Homework 1, Spring 2023:
Problem 1.1:
If $f \in L^{\infty}$ and $\left\|\tau_{y} f-f\right\|_{\infty} \rightarrow 0$ as $y \rightarrow 0$, then f agrees a.e. with a uniformly continuous function. ($\tau_{y} f(x)=f(x-y)$.)

Problem 1.2:
(a) Prove that for all $0<\varepsilon<t<\infty$ we have

$$
\left|\int_{\varepsilon}^{t} \frac{\sin (\xi)}{\xi} \mathrm{d} \xi\right| \leq 4
$$

(b) If f is an odd L^{1} function on the line, conclude that for all $t>\varepsilon>0$ we have

$$
\left|\int_{\varepsilon}^{t} \frac{\widehat{f}(\xi)}{\xi} \mathrm{d} \xi\right| \leq 4\|f\|_{1}
$$

(c) Let $g(\xi)$ be a continuous odd function that is equal to $1 / \log (\xi)$ for $\xi \geq 2$. Show that there does not exist an L^{1} function whose Fourier transform is g.

