Homework 9, 2023 spring:
Problem 9.1: Suppose that ϕ is a real C^{∞} phase function satisfying the nondegeneracy condition

$$
\operatorname{det}\left(\frac{\partial^{2} \phi}{\partial x_{j} \partial y_{k}}\right) \neq 0
$$

on the support of $a(x, y) \in C_{0}^{\infty}\left(\mathbb{R}^{n} \times \mathbb{R}^{n}\right)$. Then for $\lambda>0$,

$$
\left\|\int_{\mathbb{R}^{n}} e^{i \lambda \phi(x, y)} a(x, y) f(y) \mathrm{d} y\right\|_{L^{2}\left(\mathbb{R}^{n}\right)} \leq C \lambda^{-n / 2}\|f\|_{L^{2}\left(\mathbb{R}^{n}\right)} .
$$

Problem 9.2: Prove the identity

$$
\int_{0}^{\infty} e^{i \lambda x^{k}} e^{-x^{k}} x^{l} \mathrm{~d} x=c_{k, l}(1-i \lambda)^{-(l+1) / k}
$$

for any integers $k \geq 2$ and $l \geq 0$, where $c_{k, l}$'s are constants.
Problem 9.3: Suppose that $\phi: \mathbb{R} \rightarrow \mathbb{R}$ satisfies that

$$
\phi\left(x_{0}\right)=\phi^{\prime}\left(x_{0}\right)=\phi^{\prime \prime}\left(x_{0}\right)=0,
$$

while $\phi^{\prime \prime \prime}\left(x_{0}\right) \neq 0$. If $\psi \in C_{c}^{\infty}(\mathbb{R})$ is supported in a sufficiently small neighborhood of x_{0}, prove that

$$
\int_{\mathbb{R}} e^{i \lambda \phi(x)} \psi(x) \mathrm{d} x=\lambda^{-1 / 3} \sum_{j=0}^{N} a_{j} \lambda^{-j / 3}+O\left(\lambda^{-(N+2) / 3}\right)
$$

for all $\lambda>1$ and nonegative integer N.

