Homework 5:

Problem 5.1: Fix a nonzero Schwartz function h on the line whose Fourier transform is supported in the interval [-1/8, 1/8]. For $\{a_j\}$ a sequence of numbers, set

$$f(x) = \sum_{j=1}^{\infty} a_j e^{2\pi i 2^j x} h(x).$$

Prove that for all $1 there exists a constant <math>C_p$ such that

$$||f||_{L^p(\mathbb{R})} \le C_p(\sum_j |a_j|^2)^{1/2} ||h||_{L^p}.$$

Problem 5.2: (The exercise on P.27 Chapter 4, Wolff) Using translation and multiplication by characters, construct a sequence of Schwartz functions $\{\phi_n\}$ so that

- (1) Each $\{\phi_n\}$ has the same L^p norm.
- (2) Each $\widehat{\phi_n}$ has the same $L^{p'}$ norm.
- (3) The supports of the $\widehat{\phi}_n$ are disjoint.
- (4) The supports of the $\{\phi_n\}$ are "essentially disjoint" meaning that

$$\|\sum_{n=1}^{N} \phi_n\|_p^p \approx \sum_{n=1}^{N} \|\phi_n\|_p^p \approx N$$

uniformly in N.