for each test shape. In 

the last row, each test shape was augmented 10 times and the 

10 voxel representations were computed simultaneously in the 

same mini-batch. 

TTA Voxelization Classification Regression Total 

No 0.008 0.014 0.012 0.034 

Yes 0.078 0.033 0.039 0.150 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ur method are presented in Fig. 11 , demonstrating the ad-

antage of feature learning over feature engineering. The

ensor rank minimization approach Wang et al. [31] is not

ble to deal with shapes with large part not aligned with

ts upright orientation, as illustrated in Fig. 12 . Thanks to
the learning ability of ConvNets, these objects can be han-

dled by our method correctly. 

Our approach also has an advantage of efficiency

over other techniques. The method proposed by Fu

et al. [8] contains two main steps: convex hull computa-

tion for candidate supporting bases selection and feature

extraction for candidates evaluation. These two steps took

5 s on average for each object. In Wang et al. [31] , the

tensor rank minimization problem is highly nonlinear and

hard to optimize. Therefore a genetic algorithm is adopted

which took about 1–2 min for each shape. In contrast, our

method reached a much more fast speed due to the par-

allel nature of ConvNets which is match for GPU accelera-

tion. Furthermore, a batch of data can be processed simul-

taneously. The detailed timing results are listed in Table 4 ,

from which we can conclude that our method is at least

30 times faster than existing approaches. 

5. Conclusions and future work 

We proposed a data-driven method for 3D object up-

right orientation estimation using 3D Convolutional Net-

works. Thanks to the feature learning ability of ConvNets,

not only man-made objects but also natural ones can

be handled. In addition, a distance based clustering tech-

nique was proposed to reduce the memory costs and a

test-time augmentation procedure was proposed to further

improve the accuracy. The experimental results demon-

strate the efficiency and effectiveness of our approach. Be-

sides this, the visualization results indicate that ConvNets

are able to capture more semantic features if more in-

formative labels are provided. At last, our method is ex-

tremely efficient, so it can be used as preprocessing to

speed up several geometry processing tasks, such as 3D

shape retrieval, matching and registration. 
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On the other hand, our method can still be improved

n several directions. First, this approach is not as accurate

s geometric methods. We consider improving the perfor-

ance by geometric technique such as finding supporting

ases (if available) around our result. Second, techniques

f committee machines [12] should be considered to opti-

ize the entire system all together, other than training the

etworks for classification and regression independently. 

hird, further visualization [35] works should be done to

ain more insights from the trained networks and to an-

wer several mysterious questions, such as: Why and how

o the networks work? Why does the network trained on

irplane work well on bathtub and vice versa? Last and not

east, we would like to adopt our system to take range im-

ge as input for robotics tasks. 
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