Homework 7:

Problem 7.1: Fix a nonzero Schwartz function h on the line whose Fourier transform is supported in the interval $[-1 / 8,1 / 8]$. For $\left\{a_{j}\right\}$ a sequence of numbers, set

$$
f(x)=\sum_{j=1}^{\infty} a_{j} e^{2 \pi i 2^{j} x} h(x) .
$$

Prove that for all $1<p<\infty$ there exists a constant C_{p} such that

$$
\|f\|_{L^{p}(\mathbb{R})} \leq C_{p}\left(\sum_{j}\left|a_{j}\right|^{2}\right)^{1 / 2}\|h\|_{L^{p}} .
$$

Problem 7.2: (The exercise on P. 27 Chapter 4, Wolff) Using translation and multiplication by characters, construct a sequence of Schwartz functions $\left\{\phi_{n}\right\}$ so that
(1) Each $\left\{\phi_{n}\right\}$ has the same L^{p} norm.
(2) Each $\widehat{\phi_{n}}$ has the same $L^{p^{\prime}}$ norm.
(3) The supports of the $\widehat{\phi_{n}}$ are disjoint.
(4) The supports of the $\left\{\phi_{n}\right\}$ are "essentially disjoint" meaning that

$$
\left\|\sum_{n=1}^{N} \phi_{n}\right\|_{p}^{p} \approx \sum_{n=1}^{N}\left\|\phi_{n}\right\|_{p}^{p} \approx N
$$

uniformly in N.

