Homework 3, Spring 2023:

Problem 3.1: For $\phi \in \mathscr{S}$, $H\phi \in L^1$ if and only if $\int \phi = 0$.

Problem 3.2:

Check that the Hilbert transform on the line with kernel x^{-1} is a singular integral kernel.

Problem 3.3: (Calderón-Zygmund decomposition on L^q)

Fix a function $f \in L^q(\mathbb{R}^n)$ for some $1 \leq q < \infty$ and let $\alpha > 0$. Then there exist functions g and b on \mathbb{R}^n such that

- (1) f = q + b.
- (2) $||g||_{L^q} \leq ||f||_{L^q}$ and $||g||_{L^{\infty}} \leq 2^{\frac{n}{q}} \alpha$. (3) $b = \sum_j b_j$, where each b_j is supported in a cube Q_j . Furthermore, the cubes Q_k and Q_j have disjoint interiors when $j \neq k$.

- (4) $\|b_j\|_{L^q}^q \le 2^{n+q} \alpha^q |Q_j|.$ (5) $\int_{Q_j} b_j(x) \, dx = 0.$ (6) $\sum_j |Q_j| \le \alpha^{-q} \|f\|_{L^q}^q.$ (7) $\|b\|_{L^q} \le 2^{\frac{n+q}{q}} \|f\|_{L^q}$ and $\|b\|_{L^1} \le 2\alpha^{1-q} \|f\|_{L^q}^q.$