
1536-1233 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TMC.2022.3161351, IEEE Transactions on Mobile Computing

IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID 1

Adaptive Video Streaming with Automatic
Quality-of-Experience Optimization

Guanghui Zhang, Jie Zhang, Yan Liu, Haibo Hu, Senior Member, IEEE,

Jack Y. B. Lee, Senior Member, IEEE, and Vaneet Aggarwal, Senior Member, IEEE

Abstract—Video streaming has grown tremendously in recent years and it is now one of the main applications on the Internet.
Due to the networks’ inherent bandwidth fluctuations, various rate-adaptive streaming algorithms have been developed to
compensate for such fluctuations to improve Quality-of-Experience (QoE). However, in practice, the preference for QoE typically
differs significantly across different viewers and there is no systematic way so far to comprehensively incorporate different sets of
conflicting QoE objectives into the algorithm design. Thus, it is not surprising that the QoE performance achieved by the existing
algorithms is in fact far from optimal. This work aims at attacking the heart of the problem by developing a novel framework called
Post Streaming Quality Analysis (PSQA) that can maximize the QoE under any preference through automatically tuning the
adaptation logic of the streaming algorithms. Evaluation results show that the QoE achieved by PSQA is substantially better than
the existing approaches and in some scenarios even close to optimal. Moreover, PSQA can be readily implemented into real
streaming platforms, offering a practical and reliable solution for high-performance streaming services.

Index Terms—Video Streaming; Quality-of-Experience; DASH; Video Reliability

——————————  ——————————

1 INTRODUCTION
ITHOUT a doubt, video streaming is one of the fast-
est-growing applications on the Internet. A report by

Cisco [1] estimated that the global video streaming traffic
will increase 15-fold from 2017 to 2022, accounting for 82%
of all Internet traffic by 2022.

Given that the Internet does not offer any bandwidth
guarantees, the primary focus of the streaming vendors
nowadays is the development of adaptive streaming sys-
tems to compensate for the inherent bandwidth fluctua-
tions. The core is to design intelligent bitrate adaptation al-
gorithms to dynamically adjust the video quality (bitrate)
in the light of past measurements (e.g., throughput, buffer

occupancy, etc.), such that Quality-of-Experience (QoE)
can be maximized.

In practice, however, QoE is influenced by many factors,
which thus creates significant differences in QoE prefer-
ence among the viewers [2]. First, different types of stream-
ing services emphasize different QoE metrics. For example,
the main focuses in on-demand streaming are video qual-
ity and playback rebuffering, while in live streaming, play-
back latency becomes the most essential one. Second, the
properties of the last-hop network can affect the direction
of the QoE optimization. For instance, in mobile networks
where rapid and substantial bandwidth fluctuations are
normal, smooth video playback (i.e., fewer rebuffering
events) is more desirable, whereas in stable broadband net-
works, achieving high video quality is more likely to sat-
isfy the viewers; Third, the playback device affects the
viewer’s perceptual video quality. For example, playing a
video with the same bitrate, the video quality perceived on
a large screen device (e.g., PC monitor) is much lower than
that on a small screen one (e.g., smartphone).

In addition to the aforementioned points, there are
many other potential factors that can influence QoE, such
as video content, subscription plan, and so on. Therefore,
this poses a fundamental problem – how to design a
streaming algorithm such that the resulting QoE is satis-
factory to all viewers? In recent years, although many so-
phisticated adaptive streaming algorithms have been pro-
posed (e.g., [3-9, 38-43]), most (if not all) of them only opti-
mized the QoE towards one certain QoE preference. For
example, Microsoft’s Smooth Streaming exhibits very con-
servative behavior in its bitrate selection to keep smooth
playback regardless of the video quality loss, while the
Netflix player implements an aggressive rate-adaptation

xxxx-xxxx/0x/$xx.00 © 200x IEEE Published by the IEEE Computer Society

W

————————————————
(Corresponding author: Jie Zhang)

 G. Zhang is with the Department of Computer Science, Hong Kong Bap-

tist University, Kowloon, Hong Kong, and Centre for Advances in Relia-
bility and Safety (CAiRS), Pak Shek Kok, NT, Hong Kong. E-mail:
ghzhang@link.cuhk.edu.hk

 J. Zhang is with the National Engineering Laboratory for Speech and
Language Information Processing, University of Science and Technology
of China (USTC), 230026 Hefei, China. He is also with State Key Labora-
tory of Acoustics, Institute of Acoustics, Chinese Academy of Sciences,
100190 Beijing, China. Email:jzhang6@ustc.edu.cn

 Y. Liu is with the Cloud ARCH & Platform Dept., Tencent, China. E-
mail: rockyanliu@tencent.com

 H. Hu is with the Department of Electronic and Information Engineer-
ing, The Hong Kong Polytechnic University, Kowloon, Hong Kong, and
PolyU Shenzhen Research Institute. E-mail: haibo.hu@polyu.edu.hk

 J. Y. B. Lee is with the Department of Information Engineering, The Chi-
nese University of Hong Kong, Shatin, NT, Hong Kong SAR. E-mail:
yblee@ie.cuhk.edu.hk

 V. Aggarwal is with the School of Industrial Engineering, Purdue Uni-
versity, West Lafayette, IN 47907 USA, and also with the School of Elec-
trical and Computer Engineering, Purdue University, West Lafayette, IN
47907 USA. E-mail: vaneet@purdue.edu

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on June 17,2022 at 09:02:04 UTC from IEEE Xplore. Restrictions apply.

1536-1233 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TMC.2022.3161351, IEEE Transactions on Mobile Computing

2 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

algorithm to favor high-quality videos but at the expense
of frequent quality switches [3,4]. While the state-of-the-art
learning-based algorithms (e.g., Pensieve [7]) have the abil-
ity to train the adaptation logics based on an arbitrary
given QoE objective, due to the unawareness for QoE pref-
erence, the streaming vendor merely trains one single logic
according to a certain preference and then keep the logic
unmodified after its deployment [7]. As a result, these ex-
isting algorithms often lead a wrong path for the viewers’
actual QoE preference, leading to the resultant QoE being
far less than optimal.

To address this problem, this work develops a unified
framework called Post Streaming Quality Analysis (PSQA),
which incorporates different sets of conflicting QoE objec-
tives to offer a self-adaptive system for automatic QoE op-
timization. PSQA provides two options: First, if a viewer is
aware of their QoE preference explicitly, he/she can specify
the preference before/during online streaming through an
option list of the video player, then PSQA will automati-
cally optimize/tune the adaptation logic based on the cor-
responding QoE objective to maximize the QoE for the
given preference. Second, for cases where the viewer is
clueless about the QoE preference choice, PSQA will ena-
ble a generic adaptation logic. This logic is exposed to all
available QoE objectives during its training to avoid over-
specialization to any particular environment, such that it
can be broadly applicable to various environments without
requiring the viewer to specify the preference. To the best
of our knowledge, PSQA is the first streaming framework
so far that can thoroughly address the QoE preference
problem.

Extensive evaluations showed that PSQA has three as-
pects of superiority. First, PSQA breaks through the barri-
ers to the algorithm design under different QoE objectives,
so that the QoE performance achieved by PSQA is substan-
tially better than the existing approaches, and even close to
optimal in some scenarios. Second, PSQA is a general
framework which is to complement rather than replace the
existing streaming algorithms (i.e., only tuning their adap-
tation logics while keeping their streaming workflows in-
tact). This offers an immediate and ready solution for the
streaming platforms already in service. Last but not least,
PSQA not only has QoE-optimization awareness, but also
opens a new paradigm to network-optimized adaptive
streaming. This enables PSQA to have strong robustness
and achieve consistently better performance across a wide
range of network environments.

The rest of the paper is organized as follows. Section 2
reviews the background and related works; Section 3
demonstrates the limitations of the existing adaptive
streaming algorithms; Section 4 presents PSQA framework
and applies it to optimizing the existing algorithms; Sec-
tion 5 evaluates PSQA using trace-driven simulations; Sec-
tion 6 reports real experimental results from a prototype
implementation; and Section 7 summarizes the study and
outlines some future works.

2 BACKGROUND AND RELATED WORKS
In this section, we first review the studies on the method-
ology of QoE quantification, and then review the state-of-
the-art adaptive streaming algorithms.

2.1 Quality of Experience
In video streaming, Quality-of-Experience (QoE) is a no-
tion to quantify the goodness of the viewing experience
perceived by the viewers, and it is the most important met-
ric to evaluate the efficacy of a streaming system. In gen-
eral, QoE is composed of a series of QoE metrics, such as
video quality [10], the frequency of video quality switches
[11], the magnitude of video quality switches [11], startup
delay (waiting time for playback to commence) [12], the
frequency of playback rebuffering [13], the duration of
playback rebuffering [13], playback latency [14], and so on.

Existing studies typically employed QoE function, i.e., a
combination of different QoE metrics, to quantify the over-
all QoE performance where the coefficients (weights) in the
function reflect the impact of each QoE metric. Many dif-
ferent formats of QoE functions have been proposed in re-
cent years, such as weighted sum [6,7,14,15], exponen-
tial/logarithmic [16,17], threshold-based table look-up [13],
decision tree [18], etc. The value of the coefficients in the
QoE function was usually configured by two common
methods. For example, Mok et al. [13] and Liu et al. [16] em-
ployed subjective experiments carried out by real human
subjects while Dobrian et al. [12] used a crowd-sourcing
method to access the effects on user viewing engagement.

Overall, QoE function is a good tool for quantifying the
QoE performance achieved by the streaming systems, so it
has been widely adopted to guide the design and optimi-
zation of streaming algorithms.

2.2 Adaptive Streaming Algorithms
In recent years, much work has been done in the area of
video streaming. Beginning with non-adaptive streaming,
the industry soon realized that the inherent bandwidth
fluctuations posed significant challenges to the band-
width-sensitive streaming services [33]. This led to intense
research in recent years on the design of adaptive stream-
ing systems. The principle is to divide a video into a series
of fixed-duration segments (e.g., each a few seconds) and
then encode them with multiple target bitrate versions.
The client implements a bitrate adaptation algorithm that
monitors the network condition (e.g., via measured
throughput) and then dynamically selects the best bitrate
version for downloading future video segments. This not
only enables the client to stream videos across a wide range
of networks with different bandwidth limits, but also ena-
bles it to adapt to short-term bandwidth fluctuations that
commonly exist in mobile networks [27]. The above led to
the Dynamic Adaptive Streaming over HTTP standard (or
simply known as DASH [19]) proposed by the MPEG
standard committee.

To support the development of DASH, in recent years,
many adaptive bitrate streaming (ABR) algorithms have
been proposed. A detailed review of the existing work is
beyond the scope of this paper. We refer the interested
readers to the recent survey by Kua et al. [20] and Bentaleb

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on June 17,2022 at 09:02:04 UTC from IEEE Xplore. Restrictions apply.

1536-1233 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TMC.2022.3161351, IEEE Transactions on Mobile Computing

AUTHOR ET AL.: TITLE 3

et al. [21] for the details. In the following, we briefly review
some state-of-the-art studies.

First, many adaptation algorithms were developed
based on human intuitions. For example, Jiang et al. [4]
proposed FESTIVE which uses harmonic mean through-
put over downloading past segments to decide the video
bitrate. Spiteri et al. [5] devised an online control algorithm
called BOLA which employs Lyapunov optimization to
adapt the bitrate according to the buffer occupancy. Yin et
al. [6] proposed MPC that makes bitrate decisions by solv-
ing a QoE maximization problem over a horizon of several
future segments. Akhtar et al. [9] proposed Oboe that pre-
computes the discount factor of MPC according to differ-
ent network conditions, and then dynamically adjusts the
discount factor at runtime to adapt to the network condi-
tion changes. Elgabli et al. [38] developed FastScan that op-
timizes QoE through solving a combinatorial optimization
problem.

Second, another branch of adaptation algorithm design
was built upon machine learning techniques. For instance,
Mao et al. [7] proposed Pensieve that uses A3C (a deep re-
inforcement learning algorithm [22]) to train neural net-
works for bitrate adaptation. Zhang et al. [8] developed
EAS-GP that employs genetic programming [23] to auto-
matically evolve an adaptation algorithm ensemble for dif-
ferent network conditions. Zhao et al. [40] devised L2AC
which also uses A3C, but in addition to bitrate adaptation,
it also contains a playback rate adaptation logic specifically
for achieving ultra-low playback latency in live video
streaming.

In practice, however, an important fact is that the view-
er's QoE preferences typically differ significantly under
different streaming scenarios, e.g., some prefer high video
quality while others expect less rebuffering, and the de-
tailed QoE preference of each viewer is difficult to look into
due to its diversity. Thus, the streaming vendor nowadays
typically designs/trains the adaptation algorithms based
on a limited set of QoE objectives, and then keeps the algo-
rithm unmodified after deployments. As a result, it is not
surprising that the QoE performance would exhibit sub-
stantial degradation and variation under different QoE
preferences. To tackle this problem, this work develops the
novel PSQA framework that can relate an arbitrary stream-
ing algorithm to an arbitrary QoE objective, and then auto-
matically optimize the algorithm’s performance with re-
spect to the given QoE objective.

2.3 Relation to an Early Version of PSQA
An early version of PSQA was reported in [24]. This study
extends the earlier work in four significant aspects. First,
adaptive streaming algorithms can be classified into two
categories, namely heuristic-based and learning-based,
and their techniques for generating the adaptation logic
are different. In contrast to our earlier work only targeting
optimizing the heuristic-based algorithms, we extended
the scope in this work to support the learning-based ones.

Specifically, we evaluated the state-of-the-art learning-
based algorithms, i.e., Pensieve [7], EAS-GP [8], and L2AC
[40], and found that they exhibit far more substantial QoE
variations over different streaming environments than the

heuristic ones (c.f. Section 3.2). This motivates us to extend
PSQA to optimize them, where PSQA utilizes the inborn
offline training of the learning techniques to automatically
generate a set of candidate adaptation logics based on dif-
ferent QoE functions, and then dynamically adjusts the
logics online to cater to the diverse QoE preference (c.f. Sec-
tion 4.3). Overall, this extension enables PSQA to be gener-
alized enough to function on almost all the state-of-the-art
streaming algorithms.

Second, one hard requirement of the earlier work is to
require the viewers to input their QoE preference. How-
ever, in practice, it is likely that the viewer is a layperson
of streaming so that he/she has no clue about the QoE pref-
erence choice. To this end, we extended PSQA to generate
a generic adaptation logic. This logic is exposed to all avail-
able QoE objectives during its training to avoid over-spe-
cialization to any particular environment, such that it can
be broadly applicable to various environments without
specifying any preference (c.f. Section 4.3 and 5.2). This ex-
tension effectively eliminates the obstacles to the QoE op-
timization under different streaming configurations.

Third, the experiments and performance evaluations
have been expanded substantially in this work. While our
earlier work already employed four different QoE func-
tions for evaluations, this work further expanded the scope
to include three new ones, i.e., by Mao et al. [7], Liu et al.
[16], and Yi et al. [14], which favor high video quality and
low playback latency. Furthermore, we also added five
new state-of-the-art on-demand/live streaming algorithms,
i.e., BOLA [5], MPC [6], Pensieve [7], EAS-GP [8], and
L2AC [40], for comparison. Overall, the far broader range
of evaluations enables us to obtain a better understanding
for the algorithms’ behaviors under different QoE objec-
tives (c.f. Section 3 and Section 5).

Last but not least, we implemented a prototype of the
PSQA framework with dash.js [25] and reported the real
experimental results in Section 6. The results verify the fea-
sibility of PSQA for deployment in today’s real streaming
platforms and demonstrate its potential performance gains
in practical operational environments.

3 VIDEO STREAMING ALGORITHM RE-EXAMINED
In this section, we evaluate the state-of-the-art adaptive
streaming algorithms to demonstrate the QoE preference
problem in the existing streaming platform.

3.1 Experiment Setup
To emulate the diversity of the QoE preference in practice,
we employed eight existing QoE functions from the litera-
ture to cover different QoE preferences:

QoE Function 1 (U1): Developed by Mok et al. [13]. This
QoE function only includes factors about playback
smoothness, so we define the QoE preference as “ultra-
smooth playback”. Its detailed definition is:

 1 4.23 0.0672 0.742 0.106ti fr trU L L L    (1)

where Lti denotes startup delay, Lfr is rebuffering frequency
(defined as the total number of playback suspensions in
one streaming session due to client buffer underflow), and

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on June 17,2022 at 09:02:04 UTC from IEEE Xplore. Restrictions apply.

1536-1233 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TMC.2022.3161351, IEEE Transactions on Mobile Computing

4 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

Ltr is rebuffering duration (defined as the total time con-
sumed at playback suspension).

QoE Function 2 (U2): Developed by Joskowicz et al. [17].
This QoE function merely quantifies the perceptual video
quality based on video bitrate, so we define the QoE pref-
erence as “ultra-high quality”:

     
0.77

2 4.75 4.5 |krU avg e k (2)

where rk is the video bitrate selected for video segment k.
 QoE Function 3 ~ QoE Function 5 (U3 ~ U5): Proposed

by Yin et al. [6]. This QoE function considers multiple con-
flicting QoE metrics:

1

3 1
1 1

1 K K

k k k p
k k

U r r r Z Z
K    




 

 
        

 
  (3)

where Zp is the total rebuffering duration in one streaming
session, Z is the startup delay, rk is the bitrate selected for
segment k, |rk+1 – rk| represents the quality variations, and
K is the total number of segments in one session. There are
three sets of configuration options for the component
weights, namely, Balanced: λ = 1.0 and μ = μ = 3.0, Penalize
Rebuffering: λ = 1.0 and μ = μ = 6.0, and Penalize Quality
Instability: λ = 3.0 and μ = μ = 3.0. We denote the three as
U3, U4, and U5 respectively, and define the corresponding
QoE preference as “balanced”, “smooth playback”, and
“low quality variation”.

QoE Function 6 (U6): Proposed by Mao et al. [7]. This
QoE function favors high-quality videos, so the QoE pref-
erence is defined as “high quality”:

1

4 1
1 1

1 8.0
K K

k k k p
k k

U h h h Z
K




 

 
     

 
  (4)

where hk denotes the reward for video bitrate in segment k
(the mapping between hk and each bitrate version is listed
in Table 1), Zp is the total rebuffering duration, and K is the
total number of video segments in one session.

QoE Function 7 (U7): Proposed by Liu et al. [16]. This
QoE function is driven by subjective evaluations with real
human perception and the QoE preference is defined as
“ultra-balanced”:

 5 100 0.15

 0.82
ID ST LV ID ST LV

ST LV

U I I I I I I

I I

       

  
 (5)

where IID, IST, and ILV denote the penalty for startup delay,
playback rebuffering, and poor video quality, respectively.

QoE Function 8 (U8): Proposed by Yi et al. [14]. This QoE
function incorporates the playback latency concerned in
live video streaming, so the QoE preference is defined as
“low latency”:

  
1

6 1
1 1

1 2.0 8.6 0.02
K K

k k k k k
k k

U r z l r r
K





 

 
         

 
  (6)

where lk, rk, and zk represent playback latency, video bitrate,
and rebuffering duration in downloading segment k, re-
spectively. For the coefficient δ, if the latency lk is lower
than 1.1s, then δ is 0.05, otherwise δ is 0.1.

To evaluate the QoE performance in realistic network
settings, we adopted an open trace-driven simulator devel-
oped by Mao et al. [7] and the source codes are available at
[26]. In our evaluation, we changed a few parameters from
their original settings. For example, we adopted the video
bitrate profile proposed by Apple [31] where the bitrate
ranges from 0.2 to 8.6 Mbps. The video duration follows an
empirical distribution extracted from real streaming ser-
vices [32]. The video segment size is derived from an open
dataset [27] that includes a total of 700+ real-world com-
mercial video contents. All the configurations were listed
in Table 2.

Moreover, the simulator is executed over TCP through-
put trace data obtained from real-world production net-
works. To cover different kinds of network properties, we
used multiple sources of throughput trace [28-29], which
have quite different throughput features with each other
due to the various network types (e.g., 3G, 4G, and Wi-Fi),
collection locations (e.g., campus, subway, supermarket,
etc.), and service providers (e.g., mobile operator). Their
detailed statistics are summarized in Table 3. In the rest of
the paper, unless stated otherwise, the data in all the trace
sources will be incorporated in the evaluation. In Appen-
dix A.1, we provide more details about the simulator as
well as the TCP throughput trace data.

3.2 Result Analysis
We evaluated six state-of-the-art adaptive streaming algo-
rithms, where three are learning-based: Pensieve [7], EAS-
GP [8] and L2AC [40], and three are heuristic-based: FES-
TIVE [4], BOLA [5], and Robust-MPC [6] (henceforth called

Table 2: Evaluation Settings

Parameters Values
Bitrate profile {0.2, 0.4, 0.8, 1.2, 2.2, 3.3, 5.0, 6.5, 8.6} Mbps

Video duration Empirical distribution (40s to 600s)
Segment duration 2s

Frame rate 25 fps
Initial video bitrate 0.2 Mbps

Buffer capacity 60s
Video content 700+ real-world commercial videos

Table 1: The Mapping between Video Bitrate and hk

Bitrate (Mbps) → hk

0.2→0.78, 0.4→1.22, 0.8→2.11, 1.2→3.0, 2.2→13.4, 3.3→16.7,
 5.0→22.2, 6.5→27.1, 8.6→34.0

Table 3: Statistics for Five Throughput Trace Sources

Features #1 #2 #3 #4 #5
Mean throughput (Mbps) 5.97 1.21 10.1 3.12 4.43

Variation (CoV) 0.44 0.83 0.52 0.77 0.58
Network type 3G 3G LTE Wi-Fi Wi-Fi

Collection location L1 L2 L3 L4 L5
Service provider S1 S2 S3 S4 S5

Session number (Kilo) 20 5 15 20 20

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on June 17,2022 at 09:02:04 UTC from IEEE Xplore. Restrictions apply.

1536-1233 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TMC.2022.3161351, IEEE Transactions on Mobile Computing

AUTHOR ET AL.: TITLE 5

‘MPC’). In our evaluation, to emulate the existing algo-
rithms being built upon a limited set of QoE objectives in
the current commercial platform (c.f. Section 1), we
trained/optimized Pensieve, EAS-GP, and MPC using only
QoE function U3 for a balanced preference. As L2AC is
originally designed for live streaming, we trained it with
merely U8 to involve playback latency. The adaptation
logic of BOLA and FESTIVE are pre-programmed so they
do not target any QoE function.

We ran each of the algorithms over the eight QoE func-
tions, i.e., (1)~(6), respectively, to emulate the viewer’s QoE
preference changes. We normalized the obtained absolute
QoE through the offline optimal QoE, which is the upper
bound QoE computed by an omniscient policy with com-
plete and perfect knowledge of future network throughput
(according to Spiteri et al. [5] and the source code is offered
by Mao et al. [30]). We summarized in Table 4 the overall
mean QoE as well as the separate QoE under different QoE
functions (preferences). The main observation is that the
streaming algorithm’s performance varies substantially
across different QoE functions. Pensieve is the most obvi-
ous one. It performs best under U2 and U6 whereas worst
under U1 and U4. This is due to Pensieve’s inherent aggres-
siveness of bitrate selection which can be rewarded more
under the high video quality preference (i.e., U2 and U6),
but meanwhile incurs more rebuffering events, resulting in
significant QoE degradation under the smooth playback
preference (i.e., U1 and U4).

In addition, Pensieve’s QoE under U8 is also very bad,
which is because U8 represents the low latency preference
and involves a penalty for long playback latency that has
high correlations with playback rebuffering. The rationale
is that during each rebuffering event where the player runs
out of the video data, video playback will be suspended
until sufficient data are downloaded to resume the play-
back. The live video source, on the other hand, continues
on and thus the gap between the video playback and the
rendering would be widened by the rebuffering event [39-
43]. Therefore, the frequent rebuffering events caused by
Pensieve will cause long playback latency, which in turn
significantly reduces the performance under U8.

EAS-GP exhibits similar performance to Pensieve, but
to a lesser extent. This benefits from EAS-GP that generates
an ensemble of adaptation logics instead of just one single
logic as Pensieve does, which enables EAS-GP to have
stronger robustness than Pensieve over different environ-
ments. Nevertheless, the QoE variation in EAS-GP is also
significant, from a low of 39.1% to a high of 87.0%.

The live streaming algorithm L2AC is trained with U8,
so as expected, it performs best under U8. However, due to
its excessive focus on low latency, its bitrate selection is
very conservative, leading to the performance under other
QoE functions (especially U2 and U6) is extremely poor. As
a result, L2AC’s mean QoE is the lowest among all algo-
rithms.

In comparison, the QoE performance of the three heu-
ristic-based algorithms is a bit more stable, but still far
from consistent. For instance, FESTIVE and BOLA achieve
high QoE in U1 and U4 but perform much worse in U2 and
U6. This is due to the fact that they adopt very conservative
bitrate adaptation logics which can keep a low probability
of rebuffering but at the expense of substantial video qual-
ity degradation. While MPC has the most stable perfor-
mance among all the algorithms, it performs obviously
poorly (56.5%) under U5. This indicates that frequent bi-
trate switching is a distinctive feature of MPC’s bitrate ad-
aptation.

Overall, since all these existing algorithms were not de-
signed with the diverse QoE preference in mind, but built
on a limited set of QoE objectives, it is not surprising that
the resulting QoE varies substantially in different scenarios.
In the next section, we propose the PSQA framework to
tackle this problem.

4 POST-STREAMING QUALITY ANALYSIS
The principle of PSQA is to exploit consistent statistical
properties exhibited by network throughput over a long
timescale (e.g., days) [33] to automatically optimize QoE
for the streaming algorithms. PSQA begins with an offline
analysis phase where captured throughput trace data from
past streaming sessions are analyzed to optimize the adap-
tation logic for any given streaming algorithms according
to any given QoE functions. This is done periodically (e.g.,
daily) to keep updating the adaptation logic for use in the
second phase – online prediction phase, where the actual
streaming occurs based on the updated logic. The system’s
structure is illustrated by the diagram in Fig. 1. In this sec-
tion, we will first introduce the methodology of PSQA, and
then demonstrate its applicability to the existing streaming
algorithms.

4.1 Methodology
The offline analysis phase optimizes the adaptation logic
of the target streaming algorithm according to given QoE
functions. The PSQA framework does not mandate the

Table 4: Comparison of Normalized QoE (%) across Different QoE Functions

Mean

U1
(ultra-smooth

playback)

U2
(ultra-high

quality)

U3
(balanced)

U4
(smooth

playback)

U5
(low quality

variation)

U6
(high

quality)

U7
(ultra-

balanced)

U8
(low

latency)
FESTIVE 54.9 68.6 42.5 52.1 63.9 62.5 40.4 48.6 61.3

BOLA 64.0 73.1 51.5 65.9 70.2 68.8 58.2 60.2 64.1
MPC 67.9 64.1 70.6 74.6 70.1 56.5 72.3 71.0 63.7

Pensieve 55.7 38.7 77.9 75.8 13.5 71.8 75.2 71.8 20.6
EAS-GP 68.5 52.8 72.4 87.0 61.1 80.4 75.0 80.3 39.1

L2AC 48.5 65.2 30.1 41.7 59.5 44.7 35.9 46.5 77.6

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on June 17,2022 at 09:02:04 UTC from IEEE Xplore. Restrictions apply.

1536-1233 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TMC.2022.3161351, IEEE Transactions on Mobile Computing

6 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

form nor the coefficients of the QoE functions. Thus, we
define a general expression U(A) to denote the QoE func-
tion, where A represents a vector of QoE metrics, e.g.,
video bitrate, playback rebuffering, and so on. Note that
the detailed QoE metrics depend on the definition of the
chosen QoE function (e.g., (1)~(6)).

Considering the viewer’s QoE preference being diverse,
we select a list of QoE functions, denoted by {Us(A)|s =
0,1,…,S-1}, to construct the objective function in PSQA’s
optimization where the goal is to maximize every QoE
function in the list. In addition, since the QoE is experi-
enced under changing network conditions, the objective
function is calculated upon multiple streaming sessions:

1

0
max () , = 0, 1, ..., 1

N

s i
i

U N s S




 A (7)

where Ai is the QoE metrics derived from streaming ses-
sion i and N is the total session number. Other formats of
objective functions (e.g., max-min) are also available and
again the PSQA framework does not restrict their forms.

Given the objective function, the QoE metrics inside, i.e.,
Ai, will then be determined by the streaming algorithms,
so PSQA needs to optimize its adaptation logic such that
the objective function can be maximized over the N stream-
ing sessions. The structures of the adaptation logic pro-
posed by the existing studies are various, but they can typ-
ically be formulated in the form of a combination of meas-
urable streaming variables (e.g., past throughput, buffer
occupancy, etc.) and internal parameters. We thus denote
the adaptation logic with a general function G():

 , , ,0 , ,1 , , 1 0 1 1(, ,..., , , ,...,), 0,1,...,i j i j i j i j K Lr G j J        (8)

where {i,j,0, i,j,1,…,i,j,K-1} is a total of K streaming variables
measured at requesting video segment j in streaming ses-
sion i, {0, 1,…, L-1} is a total of L internal parameters, and
ri,j is the output bitrate decision.

Next is to execute the adaptation logic in the real
streaming environment. However, as the real network
condition is not repeatable, the measurements of more de-
tailed performance metrics such as rebuffering duration,
playback latency, etc., are difficult to conduct in the real
network [27]. Therefore, we propose to employ virtual
streaming [7-9] to mimic the network condition by replay-
ing TCP throughput trace data obtained as a by-product of

past streaming sessions (e.g., via network capturing tools
such as tcpdump).

Specifically, given the set of throughput trace data in
session i, denoted by Ci, the adaptation logic can be
executed through:

 , ,0 , ,1 , , 1 0 1 1((, ,..., , , ,...,),)i i j i j i j K L iF G       A C (9)

where the virtual streaming process is denoted by the
function F() and the output is a list of QoE metrics, e.g.,
average bitrate, rebuffering duration, etc., collectively
denoted by Ai. Since Ai is also the input of the objective
function (i.e., (7)), so we can then construct a link to relate
the adaptation logic to (7):

0 1

1

, ,0 , ,1 , , 1 0 1 1,... 0
max (((, ,..., , , ,...,),)) ,

 = 0, 1, ..., 1
L

N

s i j i j i j K L i
i

U F G N

s S
 

     




 




 C

(10)

where the set of internal parameters {0, 1,…, L-1} can be
dynamically tuned by PSQA to optimize the adaptation
logic.

Finally, through solving the optimization problem, i.e.,
(10), PSQA will find the optimized internal parameters un-
der each QoE function Us(.) to maximize their QoE sepa-
rately:

  * * *
,0 ,1 , 1, ,..., = 0, 1, ..., 1s s s L s S      (11)

such that the overall QoE can be maximized. The detailed
method for solving the optimization problem is elaborated
in Section 4.2 and 4.3.

After the offline analysis, PSQA obtains the knowledge
of the optimal configurations from the past streaming ses-
sions, which will then guide the configuration in online pre-
diction phase. Specifically, the optimized parameter set, i.e.,
(11), will be loaded into the video player as part of the
streaming metadata (e.g., MPD playlist in DASH [19]). Be-
fore streaming a new session x, the viewers will be
prompted for specifying their QoE preferences (e.g., high
video quality, low rebuffering, etc.) through an interface to
the system (e.g., an option list in the video player). Based
on the specified QoE preference, PSQA then applies the in-
ternal parameters optimized under the corresponding QoE
function Us’(.), denoted by  * * *

',0 ',1 ', 1, ,...,s s s L    , to configure
the bitrate adaptation logic:

* * *
, , ,0 , ,1 , , 1 ',0 ',1 ', 1(, ,..., , , ,...,), 0,1,...,x j x j x j x j K s s s Lr G j J       

 (12)

The rationale of PSQA is that the network throughput
exhibits consistent properties over a timescale of days, so
that one can analyze past streaming sessions’ network con-
ditions to achieve predictable performance (QoE) for fu-
ture sessions [33]. In offline analysis, PSQA captures the
statistical behavior of the underlying network to optimize
the internal parameter of the adaptation logic, then the op-
timized parameter will likely result in good QoE for the
new streaming sessions online. PSQA employs a repeated
cycle of the two phases to guarantee that the value of the

Fig. 1. The overall structure of PSQA.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on June 17,2022 at 09:02:04 UTC from IEEE Xplore. Restrictions apply.

1536-1233 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TMC.2022.3161351, IEEE Transactions on Mobile Computing

AUTHOR ET AL.: TITLE 7

internal parameters can be continuously updated to main-
tain consistent QoE performance despite the evolution of
the network conditions, system infrastructures, or QoE
preferences.

4.2 Application to Heuristic-based Algorithms
We first apply PSQA to optimizing the existing heuristic-
based algorithms, and then apply it to the learning-based
ones in Section 4.3. Heuristic-based algorithms are built
upon human intuitions, which generally have a pre-pro-
grammed adaptation logic to dynamically select the video
bitrate in the light of measured throughput, buffer occu-
pancy, etc. To optimize them for a specific QoE preference,
PSQA will directly tune their internal parameters (c.f. (8))
to control their bitrate selection behavior. In the following,
we will introduce two internal parameters and demon-
strate how to tune them.

Aggressiveness Factor κ0. In general, there are four
QoE metrics that are commonly considered in streaming
videos, namely video quality, playback rebuffering, qual-
ity variations, and playback latency (only for live stream-
ing). As discussed in Section 3.2, video quality and play-
back rebuffering are a pair of inherent conflicting metrics,
and both of them are affected significantly by the bitrate
selection aggressiveness. In addition, playback latency also
has high correlations with the playback rebuffering. There-
fore, if one can explicitly regulate the bitrate selection ag-
gressiveness, the tradeoff among these three QoE metrics
can be well controlled.

Based on this insight, we introduce the first internal pa-
rameter, named Aggressiveness Factor κ0. To illustrate how
κ0 works, we take MPC [6] as an example. Specifically, in
MPC, one of the streaming variables for determining video
bitrate is the estimated throughput, which is reproduced
below:

 (1)j j jH e   (13)

where θj is the estimated throughput for determining the
bitrate of segment j, Hj is the harmonic mean throughput in
downloading the past 5 segments (i.e., segment j–6 ~ j–1)
and ej is the maximum of previous estimation error. Since
MPC relies on θj to determine the video bitrate, we can ap-
ply the Aggressiveness Factor κ0 multiplied by θj to control
the aggressiveness of bitrate selection:

 '
0j j    (14)

where the final output is denoted by '
j .

In PSQA, κ0 can be applied to different streaming algo-
rithms where the operating mechanism is similar but the
specific definition of the streaming variables depends on
the design of different adaptation logic. Table 5 summa-
rizes the detailed description for the streaming variables in
three heuristic-based algorithms. Specifically, FESTIVE is
a throughput-based algorithm that also employs harmonic
mean throughput to determine video bitrate, so κ0 can be
applied in a similar manner with MPC. BOLA is a bit dif-
ferent as it is a buffer-based algorithm and it has a tunable
ratio in its utility function [5] to control the mapping be-
tween the selected bitrate and the buffer level, so we use
the tunable ratio to denote κ0. For the detailed definitions
of the streaming variables, we refer interested readers to
the algorithms’ original studies, i.e., [4-6].

Bitrate Switching Factor κ1. As the video quality varia-
tion cannot be effectively controlled by the Aggressiveness
Factor κ0, this motivates us to introduce the second inter-
nal parameter — Bitrate Switching Factor κ1. The principle
is to limit the maximum bitrate switching magnitude
within κ1 levels.

Specifically, in practice, the video segments in DASH
are encoded into discrete bitrate versions {rh |h=0,1,…,H-1},
and each bitrate version corresponds to a certain bitrate
level h. On requesting each segment, the bitrate adaptation
logic will first determine a candidate bitrate level for the
pre-download segment j, denoted by hj, then PSQA will
compare hj with the bitrate level of the already down-
loaded segment hj-1 to limit the bitrate switching magni-
tude within κ1:

1 1 1 1

1 1 1 1

 if ,
ˆ , if

,

j j j

j j j j

j

h h h

h h h h
h otherwise

 

 
 

 

   
   



 (15)

where ˆ
jh is the final determined bitrate level1. Similar to

κ0, this mechanism can also be applied to different existing
adaptation logics where κ1 is dynamically tuned according
to the specific QoE preference. However, it is obvious that
limiting the bitrate switches would hamper the client’s re-
sponsiveness to the throughput fluctuations, so that other
QoE metrics, e.g., playback rebuffering, could be traded off.
We will further analyze the tradeoff performance in Sec-
tion 5.3.

Finally, PSQA will optimize the two internal parame-
ters (i.e., κ0 and κ1) simultaneously in offline analysis, i.e.,
(10), and then apply their optimal value into online predic-
tion, i.e., (12). The optimization problem (10) can be solved
by brute-force search or Bayesian optimization [37] in a
short time. Based on our measurement, the time-consum-
ing is typically within 20 minutes in practice. Moreover,
since PSQA is a general framework, any other internal pa-
rameters in the adaptation logic can also be applied in a
similar fashion for controlling the QoE metrics. Therefore,
exploring other effective internal parameters could be a
fruitful direction for future work.

Table 5: Streaming Variable and Aggressiveness Factor
κ0 in the Existing Heuristic-based Algorithms

Algorithm Type Streaming variable Range of κ0

FESTIVE
[4]

Throughput
based

Harmonic mean
throughput

0.1~4.0

BOLA [5] Buffer based Buffer-bitrate mapping 1.0~10.0

MPC [6]

Hybrid-
throughput-
buffer based

Harmonic mean
throughput divided by
past estimation error

0.1~3.0

1 We do not claim this method is new. Some previous work, e.g., [48], likely al-
ready implemented some similar methods.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on June 17,2022 at 09:02:04 UTC from IEEE Xplore. Restrictions apply.

1536-1233 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TMC.2022.3161351, IEEE Transactions on Mobile Computing

8 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

4.3 Application to Learning-based Algorithms
As opposed to the heuristic-based approaches, another im-
portant branch is to use machine learning techniques to
generate adaptation logics. Generally, in a separate train-
ing phase, the system is exposed to the target operating en-
vironment where it trains the adaptation logics (e.g., neu-
ral network) and tunes the internal parameters (e.g., neu-
ron weight) automatically through the observations from
past experiences (e.g., resultant QoE, buffer occupancy,
throughput, etc.).

Therefore, in the offline analysis phase of PSQA, we
propose specialized training to generate/optimize the adap-
tation logic, which takes advantage of the inborn training
process of the learning techniques to maximize the objec-
tive function, i.e., (10). Specifically, PSQA employs the vir-
tual streaming [7-9] to speed up the training (introduced in
Section 4.1), where the input is TCP throughput trace data
and the output is an ensemble of adaptation logics
{Gs|s=0,1,…,S-1} with the goal of maximizing each QoE
function in the given set {Us|s=0,1,…,S-1}. To ensure that
the training experiences enough real network conditions,
an extensive set of throughput traces, denoted by C, is in-
corporated:

 (,), 0,1,..., 1s x sG T U s S  C (16)

where the training process is denoted by function Tx(.),
which can be an arbitrary machine-learning technique, e.g.,
deep-reinforcement-learning in Pensieve [7] or genetic-
programming adopted by EAS-GP [8].

The training (i.e., offline analysis) is executed periodi-
cally by PSQA based on newly captured trace data each
day (reflecting the recent network condition). After each
training, the generated adaptation logic ensemble, i.e.,
{Gs|s=0,1,…,S-1}, will be equipped with the optimal inter-
nal parameters, i.e., (11), and then applied to the online
prediction phase, i.e., (12). At runtime, the viewers will be
prompted for specifying their preference before/during
online streaming and the system will load the adaptation
logic trained by the corresponding QoE function. For in-
stance, if the viewer prefers smooth playback, then the ad-
aptation logic optimized by the QoE function with high
penalties on rebuffering will be selected for service.

In practice, however, one can envision that the viewer
can be a layperson for video streaming, so that he/she may
have no clue on the QoE objective choice, resulting in the
system being incapable to capture his/her QoE preference.
In such a case, if the viewer’s actual preference is dissimilar
to the QoE function used in the training, the trained adap-
tation logic will suffer from extremely poor performance
because the specialized training makes the trained logic
over-specialized for the training context. For example, if
the adaptation logic is trained with the QoE function that
favors high video quality, then it would give very aggres-
sive bitrate decisions. As a result, numerous rebuffering
events would degrade the QoE significantly in the case that
the viewer prefers smooth playback.

The most intuitive method to avoid over-specialization
is to expose the adaptation logic to a more diverse training
environment and optimize the overall performance under
any potential targets. Thus, unlike maximizing every QoE

function in the original objective function, i.e., (10), we de-
fine a new form to seek the maximum of the overall QoE:

0 1

1 1

, ,0 , , 1 0 1,... 0 0
max (((,..., , ,...,),))

L

S N

s i j i j K L i
s i

U F G N
 

   


 

 
 
 C (17)

where the goal is to maximize the summation performance
of all available QoE functions, i.e., {Us(.)|s=0,1,…,S-1},
through deriving a generic adaptation logic with a set of
internal parameters that are not specific to any particular
QoE function, i.e.,  * * *

0 1 1, ,... L    .
The problem (17) can be solved by a novel generic train-

ing in which the QoE of each streaming session will be
quantified by all the QoE functions selected from the given
list. Then, the obtained QoE under each function will be
summed up to get a total reward (i.e., (17)) that will then
be fed back to the adaptation logic to let the adaptation
logic experience different QoE preference contexts:

     0,1,..., 1 ,x sG T U s S C (18)

where Tx(.) denotes the learning technique and C is the
throughput trace data. With the generic training, the out-
put adaptation logic G can be broadly applicable to various
environments without requiring the viewer to specify the
QoE preference.

Conceivably, compared to the specialized training, i.e.,
(16), the adaptation logic generated by the generic training
would tradeoff a certain degree of QoE due to its seek of
an overall optimum. In comparison, the specialized train-
ing can make the adaptation logic perform optimal in a
given context, but its over-specialization would turn into
obstacles when the target context becomes ambiguous. We
will further compare the efficacy of the two training meth-
ods in Section 5.2.

4.4 Deployment Discussion
System Complexity. In practice, in applying a system to
real streaming platforms, the computation complexity
should be configured as low as possible, as the bitrate de-
cision is performed frequently online. This can be easily
done by PSQA as most of its complexities are consolidated
into the offline analysis phase that can be executed on the
server-side, while leaving a simple prediction phase online.

For example, for offline analysis, the CDN server can be
easily extended to record the throughput trace data from
past streaming sessions when it delivers the video data to
the players over HTTP/TCP. The adaptation logic and the
internal parameters thus can be optimized by the server
and will be embedded into the meta-data of the streaming
protocols (e.g., MPD in DASH) to deliver to the video
player. For online prediction, the only computation re-
quirement is to periodically update the adaptation logic,
which is only performed once after each offline analysis. A
deeper analysis for the system’s complexity is in Appendix
A.2.

QoE Preference Selection. PSQA is a general frame-
work that does not mandate the form of the QoE objective,
so any QoE functions can be included to cover the diverse
QoE preferences. As introduced in Section 3.1, the eight
QoE functions, i.e., (1)~(6), can be incorporated into the

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on June 17,2022 at 09:02:04 UTC from IEEE Xplore. Restrictions apply.

1536-1233 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TMC.2022.3161351, IEEE Transactions on Mobile Computing

AUTHOR ET AL.: TITLE 9

system to offer eight QoE preferences for viewers to choose
from, and the detailed mapping is: U1 – “ultra-smooth
playback”, U2 – “ultra-high quality”, U3 – “balanced”, U4 –
“smooth playback”, U5 – “low quality variation”, U6 –
“high quality”, U7 – “ultra-balanced”, and U8 – “low la-
tency”. All these preferences can be presented with an op-
tion list in the video player, and the viewers can specify
their preference through the option list at any time before
or during their viewing. Moreover, for cases where the
viewer does not make any preference choice, the adapta-
tion logic generated by the generic training (i.e., (18)) will
be used for service by default.

Overall, PSQA can be readily deployed into the real
streaming platforms, offering a practical solution for the
streaming vendors. In Section 6, we implemented a proto-
type for PSQA using dash.js [25] and evaluated its perfor-
mance in the real streaming settings.

5 PERFORMANCE EVALUATION
In this section, we apply the PSQA framework to the exist-
ing adaptive streaming algorithms and show how PSQA
improves their QoE performance.

5.1 Evaluation Setting
The evaluation was conducted through trace-driven simu-
lations with the same setup as described in Section 3. PSQA
was applied to optimizing the six existing streaming algo-
rithms, namely FESTIVE [4], BOLA [5], MPC [6], Pensieve
[7], EAS-GP [8], and L2AC [40], over the eight QoE func-
tions, i.e., (1)~(6).

We used a total of 60 weeks’ TCP throughput trace data
(~80,000 streaming sessions) in the evaluation (see Table 3).
PSQA was configured to use the past one day’s trace data
in offline analysis phase and then the optimized adapta-
tion logic was applied to the next day’s online prediction
phase. For optimizing the heuristic-based algorithms, i.e.,

FESTIVE, BOLA and MPC, the tuning range of κ0 is listed
in Table 5, and κ1 is tuned in the range of 1 ~ 8. For the
learning-based algorithms, i.e., Pensieve, EAS-GP, and
L2AC, the detailed training workflow follows their origi-
nal studies [7,8,40].

5.2 QoE Performance Improvement
We first evaluate the case where the user has explicit QoE
preference. Table 6~13 summarize the normalized QoE (N-
QoE) performance over all the QoE functions where each
one represents one particular QoE preference specified by
the viewer (c.f. Section 3.1 and 4.4). In each table, the col-
umn labeled “Original” is the N-QoE achieved by the
streaming algorithms under their original settings. Similar
to Section 3, the original Pensieve, EAS-GP, and MPC were
trained/pre-optimized with QoE function U3 for a balanced
preference, and the live streaming algorithm L2AC was
trained with U8 to achieve low latency. The column labeled
“PSQA” is the N-QoE achieved after PSQA’s optimization.
We also calculated the QoE improvement proportion, la-
beled “improvement”, which is the ratio of the improved
and the original QoE. The columns labeled “κ0” and “κ1”
are the mean values of the two internal parameters tuned
by PSQA (see Section 4.2). As the internal parameter of
Pensieve, EAS-GP, and L2AC are not explicit (c.f. Section
4.3), these two columns are not applicable to them. We will
further analyze their internal mechanism in Section 5.3.

From the results, we can see that PSQA is able to im-
prove the QoE of all the streaming algorithms under all the
QoE preferences, and the improvement proportions are of-
ten substantial. In addition, for each algorithm, the QoE
variations over different QoE preferences are significantly
reduced after the optimization of PSQA.

We now elaborate on the details. First, QoE functions U1
and U2 are two extreme cases where U1 only considers
playback smoothness (e.g., low rebuffering) without re-
gard to video quality, while U2 is just the opposite. As the

Table 6: Performance under QoE Function U1
(ultra-smooth playback)

Algorithms Original PSQA Improvement κ0 κ1
FESTIVE 68.6% 80.8% 17.8% 0.1 8

BOLA 73.1% 84.5% 15.6% 1.0 8
MPC 64.1% 85.7% 33.7% 0.1 8

Pensieve 38.7% 67.2% 73.6% N/A N/A
EAS-GP 52.8% 87.5% 65.7% N/A N/A

L2AC 65.2% 80.1% 22.9% N/A N/A

Table 7: Performance under QoE Function U2

(ultra-high quality)

Algorithms Original PSQA Improvement κ0 κ1
FESTIVE 42.5% 72.4% 70.4% 4.0 8

BOLA 51.5% 81.6% 58.4% 10.0 8
MPC 70.6% 97.6% 38.2% 3.0 8

Pensieve 77.9% 99.5% 27.7% N/A N/A
EAS-GP 72.4% 99.1% 36.9% N/A N/A

L2AC 30.1% 90.2% 199.6% N/A N/A

Table 8: Performance under QoE Function U3

(balanced)

Algorithms Original PSQA Improvement κ0 κ1
FESTIVE 52.1% 63.4% 21.7% 2.7 8

BOLA 65.9% 72.2% 9.6% 6.7 8
MPC 74.6% 80.8% 8.3% 1.0 8

Pensieve 75.8% 82.1% 8.3% N/A N/A
EAS-GP 87.0% 87.3% 0.3% N/A N/A

L2AC 41.7% 75.4% 80.8% N/A N/A

Table 9: Performance under QoE Function U4
(smooth playback)

Algorithms Original PSQA Improvement κ0 κ1
FESTIVE 63.9% 72.2% 13.0% 1.6 8

BOLA 70.2% 75.1% 7.0% 4.3 8
MPC 70.1% 80.2% 14.4% 0.7 8

Pensieve 13.5% 66.3% 391.1% N/A N/A
EAS-GP 61.1% 83.1% 36.0% N/A N/A

L2AC 59.5% 80.5% 35.3% N/A N/A

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on June 17,2022 at 09:02:04 UTC from IEEE Xplore. Restrictions apply.

1536-1233 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TMC.2022.3161351, IEEE Transactions on Mobile Computing

10 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

two QoE metrics are inherent tradeoffs, the original ver-
sion of the streaming algorithms, e.g., BOLA, typically ex-
hibits good performance in one metric, e.g., U1=73.1%, but
performs much worse in the other one, e.g., U2= 51.5% (see
Table 6 and 7).

For this case, PSQA optimizes the algorithms in two op-
posite directions, where the principle is reflected by the in-
ternal parameter κ0. Specifically, under U1, the value of κ0
is tuned to the minimum value to keep the bitrate selection
conservative, so that rebuffering events can be largely
avoided. On the contrary, at U2, κ0 is tuned to be maximum
such that higher levels of bitrate can be selected to improve
the video quality as much as possible. In Table 7, it is worth
noting that the optimized MPC, Pensieve, and EAS-GP
achieve 97.6% ~ 99.5% of N-QoE at U2, close to the upper
bound, which is because they are able to choose the highest
bitrate level for almost all the video segments (while the
internal parameter in Pensieve and EAS-GP is not explicit,
the principle behind them is similar).

In comparison, other QoE functions are more compre-
hensive, incorporating both the video quality and play-
back rebuffering. Under U3, the QoE of FESTIVE and
BOLA is improved significantly, by 21.7% and 9.6% re-
spectively (Table 8), which benefits from PSQA tuning the
κ0 to achieve a more appropriate bitrate selection aggres-
siveness, thereby obtaining a more suitable metric tradeoff.
To our surprise, PSQA can still improve the QoE of MPC
and Pensieve by 8.3% at U3 despite that their original ver-
sions are already pre-optimized/trained based on U3. Ac-
cording to our further investigation, we learned that it is
because PSQA can improve the algorithm's robustness un-
der the changing network conditions. We will further ana-
lyze this point in Section 5.4.

Compared to U3, U4 puts a larger weight on the penalty
of playback rebuffering, so PSQA accordingly lowers the
algorithms’ bitrate selection aggressiveness (i.e., κ0). In this
way, the inappropriate aggressiveness of the original Pen-
sieve and EAS-GP are well corrected, such that their QoE

is improved from 13.5%/61.1% to 66.3%/83.1% respectively
(see Table 9). On the contrary, U6 favors high-quality vid-
eos, thus the bitrate selection aggressiveness is accordingly
turned up by PSQA (see Table 11).

U5 emphasizes the penalty of video quality fluctuations.
In this case, the internal parameter κ1 starts to exhibit its
effectiveness. For example, in Table 10 the original MPC
switches bitrates very frequently, so its QoE under U5 is
substantially lower than others. To tackle the issue, PSQA
turns down κ1 in MPC to limit its bitrate switching magni-
tude, so that a 23.2% QoE gain is achieved.

Finally, U8 is the only QoE function incorporating the
effect of playback latency. From the results in Table 13, it
was observed that except for L2AC, the QoE of all other
algorithms is improved by more than 10% by PSQA, which
is primarily due to PSQA’s optimization for the playback
latency. Accordingly, we measured the playback latency
achieved before and after PSQA’s optimization and pre-
sent the results in Fig. 2. It is clear that the latency of almost
all the algorithms is reduced through the optimization of
PSQA (especially Pensieve and EAS-GP) where the princi-
ple is that PSQA intelligently detects a positive correlation
between playback latency and bitrate selection aggressive-
ness and thus turns down κ0 to maintain low latency.
Moreover, for L2AC, as it was originally trained with U8,
the QoE improvement is merely 7.8%. In contrast, its QoE
is improved more significantly under U1 ~ U7, ranging from
22.9% to 98.6%.

Table 10: Performance under QoE Function U5
(low quality variation)

Algorithms Original PSQA Improvement κ0 κ1
FESTIVE 62.5% 67.1% 7.4% 2.0 7

BOLA 68.8% 73.7% 7.1% 5.2 6
MPC 56.5% 69.6% 23.2% 0.9 4

Pensieve 71.8% 79.2% 10.3% N/A N/A
EAS-GP 82.4% 85.6% 6.5% N/A N/A

L2AC 44.7% 75.9% 69.8% N/A N/A

Table 11: Performance under QoE Function U6
(high quality)

Algorithms Original PSQA Improvement κ0 κ1
FESTIVE 40.4% 67.9% 68.1% 3.4 8

BOLA 58.2% 73.2% 25.8% 7.9 8
MPC 72.3% 80.1% 10.8% 1.6 7

Pensieve 75.2% 87.2% 16.0% N/A N/A
EAS-GP 75.0% 84.9% 13.2% N/A N/A

L2AC 35.9% 71.3% 98.6% N/A N/A

Table 12: Performance under QoE Function U7
(ultra-balanced)

Algorithms Original PSQA Improvement κ0 κ1
FESTIVE 48.6% 62.1% 27.8% 2.1 7

BOLA 60.2% 74.5% 23.8% 6.1 7
MPC 71.0% 79.9% 12.5% 0.9 6

Pensieve 71.8% 81.7% 13.8% N/A N/A
EAS-GP 80.3% 86.2% 7.3% N/A N/A

L2AC 46.5% 78.1% 68.0% N/A N/A

Table 13: Performance under QoE Function U8
(low latency)

Algorithms Original PSQA Improvement κ0 κ1
FESTIVE 61.3% 69.1% 12.7% 1.2 8

BOLA 64.1% 73.4% 14.5% 3.2 8
MPC 63.7% 75.2% 18.1% 0.5 7

Pensieve 20.6% 61.3% 197.6% N/A N/A
EAS-GP 39.1% 78.1% 99.7% N/A N/A

L2AC 77.6% 83.4% 7.5% N/A N/A

 Fig. 2. Playback latency before and after PSQA’s optimization.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on June 17,2022 at 09:02:04 UTC from IEEE Xplore. Restrictions apply.

1536-1233 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TMC.2022.3161351, IEEE Transactions on Mobile Computing

AUTHOR ET AL.: TITLE 11

All the above experiments only focus on the cases with
explicit QoE preference, but as discussed in Section 4.3, the
viewer with unknown QoE preference also existed, so we
propose the generic training in Section 4.3 to fill this func-
tional gap. In this section, we use EAS-GP to test the effec-
tiveness of the generic training and compare it to the spe-
cialized training (i.e., require specifying preference) as well
as the original version (i.e., trained only with U3).

The resulting QoE performance is presented in Fig. 3,
where EAS-GP-g, EAS-GP-s, and EAS-GP-o denote the ge-
neric training, specialized training, and the original ver-
sion, respectively. Obviously, EAS-GP-g can effectively fix
the extremely poor performance of EAS-GP-o at U1, U4,
and U8, and achieve more stable QoE over the eight QoE
preferences. However, when compared to EAS-GP-s, its
QoE loss shows up, ranging from 2.8% to 12.3%, which is
inevitable because EAS-GP-g seeks an overall optimum
without being informed of the QoE preference. Overall, the
experimental results validate the efficacy of the generic
training and indicate that it can effectively address the QoE
preference unknown problem in practice.

5.3 Tradeoff Analysis among QoE Metrics
The QoE improvement shown in Section 5.2 is primarily
contributed by PSQA’s optimization for the tradeoffs
among different QoE metrics. Therefore, in this section, we
take MPC (heuristic-based) and Pensieve (learning-based)
as examples to further uncover the underlying mechanism.

We first investigate the PSQA optimized MPC (hence-
forth abbreviated as PSQA-MPC). As its mechanism is the
automatic adjustment for the two internal parameters κ0
and κ1, we manually tuned the value of the two parame-
ters respectively to quantify their effectiveness on different
QoE metrics and N-QoE. Fig. 4 plots the results of κ0. In
the upper chart, the increasing κ0 incurs the increment of
both video bitrate and rebuffering duration, which is due
to the increased bitrate selection aggressiveness that

changes the tradeoff point between the two metrics. In the
lower chart, as the three QoE functions have quite different
weights on bitrate and rebuffering (i.e., different prefer-
ences), the peak points of QoE correspond to different val-
ues of κ0. For example, the peak point under U4 has the
lowest κ0 as a more conservative adaptation logic is re-
quired while under U6 is the highest as high video quality
can be rewarded more.

Fig. 5 illustrates the result for κ1. It is observed in the
upper chart that although decreasing κ1 can significantly
reduce the video quality variations, it also leads to video
quality degradation and more rebuffering events. The rea-
son is that limiting the bitrate switches weakens the adap-
tation logic’s capability to adapt to the throughput fluctu-
ations. The resultant QoE performance is depicted in the
lower chart. With κ1 decreasing, U5 reaches the peak at
κ1=4, whereas U3 keeps degrading.

Next is to investigate PSQA-Pensieve. Analyzing the
machine-learning based algorithm is challenging because
the trained adaptation logic (e.g., neural network) is too
opaque to gain insights. To shed light on PSQA-Pensieve,
we adopted a new method. Specifically, we freeze the less
critical streaming variables in the logic, e.g., set buffer oc-
cupancy to fixed 2s and the last segment bitrate to 200kbps,
and then quantify the relationship between the bitrate

Fig. 3. The normalized QoE performance (%) under Generic Training and Specialized Training.

Fig. 4. The impact of the internal parameter κ0 (PSQA-MPC).

Fig. 6. Bitrate selection aggressiveness across three QoE functions

(PSQA-Pensieve).

Fig. 5. The impact of the internal parameter κ1 (PSQA-MPC).

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on June 17,2022 at 09:02:04 UTC from IEEE Xplore. Restrictions apply.

1536-1233 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TMC.2022.3161351, IEEE Transactions on Mobile Computing

12 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

choice versus the measured throughput, so that the bitrate
selection behavior under the training with different QoE
functions can be explicitly compared.

We plotted the results in Fig. 6 to compare the perfor-
mance under U3, U4, and U6. Note that the calibration val-
ues of the y-axis indicate the available video bitrate ver-
sions. We observed that, as the measured throughput in-
creases, the selected bitrate of the three cases all gradually
increases, but their rising slopes are different. First, under
U4, it is clear that PSQA-Pensieve intentionally selects bi-
trates much lower than the measured throughput to pre-
vent rebuffering. On the contrary, the bitrate selection un-
der U6 is most aggressive, even occasionally selecting bi-
trates higher than the measured throughput, so that high
video quality can be maintained to prevent unnecessary
QoE degradation. By comparison, the bitrate selection at
U3 is more moderate and balanced.

5.4 Network-optimized Adaptive Streaming
One experiment in Section 5.2 (i.e., in Table 8) shows that
although the original version of MPC and Pensieve are pre-
optimized/trained with U3, their QoE can still be improved
significantly after PSQA’s optimization. We conjecture that
this is due to PSQA’s ability to improve the streaming al-
gorithm's robustness across different network conditions.
To verify our conjecture, in this section, we further investi-
gate PSQA’s performance under different network envi-
ronments separately. Note that we only show MPC’s re-
sults as Pensieve has similar performance patterns. In ad-
dition, the training and testing of MPC and PSQA-MPC are
all under U3.

At first, in Table 14, we rank the network condition of
the five throughput trace sources #1 ~ #5 as “Good”, “Me-
dium”, and “Poor”, based on their mean throughput and
variations, and then measure their QoE and the internal
parameter κ0 separately. From the results, it is clear that
PSQA is able to improve MPC’s QoE in all the five trace
sources, ranging from 5.4% to 11.6%. The mechanism can
be reflected by the value of κ0 which is varied by PSQA to
appropriately adjust the bitrate selection aggressiveness
according to the specific network conditions of each trace
source. For instance, PSQA holds the lowest κ0 in #2 where
the network condition is poor (low throughput and high
variation), and conversely, gives the largest κ0 in #3 to ex-
ploit the abundant throughput.

Next, we further study the temporal variations of κ0. Fig.
7 plots the daily mean value of κ0 over a period of 70 days
where the x-axis is the number of days. In addition, the
daily mean throughput and CoV are also plotted to show
the network condition. The major observation is that κ0 is
constantly changing over time and its trajectory clearly
correlates with the daily network conditions over the 70
days. This suggests that PSQA’s periodical optimization is
essential to its performance, because it enables PSQA to
have the ability to adapt to the long-term (e.g., day) varia-
tions in the network condition (e.g., throughput variations)
and thus achieve strong robustness over the complicated
streaming/network environments.

In the default setting, the adaptation logic in PSQA is
updated on a daily basis, so one might be interested in the
effects of offline analysis with shorter or longer intervals.
To this end, we tuned the time interval from 5 minutes to
7 days to see the impacts on the QoE performance. Note
that the throughput trace data used in offline analysis is
merely from the last interval. Since PSQA-Pensieve re-
quires longer processing time than PSQA-MPC, it is not
appliable to the time intervals shorter than 1 hour. The re-
sult is summarized in Table 15 which is observed that both
too short and too long of time intervals can result in poorer
QoE performance. Longer intervals decrease the updating
frequency for the adaptation logic, thereby hampering the
PSQA’s responsiveness to the network condition changes.
On the contrary, shorter intervals introduce more noises in
the throughput detection, thereby reducing the correlation
of the network states. Therefore, in this work, we adopted
1 day as the default value. A deeper sensitivity analysis for
the amount of training data and the processing time is
shown in Appendix A.2.

6 REAL IMPLANTATION
We implemented a prototype of PSQA with the well-
known video player dash.js (version 3.11) [25] to validate
PSQA’s feasibility and performance in real-world stream-

Fig. 7. The evolution of the internal parameter κ0 over 70 days

(PSQA-MPC).

Table 14: QoE Performance and Internal Parameter κ0
across Five Throughput Trace Sources

Features #1 #2 #3 #4 #5
Network condition G P G M M

Mean throughput (Mbps) 5.97 1.21 10.1 3.12 4.43
Variation (CoV) 0.44 0.83 0.52 0.77 0.58

N-QoE of MPC (%) 78.1 70.1 76.4 72.8 73.5
N-QoE of PSQA-MPC (%) 82.3 78.2 83.7 79.2 80.4

Improvement (%) 5.4 11.6 9.6 8.8 9.4
κ0 1.07 0.79 1.13 0.91 0.94

* In the row of Network Condition, "G" means "Good", "P" means
"Poor" and "M" means "Medium".

Table 15: Sensitivity Analysis on the Time Interval of

Offline Analysis

 5 mins 1 hour 6 hours 1 day 7 days
PSQA-MPC 67.6 74.3 78.9 80.8 76.4

PSQA-Pensieve N/A 68.4 77.8 82.1 80.8

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on June 17,2022 at 09:02:04 UTC from IEEE Xplore. Restrictions apply.

1536-1233 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TMC.2022.3161351, IEEE Transactions on Mobile Computing

AUTHOR ET AL.: TITLE 13

ing setups. Specifically, we implemented the original ver-
sion of the six streaming algorithms (i.e., [4-8, 40]) into
dash.js. For Pensieve and L2AC, dash.js was configured to
fetch the bitrate choice decisions from a specialized bitrate
decision server where the trained neural network is de-
ployed. Other four algorithms were directly embedded
into “AbrController.js” of dash.js to execute. For PSQA, we
implemented its offline analysis phase with Python script
(version 2.7.18) and then ran the optimized adaptation
logic online via dash.js.

In the streaming setup, the video server host ran Linux
with the Apache httpd [34] serving video data over TCP
CUBIC [35] and the video client was a Google Chrome
browser running in a smartphone with the Android oper-
ating system. We employed an improved version of Dum-
myNet [36] to emulate the network conditions between the
client and the server, where the available throughput is
constricted by the TCP throughput trace data [28-29] along
with 80 ms minimal RTT to model propagation delay.

In addition, we selected several 300s-long videos from
the open dataset [27] which includes a total of 700+ real-
world commercial video contents. Each video was divided
into 150 segments, so every segment is approximately 2s of
playback. These videos were encoded into different bitrate
versions via H.264 codec (using FFmpeg) [44], where the
available bitrate levels are {0.2, 0.4, 0.8, 1.2, 2.2, 3.3, 5.0, 6.5,
8.6} Mbps. Other evaluation settings were identical to
those described in Section 3 and a sensitivity analysis on
the impact of the video codecs is shown in Appendix A.3.

We ran each streaming algorithm twice, i.e., using their
original settings (i.e., without PSQA) for the first time, and
then applying PSQA for a second time. Both of the runs
executed 1,000 streaming session traces (over 7 days)
where each session was evaluated by a random QoE func-
tion from (1)~(6). Note that the throughput trace data used
for each run were exactly the same.

Table 16 summarizes the absolute QoE achieved by the
original version (denoted by “Original”) and the PSQA-
optimized version (denoted by “PSQA”) of each algorithm.
Accordingly, we calculated the proportion of the QoE im-
provements. We observed that PSQA is able to improve
the QoE of all the six streaming algorithms significantly,
ranging from 18.9% to 58.0% (a bandwidth consumption
analysis is shown in Appendix A.4). In summary, the real
experimental results verify PSQA’s efficacy in the practical
operational environments and demonstrate that PSQA has
the ability to offer an immediate and practical solution for
real streaming platforms.

7 SUMMARY AND FUTURE WORKS
The PSQA framework developed in this study introduces
a novel paradigm to QoE optimization. For any existing
adaptive streaming algorithms, PSQA is able to
automatically optimize/tune their adaptation logic with
respect to any format of QoE objectives. This enables the
optimized streaming algorithms to achieve consistently
better QoE performance and stronger robustness across
different streaming scenarios. Moreover, PSQA offers a
useful tool to systematically investigate and explore the
impact of different kinds of adaptation logic on various
QoE metrics. This can potentially provide more insights on
the design of new adaptive streaming algorithms.

There are two directions for future work. First, this
work only incorporates the cases of on-demand and live
video streaming. However, PSQA is a generic framework
that can be potentially extended to any other type of
streaming service, such as 360-degree video streaming,
short video streaming, and so on. Second, since PSQA is
decoupled from the underlying streaming algorithms, we
can further modify the latter to explore the use of other
machine learning or heuristic paradigms to further
improve QoE.

ACKNOWLEDGEMENTS
The authors wish to thank the associate editor and the
anonymous reviewers for their insightful comments in im-
proving this paper. The work presented in this article is
supported by Centre for Advances in Reliability and Safety
(CAiRS) admitted under AIR@InnoHK Research Cluster.

REFERENCES
[1] Cisco Visual Networking Index: Global Mobile Data Traffic Forecase

Update, 2017-2022, Mar 2020, Cisco Inc.
[Online] https://www.cisco.com/c/en/us/solutions/collateral/
service-provider/visual-networking-index-vni/white-paper-c11-
741490.html

[2] C. Qiao, J. Wang and Y. Liu, "Beyond QoE: Diversity Adaptation
in Video Streaming at the Edge," IEEE/ACM Transactions on
Networking, vol. 29(1), Feb. 2021, pp. 289-302.

[3] S. Akhshabi, A.C. Begen and C. Dovrolis, "An Experimental
Evaluation of Rate-adaptation Algorithms in Adaptive
Streaming over HTTP," Proc. ACM Conf. Multimedia Syst.
(MMSys'11), San Jose, USA, Feb. 2011, pp. 157-168.

[4] J. Jiang, V. Sekar and H. Zhang, "Improving Fairness, Efficiency,
and Stability in HTTP-Based Adaptive Video Streaming With
Festive," IEEE/ACM Transactions on Networking, vol. 22 (1), Feb.
2014, pp. 326-340.

[5] K. Spiteri, R. Urgaonkar and R. K. Sitaraman, "BOLA: Near-
Optimal Bitrate Adaptation for Online Videos," IEEE/ACM
Transactions on Networking, vol. 28 (4), Aug. 2020, pp. 1698-1711.

[6] X. Yin, A. Jindal, V. Sekar and B. Sinopoli, “A Control-Theoretic
Approach for Dynamic Adaptive Video Streaming over HTTP,”
Proc. ACM SIGCOMM, London, United Kingdom, Aug 2015,
pp.325-338.

[7] H. Mao, R. Netravali, M. Alizadeh, “Neural Adaptive Video
Streaming with Pensieve,” Proc. ACM SIGCOMM, Los Angeles,
CA, USA, Aug 2017, pp.197-210.

Table 16: QoE Performance in Real Experiments

 Original PSQA Improvement
FESTIVE 4.65 6.05 29.7%

BOLA 5.63 6.71 19.2%
MPC 6.22 7.41 18.9%

Pensieve 4.73 7.48 58.0%
EAS-GP 6.06 7.95 31.3%

L2AC 4.46 6.55 46.9%

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on June 17,2022 at 09:02:04 UTC from IEEE Xplore. Restrictions apply.

1536-1233 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TMC.2022.3161351, IEEE Transactions on Mobile Computing

14 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

[8] G. Zhang and J. Y. B. Lee, "Ensemble Adaptive Streaming – A
New Paradigm to Generate Streaming Algorithms via
Specializations," IEEE Transactions on Mobile Computing, vol. 19
(6), June 2020, pp. 1346-1358.

[9] Z. Akhtar, Y.S. Nam, R. Govindan, “Oboe: Auto-tuning Video
ABR Algorithms to Network Conditions” Proc. ACM SIGCOMM,
Budapest, Hungary, Aug 2018, pp.44-58.

[10] Z. Li, A. Aaron, L. Katsavounidis, A. Moorthy, and M. Manohara.
Toward a Practical Perceptual Video Quality Metric (Jun. 2016).
[Online] http://techblog.netflix.com/2016/06/toward-practical-
perceptual-video.html

[11] N. Cranley, P. Perry and L. Murphy, "User Perception of
Adapting Video Quality," International Journal of Human-
Computer Studies, vol. 64(8), Aug. 2006, pp. 637-647.

[12] F. Dobrian, V. Sekar, A Awan, I. Stoica, D. Joseph, A. Ganjam, J.
Zhan and H. Zhang, "Understanding the Impact of Video
Quality on User Engagement," Proc. ACM SIGCOMM, Toronto,
Canada, Aug. 2011, pp. 362-373.

[13] R.K. Mok, E.W. Chan and R.K. Chang, "Measuring the Quality of
Experience of HTTP Video Streaming," Proc. IFIP/IEEE
International Symposium on Integrated Network Management,
Dublin, Ireland, May 2011, pp. 485-492.

[14] G. Yi, D. Yang, A. Bentaleb, W. Li, Y. Li, K. Zheng, Y. Cui, “The
ACM Multimedia 2019 Live Video Streaming Grand Challenge,”
Proc. ACM International Conference on Multimedia, Nice, France,
Oct 2019, pp. 2622-2626.

[15] X. Liu, F. Dobrian, H. Milner, J. Sekar, V. Jiang, I. Stoica and H.
Zhang, "A Case for a Coordinated Internet Video Control Plane,"
Proc. ACM SIGCOMM, Helsinki, Finland, Aug. 2012, pp. 359-370.

[16] Y. Liu, S. Dey, F. Ulupinar, M. Luby and Y. Mao, "Deriving and
Validating User Experience Model for DASH Video Streaming,"
IEEE Transactions on Broadcasting, vol. 61(4), Dec. 2015, pp. 651-
665.

[17] J. Joskowicz and J. C. L. Ardao, "A Parametric Model for
Perceptual Video Quality Estimation," Telecommunication
Systems, vol. 49 (1), 2012, pp. 49-62.

[18] A. Balachandran, V. Sekar, A. Akella, S. Seshan, I. Stoica and H.
Zhang, "Developing a Predictive Model of Quality of Experience
for Internet Video," ACM SIGCOMM Computer Communication
Review, vol. 43(4), Oct. 2013, pp. 339-350.

[19] T. Stockhammer, “Dynamic Adaptive Streaming over HTTP:
Standards and Design Principles,” Proc. ACM Multimedia Syst.,
San Jose, USA, Feb 2011, pp.133-144.

[20] J. Kua, G. Armitage, and P. Branch, “A Survey of Rate
Adaptation Techniques for Dynamic Adaptive Streaming over
HTTP,” IEEE Commun. Surveys Tuts., vol.19(3), Third Quarter
2017, pp.1842-1866.

[21] A. Bentaleb, B. Taani, A. C. Begen, C. Timmerer, R. Zimmermann,
“A Survey on Bitrate Adaptation Schemes for Streaming Media
over HTTP,” IEEE Commun. Surveys Tuts., vol.21(1), First Quarter
2019, pp. 562-585.

[22] V. Mnih, A. P. Badia, M. Mirza, A. Graves, “Asynchronous
Methods for Deep Reinforcement Learning,” International
conference on machine learning, New York City, NY, USA, Jun 2016,
pp. 1928-1937.

[23] J. R. Koza, “Genetic Programming as A Means for Programming
Computers by Natural Selection,” Springer Statistics and
computing, vol. 4(2), Jun 1994, pp.87-112.

[24] Y. Liu and J.Y.B. Lee. “A Unified Framework for Automatic
Quality-of-Experience Optimization in Mobile Video Streaming,”

Proc. IEEE INFOCOM, San Francisco, CA, USA, Apr 2016, pp.1-
9.

[25] dash.js. [Online] https://github.com/Dash-Industry-Forum/
dash.js/wiki.

[26] Trace Driven Simulator [Online]
https://github.com/hongzimao/pensieve/tree/master/sim

[27] G. Zhang, R. K. H. Ngan, and J. Y. B. Lee, "EmuStream - An End-
to-End Platform for Streaming Video Performance
Measurement," IEEE Access, vol.8, 23 Dec 2019.

[28] Mobile Throughput Trace Data.
[Online] https://github.com/Zhang-Guanghui-Nick/TCPtrace/
releases/tag/TCP-trace

[29] H. Riiser, P. Vigmostad, C. Griwodz, P. Halvorsen, “Commute
Path Bandwidth Traces from 3G Networks: Analysis and
Applications,” Proc. ACM Multimedia Syst., Oslo, Norway, Feb
2013, pp.114-118.

[30] Offline Optimal QoE Calculated by Dynamic Programming [Online]
https://github.com/hongzimao/pensieve/blob/master/test/dp.py

[31] Best Practices for Creating and Deploying HTTP Live Streaming
Media for the iPhone and iPad, Apple Inc, retrieved on Aug 2016.
[Online]
https://developer.apple.com/library/ios/technotes/tn2224/_inde
x.html

[32] Empirical Video Duration Distribution. [Online]
https://github.com/mclab-cuhk/Early-depature-trace/blob/
main/VideoDurationAll.txt

[33] Y. Liu and J.Y.B. Lee, “Post-Streaming Rate Analysis - A New
Approach to Mobile Video Streaming with Predictable
Performance,” IEEE Trans. Mobile Comput., vol.16(12), Dec 2017,
pp. 3488-3501.

[34] Apache HTTP Server Project. May 2016.
[Online]. http://httpd.apache.org/

[35] S. Ha, I. Rhee, and L. Xu, “CUBIC: A New TCP-friendly High-
speed TCP Variant,” ACM Operating Sys. Rev., vol. 42(5), July,
2008, pp. 64–74.

[36] An Improved Version of Dummynet.
[Online] https://github.com/mclab-cuhk/netmap-ipfw

[37] Bayesian Optimization Library.
[Online] https://github.com/fmfn/BayesianOptimization

[38] A. Elgabli and V. Aggarwal, "FastScan: Robust Low-Complexity
Rate Adaptation Algorithm for Video Streaming Over HTTP,"
IEEE Transactions on Circuits and Systems for Video Technology, vol.
30(7), July 2020, pp. 2240-2249.

[39] G. Zhang, J. Lee, K. Liu, H. Hu and V. Aggarwal, "A Unified
Framework for Flexible Playback Latency Control in Live Video
Streaming," IEEE Transactions on Parallel and Distributed Systems,
vol. 32(12), Dec. 2021, pp. 3024-3037.

[40] Y. Zhao, Q. Shen, W. Li, T. Xu, W. Niu, and S. Xu, “Latency
Aware Adaptive Video Streaming Using Ensemble Deep
Reinforcement Learning,” Proc. ACM International Conference on
Multimedia, Nice, France, Oct 2019, pp. 2647–2651.

[41] C. Gutterman, B. Fridman, T. Gilliland, Y. Hu, and G. Zussman.
“Stallion: Video Adaptation Algorithm for Low-latency Video
Streaming,” Proc. ACM Multimedia Systems Conference, Istanbul,
Turkey, May 2020, pp. 327–332

[42] Liyang Sun, Tongyu Zong, Yong Liu, Yao Wang, and Haihong
Zhu. 2019. “Optimal Strategies for Live Video Streaming in the
Low-latency Regime,” Proc. IEEE International Conference on
Network Protocols (ICNP), Chicago, IL, USA, Oct. 2019, pp. 1–4.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on June 17,2022 at 09:02:04 UTC from IEEE Xplore. Restrictions apply.

1536-1233 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TMC.2022.3161351, IEEE Transactions on Mobile Computing

AUTHOR ET AL.: TITLE 15

[43] Theo Karagkioules, Rufael Mekuria, Dirk Griffioen, and Arjen
Wagenaar. Online Learning for Low-latency Adaptive
Streaming. Proc. ACM Multimedia Systems Conference, Istanbul,
Turkey, May 2020, pp. 315–320.

[44] Youtube encoding settings
[Online]https://support.google.com/youtube/answer/2853702?h
l=zh-Hant#zippy=%2Cp%2Cp-fps

[45] G. Zhang, K. Liu, H. Hu, V. Aggarwal, and J. Lee, "Post-
Streaming Wastage Analysis - A Data Wastage Aware
Framework in Mobile Video Streaming," IEEE Trans. on Mobile
Computing, Early Access, Mar 2021.

[46] A. Sundarrajan, M. Kasbekar, R. K. Sitaraman, et al. “Midgress-
aware Traffic Provisioning for Content Delivery,” USENIX
Annual Technical Conference (USENIX ATC 20), July 2020, pp 543-
557.

[47] Amazon CDN Pricing.
[Online] https://aws.amazon.com/cloudfront/pricing/?nc1=h_ls

[48] C. Wang, A. Rizk, and M. Zink. “SQUAD: A Spectrum-based
Quality Adaptation for Dynamic Adaptive Streaming over
HTTP,” Proc. International Conference on Multimedia Systems
(MMSys '16), May 2016, Klagenfurt am Wörthersee, Austria, pp.
1–12.

[49] M. Uhrina, J. Frnda, L. Sevcik, “Impact of H. 264/AVC and H.
265/HEVC Compression Standards on the Video Quality for 4K
Resolution,” Advances in Electrical and Electronic Engineering, 2014,
vol 12(4), pp. 368-376.

Dr. Guanghui Zhang is currently a Research As-
sistant Professor at the Department of Computer
Science, Hong Kong Baptist University. From 2020
to 2021, he worked as a Post-Doctoral Fellow with
the Department of Computer Science and Engi-
neering, The Chinese University of Hong Kong,
and with the Centre for Advances in Reliability and
Safety, The Hong Kong Polytechnic University. Be-

fore that, he received the Ph.D. degree in Information Engineering
from The Chinese University of Hong Kong in 2020, and the M.S. de-
gree in Electronic Science and Technology from Peking University in
2016. His research interest broadly lies in networking system, multi-
media system, and machine learning.

Jie Zhang (Member, IEEE) was born in Anhui
Province, China, in 1990. He received the B.Sc.
(with honors), M.Sc. (with honors), and Ph.D. de-
grees in electrical engineering from the Yunnan
University, Yunnan, the Peking University (PKU),
Beijing, P. R. China and the Delft University of
Technology (TU Delft), Delft, The Netherlands, in

2012, 2015 and 2020, respectively. He is currently an Assistant Profes-
sor in the National Engineering Laboratory for Speech and Language
Information Processing, Faculty of Information Science and Technol-
ogy, University of Science and Technology of China (USTC), Hefei,
China. He received the Best Student Paper Award for his publication
at the 10th IEEE Sensor Array and Multichannel Signal Processing
Workshop (SAM) in Sheffield, UK. His current research interests in-
clude multi-microphone speech enhancement, sound source localiza-
tion, binaural auditory, speech recognition, and speech processing
over wireless (acoustic) sensor networks.

Yan Liu received his B.Eng. in Communication En-
gineering from University of Electronic Science
and Technology of China (UESTC), Chengdu,
China, in 2012 and Ph.D. Degree in Information
Engineering from the Chinese University of Hong
Kong, Shatin, Hong Kong, in 2016. He is currently
a Senior Engineer with the Cloud ARCH & Plat-

form Dept., Tencent, China. He has broad research interests on com-
puter networks, including but not limited to Internet congestion con-
trol and video streaming.

Dr. Haibo Hu is an associate professor in the De-
partment of Electronic and Information Engineer-
ing, Hong Kong Polytechnic University and the
programme leader of BSc (Hons) in Information Se-
curity. His research interests include cybersecurity,
data privacy, internet of things, and adversarial
machine learning. He has published over 80 re-
search papers in refereed journals, international

conferences, and book chapters. As principal investigator, he has re-
ceived over 20 million HK dollars of external research grants from
Hong Kong and mainland China as of year 2020. He has served in the
organizing committee of many international conferences, such as
ACM GIS 2021, 2020, IEEE ICDSC 2020, IEEE MDM 2019, DASFAA
2011, DaMEN 2011, 2013 and CloudDB 2011, and in the programme
committee of dozens of international conferences and symposiums.
He is the recipient of a number of titles and awards, including IEEE
MDM 2019 Best Paper Award, WAIM Distinguished Young Lecturer,
ICDE 2020 Outstanding Reviewer, VLDB 2018 Distinguished Re-
viewer, ACM-HK Best PhD Paper, Microsoft Imagine Cup, and GS1
Internet of Things Award.

Jack Y. B. Lee (M’95–SM’03) received his B.Eng.
and Ph.D. degrees in Information Engineering
from the Chinese University of Hong Kong, Shatin,
Hong Kong, in 1993 and 1997, respectively. He is
currently an Associate Professor with the Depart-
ment of Information of the Chinese University of

Hong Kong. His research group focuses on research in multimedia
communications systems, mobile communications, protocols, and ap-
plications. He specializes in tackling research challenges arising from
real-world systems. He works closely with the industry to uncover
new research challenges and opportunities for new services and ap-
plications. Several of the systems research from his lab have been
adopted and deployed by the industry.

Vaneet Aggarwal (S'08 - M'11 - SM'15) received
the B.Tech. degree in 2005 from the Indian Insti-
tute of Technology, Kanpur, India, and the M.A.
and Ph.D. degrees in 2007 and 2010, respectively
from Princeton University, Princeton, NJ, USA, all
in Electrical Engineering. He was a Senior Member
of the Technical Staff Research with AT&T Labs

Research, Bedminster, NJ, USA, from 2010 to 2014. He was an Adjunct
Assistant Professor at Columbia University, NY from 2013-2014, and
an Adjunct Professor at IISc Bangalore, India from 2018-2019. He is
currently a faculty at Purdue University, West Lafayette, IN, USA. His

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on June 17,2022 at 09:02:04 UTC from IEEE Xplore. Restrictions apply.

1536-1233 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TMC.2022.3161351, IEEE Transactions on Mobile Computing

16 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

current research interests are in communications and networking,
video streaming, cloud computing, and machine learning.

Dr. Aggarwal received Princeton University's Porter Ogden Jaco-
bus Honorific Fellowship in 2009, the AT&T Vice President Excellence
Award in 2012, the AT&T Senior Vice President Excellence Award in
2014, the 2017 Jack Neubauer Memorial Award recognizing the Best
Systems Paper published in the IEEE Transactions on Vehicular Tech-
nology, and the 2018 Infocom Workshop HotPOST Best Paper Award.
He is on the Editorial Board of the IEEE Transactions on Communica-
tions, the IEEE Transactions on Green Communications and Network-
ing, and the IEEE/ACM Transactions on Networking.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on June 17,2022 at 09:02:04 UTC from IEEE Xplore. Restrictions apply.

