Homework 9:
Problem 9.1: Suppose that $\phi: \mathbb{R} \rightarrow \mathbb{R}$ satisfies that

$$
\phi\left(x_{0}\right)=\phi^{\prime}\left(x_{0}\right)=\phi^{\prime \prime}\left(x_{0}\right)=0,
$$

while $\phi^{\prime \prime \prime}\left(x_{0}\right) \neq 0$. If $\psi \in C_{c}^{\infty}(\mathbb{R})$ is supported in a sufficiently small neighborhood of x_{0}, prove that

$$
\int_{\mathbb{R}} e^{i \lambda \phi(x)} \psi(x) \mathrm{d} x=\lambda^{-1 / 3} \sum_{j=0}^{N} a_{j} \lambda^{-j / 3}+O\left(\lambda^{-(N+2) / 3}\right)
$$

for all $\lambda>1$ and nonegative integer N.

