Homework 3:

Problem 3.1: (Calderón-Zygmund decomposition on L^q) Fix a function $f \in L^q(\mathbb{R}^n)$ for some $1 \leq q < \infty$ and let $\alpha > 0$. Then there exist functions g and b on \mathbb{R}^n such that

- (1) f = q + b.
- (1) f = g + b. (2) $||g||_{L^q} \le ||f||_{L^q}$ and $||g||_{L^\infty} \le 2^{\frac{n}{q}}\alpha$. (3) $b = \sum_j b_j$, where each b_j is supported in a cube Q_j . Furthermore, the cubes Q_k and Q_j have disjoint interiors when $j \ne k$. (4) $||b_j||_{L^q}^q \le 2^{n+q}\alpha^q|Q_j|$. (5) $\int_{Q_j} b_j(x) \, \mathrm{d}x = 0$. (6) $\sum_j |Q_j| \le \alpha^{-q} ||f||_{L^q}^q$. (7) $||b||_{L^q} \le 2^{\frac{n+q}{q}} ||f||_{L^q}$ and $||b||_{L^1} \le 2\alpha^{1-q} ||f||_{L^q}^q$.