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ABSTRACT

A rapid-accurate detection method for COVID-19 is rather important
for avoiding its pandemic. In this work, we propose a bi-directional
long short-term memory (BiLSTM) network based COVID-19 de-
tection method using breath/speech/cough signals. Three kinds of
acoustic signals are taken to train the network and individual models
for three tasks are built, respectively, whose parameters are averaged
to obtain an average model, which is then used as the initialization
for the BiLSTM model training of each task. It is shown that such an
initialization method can significantly improve the detection perfor-
mance on three tasks. This is called supervised pre-training based
detection. Besides, we utilize an existing pre-trained wav2vec2.0
model and pre-train it using the DiCOVA dataset, which is utilized to
extract a high-level representation as the model input to replace con-
ventional mel-frequency cepstral coefficients (MFCC) features. This
is called self-supervised pre-training based detection. To reduce the
information redundancy contained in the recorded sounds, silent seg-
ment removal, amplitude normalization and time-frequency masking
are also considered. The proposed detection model is evaluated on
the DiCOVA dataset and results show that our method achieves an
area under curve (AUC) score of 88.44% on blind test in the fusion
track. It is shown that using high-level features together with MFCC
features is helpful for diagnosing accuracy.

Index Terms— COVID-19, binary classification, supervised
pre-training, self-supervised pre-training, respiratory diagnosis.

1. INTRODUCTION

Since the outbreak of COVID-19, it quickly becomes pandemic all
over the world, even at every conner. This unknown disease has
brought a serious influence to all countries ranging from global
health, economy, education, trade, cultural exchange, etc. Due to
the fact that disease diagnosis is an important step for controlling
the transmission, it is worthy studying how to detect the COVID-19
rapidly and efficiently. Nucleic acid test is a common and tradi-
tional COVID-19 detection method, but patients have to be tested in
specific place like hospitals, and the test is comparatively expensive
and time-consuming. With the development of artificial intelligence
(AI) techniques in recent years, machine learning based methods
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have been frequently used in disease detection. Compared to con-
ventional medical diagnosis approaches, the AI-based methods have
an obvious superiority, as the detection can be performed fully
online and the time and economic expenses are much lower. The
obtained diagnostic result can be used as supplementary information
for doctors to make a more accurate clinical discrimination.

It thus deserves to investigate whether AI techniques can also be
utilized for diagnosing COVID-19, where only medical images [1] or
sounds [2] of patients will be recorded. Recently, several AI-based
techniques have been developed for the detection of COVID-19. For
example, a ResNet50 based method was proposed in [3] based on
the use of computed tomography (CT) images, which achieves an
accuracy of 96.23%. Compared to the CT-based method, where the
CT images are collected offline, it is more appealing if we can use
sound signals (e.g., cough, speech, breath) to perform detection, as
the latter can be recorded remotely and avoid the people gathering.

In principal, the detection of COVID-19 is a binary classifi-
cation task (i.e., positive or negative). In order to make use of
sound data for classification, feature extraction is required as a pre-
processing step. Mel-frequency cepstral coefficients (MFCC) and
mel-frequency spectrogram that can reflect the nonlinear percep-
tive characteristics of human hearings to frequency are commonly
used as features for sound activity analysis [4, 5]. In addition, zero
crossing rate (ZCR), kurtosis, log energy, spectral centroid, roll-off
frequency can also be used [6, 7]. In [8], it was shown that the
positive testee of COVID-19 have different acoustical parameters
compared with the negative. In [9], Coppock et al extracted the
spectrogram feature and used a ResNet based CNN to detect cough
sounds, which achieves an area under curve (AUC) of 0.846. In [10],
the support vector machine (SVM) was employed for the detection
of COVID-19 in combination of voice signals and symptoms. In
addition, other classifiers like long short-term memory (LSTM) [6],
k-nearest neighbour (kNN) [11], random forest [12] and light gradi-
ent boosting machine (LightGBM) [13] can also be utilized in line
with classical machine learning approaches.

As the amount of DiCOVA data is limited, we mainly aim at
exploring whether additional pre-training can improve the detection
performance in this work. For this, we explore a supervised pre-
training method, a self-supervised pre-training method and model
enemble method. Specifically, for supervised pre-training, we uti-
lize breath, cough and speech sounds to train models, respectively,
then we can obtain models for these three different tasks. The model
parameters are averaged to obtain an average model. We treat the
average model as an initialization model, which is taken to initial-
ize the model on different tasks. Experimental results show that this
initialization method can significantly improve the performance on
three tasks, which surpasses the official baseline results. For the self-
supervised pre-training method, we pre-train the public pre-trained
wav2vec2.0 model [14] on the DiCOVA dataset [15] and use the
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Fig. 1: An illustration of the proposed DiCOVA diagnosing model.

pre-trained model as a high-level feature extractor. We utilize the
pre-trained model to extract high-level features, which are input into
the diagnosing model to replace the classic MFCC feature. Experi-
mental results reveal that the developed self-supervised pre-training
method also outperforms the official baseline, but it is worse than
the supervised pre-training method. It is worth mentioning that en-
sembling the two methods can obtain a better result in the same task,
which shows that ensemble different levels of information can im-
prove the performance. More importantly, by fusing the output prob-
abilities, we obtain the best performance in the fusion task.

2. METHODOLOGY

2.1. Model structure

The diagram of the proposed classification model that we utilize in
each subtask is shown in Fig. 1, which mainly consists of a pre-
processing module, an encoder module and a classifier module. In
the encoder module, two bi-directional LSTM (BiLSTM) [16] layers
was utilized as the encoder. Each BiLSTM layer contains 128 hidden
units and the dropout rate is set to be 0.1. Two fully connected feed-
forward layers are utilized in the classifier module, which consists
of two linear transformations with a ReLU activation in between. As
the detection of COVID-19 is a 0-1 classification problem, we use
the binary classification loss function for training.

2.2. Supervised pre-training method

For the supervised pre-training, no extra data are utilized except the
officially provided DiCOVA data. The total DiCOVA dataset consist
of breathing, cough and speech labeled data. We obtain a breath-
ing/cough/speech model using labeled breathing/cough/speech
data through supervised pre-training, respectively. Specifically,
the breathing model Modelbreath can be obtained using the la-
beled breathing data Xbreath through supervised pre-training, and
Modelcough and Modelspeech can be built similarly as

Modelbreath = BiLSTM(Xbreath), (1)
Modelcough = BiLSTM(Xcough), (2)
Modelspeech = BiLSTM(Xspeech). (3)

Then, we average the BiLSTM weights of the three models as
the average model as

Modelave = ave(Modelbreath,Modelcough,Modelspeech). (4)

For each task, the average model is considered as an initializa-
tion model, and we re-train the breathing/cough/speech model in the
corresponding task. The pre-training process is shown in Fig. 2. As
we initialize the model using the average model, it will be easier for
the encoder to find the optimal solution as well as for the classifier.

BiLSTM

BiLSTM

BiLSTM

Average 

model

breath

cough

speech

BiLSTM

BiLSTM

BiLSTM

breath

cough

speech

COVID-19

Detection
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Fig. 2: The supervised pre-training process.

2.3. Self-supervised pre-training method

As the amount of COVID-19 audio data in each sub-task is still lim-
ited, the traditional MFCC feature might be not sufficiently represen-
tative for classification tasks. Hence, we propose to utilize a high-
level feature to replace the traditional MFCC feature. It is worth
mentioning that there are many effective methods that were proposed
to solve these low-resource tasks [17–21]. In the speech domain,
the wav2vec2.0 [14] model is a representative self-supervised pre-
training framework for learning speech representation. The public
self-supervised pre-trained wav2vec2.0 [14] model is utilized in the
stage of self-supervised pre-training. We pre-train the public pre-
trained wav2vec2.0 model on the DiCOVA data and use the pre-
trained model as a high-level feature extractor. For example, we
use DiCOVA breathing data to pre-train the wav2vec2.0 model. Af-
ter finishing pre-training, we utilize the pre-trained model to extract
high-level breathing feature, which is then input into the diagnosing
model to replace the MFCC feature.

In order to guide the reader, we will briefly review the wav2vec
2.0 model in this section. The structure of wav2vec 2.0 model is
shown in Fig. 3, including a CNN-based feature encoder f : X 7→ Z
and a transformer encoder g : Z 7→ C. In detail, the input raw wave-
formX is downsampled to the latent speech representation Z by the
feature encoder. The transformer encoder then models the contex-
tualized representation C and extracts a high-level feature from the
input Z. A quantization module Z 7→ Q discretizes the output of
the feature encoder to qt as targets in the contrastive objective.

The quantization module first maps the latent speech represen-
tation Z to logits l ∈ RG×V , givenG codebooks with V entries.The
Gumbel softmax operation [22] is then used to select discrete code-
book entries in a fully differentiable way. For a given frame Zt, we
can therefore select one entry from each codebook and concatenate
the resulting vectors e1, ..., eG and apply a linear transformation to
obtain qt. The weighted loss function is thus given by

L = Lm + αLd + βLf , (5)

where

Lm = − log
exp(sim(ct,qt)/κ)∑

q̃∼Qt
exp(sim(ct, q̃)/κ)

, (6)

Ld =
1

GV

G∑
g=1

V∑
v=1

pg,v log pg,v, (7)

pg,v =
exp(lg,v + nv)/τ∑V
k=1 exp(lg,k + nk)/τ

. (8)

It is clear that the total loss function is the weighted summation of
three terms Lm, Ld and Lf parameterized by α and β. In (6), Lm

is the contrastive loss, which enables the model distinguishable be-
tween the true quantized latent speech representation qt and a set
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Fig. 3: An illustration of the involved wav2vec 2.0 model.

of K + 1 quantized candidate representations q̃ ∈ Qt. The quan-
tized candidate representation q̃ contains qt and K distractors, and
the latter are uniformly sampled from other masked time steps of the
same utterance. In (5), the diversity loss Ld aims to increase the use
of quantized codebook representation, and Lf is an `2 penalty over
the outputs of the feature encoder. In (6), sim stands for the cosine
similarity between two vectors and κ is a temperature. In (7), pg,v
represents the probability of choosing the v-th codebook entry for
group g across a batch of utterances, where τ is a temperature. In
(8), lg,v stands for the average logits l across utterances in a batch.
More details on the wav2vec 2.0 model can be found in [14].

2.4. Model ensemble method

For the supervised pre-training method, the model uses MFCC
feature as input, and for the self-supervised pre-training method,
the model uses high-level features extracted by the pre-trained
wav2vec2.0 model. As local features and high-level features con-
tain different information, in order to combine the superiority of
different features, we use model ensemble to improve the detection
performance. Specifically, for the same task we utilize the proposed
supervised and self-supervised methods to train two models and
obtain scoresup and scoreself−sup on the test set, respectively. Then,
we can ensemble the scores obtained by the two models, which is
given by

scoreemsemble = µ ∗ scoresup + (1− µ) ∗ scoreself−sup, (9)

where µ is chosen by the user. The weighted summation scoreemsemble

is taken as the detection probability.
For the track-4 fusion task, we utilize the best breathing, cough

and speech models to obtain an approporiate fusion model as

scorefusion = θ ∗ scorebre + γ ∗ scorecou + φ ∗ scorespe, (10)

where the parameter θ, γ, φ need to satisfy θ + γ + φ = 1. In
principal, the breathing, cough and speech signals have a different
importance in terms of the COVID-19 information, θ, γ, φ should
be chosen in line with the signal qualities.

3. PERFORMANCE EVALUATION

3.1. Datasets

The proposed model is evaluated on the DiCOVA-ICASSP 2022
challenge dataset [15], which is derived from the crowd-sourced
Coswara dataset [23] and collected from volunteers with different

health conditions. Volunteers were advised to record their sound
in a quiet environment using a web-application. The audio streams
are sampled at a sampling frequency of 44.1 kHz and in an FLAC
format. The durations of the sound recordings range from about
1 second up to 29 seconds. The dataset consists of a total of 965
samples including 793 negative samples and 172 positive samples,
where each sample includes cough, speech and breath sounds. The
blind test set provided by the organizer includes 471 samples with-
out labels. The training set and test set are both provided by the
organizer, and there is no duplicate data between them.

3.2. Model configuration

In the pre-processing module, the amplitude of the raw waveform
data is normalized between -1 to 1 through a normalization opera-
tor. As there are many silent segments in the speech/cough/breath
sound signals, the speech activity detector (SAD) is applied to cut
off these silent segments. The sound data is downsampled to 16 kHz.
Forty dimensional MFCC and delta-delta coefficients are extracted
with a window of 25 msec audio samples and a hop of 10 msec.
Due to the small size of the training data, we use SpecAugment [24]
time-frequency mask to augment the data, as it was shown that data
augmentation is effective to improve the performance, particularly
in low-resource cases. The time mask length is 20 and the frequency
masking length is 50. In the encoder module, two BiLSTM [16]
layers are utilized as the encoder. The BiLSTM layer dimension is
128 and the dropout rate is set to be 0.1. Two fully connected feed-
forward layers are utilized in the classifier module, which consists of
two linear transformations with a ReLU activation in between. The
dimension of feed-forward layers is 256, which is finally mapped to
1-dimension for binary classification. As the detection of COVID-
19 is a 0-1 classification problem, we use the binary classification
loss function for training. We follow the baseline system given by
the organizer to train the model for 5-fold cross-validation in each
task and then decode on the official blind test set to obtain the final
test results, separately. The CNN model is also utilized as another
baseline system in experiments.

For the supervised pre-training, different seeds are set to
train different models. The pre-training model is trained using 2
RTX3090ti-24G GPUs with 50 epochs. For the self-supervised
pre-training, the wav2vec2.0 pre-training model is implemented
using the fairseq toolkit [25]. The feature encoder contains seven
blocks, where each block has 512 temporal convolution channels
with strides (5, 2, 2, 2, 2, 2, 2) and kernel widths (10, 3, 3, 3, 3,
3, 2, 2). Thus, the interval between two sequential samples in the
feature encoder output Z is around 20 ms and the receptive audio
field is 25 ms. The models contain 12 transformer encoder blocks
with a dimension of 512, a feed forward module with a dimension
of 2048 and 8 attention heads. The pre-training process is optimized
with Adam [26]. We set G = 2 and V = 320 for the quantization
module and each entry with a size of 128. The temperature κ is set
to be 0.1 and τ is annealed from 2 to 0.5 by a factor of 0.999995
over iterations. For the contrastive loss, α and β are set to be 0.1 and
10, respectively. We use K = 100 distractors and the total number
of pre-training epochs are 200. After self-supervised pre-training,
the pre-trained model parameters are frozen. Then, the pre-trained
model is utilized as a high-level feature extractor, which generates
high-level features from raw waveforms.

3.3. Results
In experiments, we use 5-fold cross-validation to evaluate our model.
For comparison, we also test CNN, LSTM and official baseline
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Table 1: The AUC score of different methods on test/validation sets.

Method Model ROC-AUC score (%)
Test Validation

Track-1 breath
Official baseline - 84.50 77.63
Baseline 1 BiLSTM 84.17 76.26
Baseline 2 CNN 84.10 75.84
Supervised pre-train BiLSTM 86.41 80.05
Self-supervised pre-train BiLSTM 86.22 79.04
Model ensemble BiLSTM 86.72 80.05
Track-2 cough
Official baseline - 74.89 75.88
Baseline 1 BiLSTM 75.04 76.18
Baseline 2 CNN 73.70 76.06
Supervised pre-train BiLSTM 76.05 78.92
Self-supervised pre-train BiLSTM 75.55 78.56
Model ensemble BiLSTM 76.36 78.92
Track-3 speech
Official baseline - 84.26 82.24
Baseline 1 BiLSTM 83.68 82.15
Baseline 2 CNN 83.38 81.96
Supervised pre-train BiLSTM 85.02 81.00
Self-supervised pre-train BiLSTM 84.35 80.74
Model ensemble BiLSTM 85.21 81.30

Table 2: The AUC score of track-4 tasks on test and validation sets.

Track-4 fusion Fusion weight ROC-AUC score (%)
Test Validation

Official baseline - 84.50 77.63
Fusion1 (1/3,1/3,1/3) 87.01 82.56
Fusion2 (0.4,0.2,0.4) 88.44 82.93
Fusion3 (0.5,0.1,0.4) 88.44 82.71

model without pre-training. The official baseline comes from the
website1. The obtained results are shown in Table 1 and Table 2. Ex-
perimental results show that the methods with pre-training achieve
a higher AUC than the baseline. That is, pre-training can provide
more information for classifiers, particularly in case the dataset is
small-sized. Supervised pre-training models can achieve a great
enhancement of performance compared with the baseline system. In
breath/cough/speech task, supervised pre-training models increase
the AUC from 84.50/74.89/84.26 to 86.41/76.05/85.02, respec-
tively. Self-supervised pre-training methods obtain the AUC of
86.22/75.55/84.35 in the breath/cough/speech task. Despite achiev-
ing a smaller improvement in performance than supervised counter-
parts, self-supervised pre-training models still surpass the baseline in
all tasks. Compared to the supervised and self-supervised methods,
the proposed ensemble model can further improve the detection per-
formance, which obtains the best performance for all tasks, and the
corresponding AUCs are 86.72/76.36/85.21 in cough/speech/breath
tasks, respectively. These results indicate that high-level feature

1https://competitions.codalab.org/competitions/34801#results
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Fig. 4: The spectrograms of the positive (right) and negative (left)
breathing/cough/speech audio samples.

pre-trained by wav2vec2.0 and low-level MFCC feature are com-
plementary. For the fusion task, the final probability is calculated as
a weighted summation over three best individual tasks. In case the
cough/speech/breath weights are set to be 0.4/0.2/0.4, we achieve
the highest AUC of 88.44 for the fusion task.

4. CONCLUSION AND DISCUSSION

In this work, we presented an ensemble model based on BiL-
STM for diagnosing COVID-19 using acoustic signals. Due to
the small size of the training data, we used supervised pre-training
and self-supervised pre-training methods, and more importantly both
achieved a better performance than the baseline. Using the ensemble
model of supervised pre-training and self-supervised pre-training,
the AUC score was further improved, showing that the high-level
feature pre-trained by wav2vec2.0 and low-level MFCC feature are
complementary. The proposed model was evaluated on the DiCOVA
challenge dataset and achieved an AUC score of 88.44% in the blind
test set for the fusion task, which reaches the first place in tracks
3&4 of the DiCOVA-ICASSP 2022 contest.

As it was shown by experiments that in case of using the same
classifier the high-level representation obtained by the wav2vec 2.0
model achieves a better performance than the MFCC feature, it
tells that feature extraction is a vital step for the COVID-19 detec-
tion. In order to more clearly see the difference in the features of
positive and negative audio samples, we show the spectrograms of
the positive and negative breathing/cough/speech audio samples in
Fig. 4. It is clear that for the positive samples, the energy of breath-
ing/cough/speech signals is almost concentrated on low-frequency
bands, while for negative samples the energy is distributed over
full-frequency bands, particularly for the negative cough and speech
signals. It reveals that high-level features are more beneficial for
diagnosing COVID-19 using acoustic signals. In the future, we
will therefore investigate an effective combination of the wav2vec
2.0 based acoustic representation, spectrograms, MFCC as a more
representative feature.
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