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Abstract—Video streaming has grown tremendously in recent years and it is now one of the main applications on the Internet. 
Due to the networks’ inherent bandwidth fluctuations, various rate-adaptive streaming algorithms have been developed to 
compensate for such fluctuations to improve Quality-of-Experience (QoE). However, in practice, the preference for QoE typically 
differs significantly across different viewers and there is no systematic way so far to comprehensively incorporate different sets of 
conflicting QoE objectives into the algorithm design. Thus, it is not surprising that the QoE performance achieved by the existing 
algorithms is in fact far from optimal. This work aims at attacking the heart of the problem by developing a novel framework called 
Post Streaming Quality Analysis (PSQA) that can maximize the QoE under any preference through automatically tuning the 
adaptation logic of the streaming algorithms. Evaluation results show that the QoE achieved by PSQA is substantially better than 
the existing approaches and in some scenarios even close to optimal. Moreover, PSQA can be readily implemented into real 
streaming platforms, offering a practical and reliable solution for high-performance streaming services. 

Index Terms—Video Streaming; Quality-of-Experience; DASH; Video Reliability 

——————————      —————————— 

1 INTRODUCTION
ITHOUT a doubt, video streaming is one of the fast-
est-growing applications on the Internet. A report by 

Cisco [1] estimated that the global video streaming traffic 
will increase 15-fold from 2017 to 2022, accounting for 82% 
of all Internet traffic by 2022.  

Given that the Internet does not offer any bandwidth 
guarantees, the primary focus of the streaming vendors 
nowadays is the development of adaptive streaming sys-
tems to compensate for the inherent bandwidth fluctua-
tions. The core is to design intelligent bitrate adaptation al-
gorithms to dynamically adjust the video quality (bitrate) 
in the light of past measurements (e.g., throughput, buffer 

occupancy, etc.), such that Quality-of-Experience (QoE) 
can be maximized.  

In practice, however, QoE is influenced by many factors, 
which thus creates significant differences in QoE prefer-
ence among the viewers [2]. First, different types of stream-
ing services emphasize different QoE metrics. For example, 
the main focuses in on-demand streaming are video qual-
ity and playback rebuffering, while in live streaming, play-
back latency becomes the most essential one. Second, the 
properties of the last-hop network can affect the direction 
of the QoE optimization. For instance, in mobile networks 
where rapid and substantial bandwidth fluctuations are 
normal, smooth video playback (i.e., fewer rebuffering 
events) is more desirable, whereas in stable broadband net-
works, achieving high video quality is more likely to sat-
isfy the viewers; Third, the playback device affects the 
viewer’s perceptual video quality. For example, playing a 
video with the same bitrate, the video quality perceived on 
a large screen device (e.g., PC monitor) is much lower than 
that on a small screen one (e.g., smartphone).  

In addition to the aforementioned points, there are 
many other potential factors that can influence QoE, such 
as video content, subscription plan, and so on. Therefore, 
this poses a fundamental problem – how to design a 
streaming algorithm such that the resulting QoE is satis-
factory to all viewers? In recent years, although many so-
phisticated adaptive streaming algorithms have been pro-
posed (e.g., [3-9, 38-43]), most (if not all) of them only opti-
mized the QoE towards one certain QoE preference. For 
example, Microsoft’s Smooth Streaming exhibits very con-
servative behavior in its bitrate selection to keep smooth 
playback regardless of the video quality loss, while the 
Netflix player implements an aggressive rate-adaptation 
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algorithm to favor high-quality videos but at the expense 
of frequent quality switches [3,4]. While the state-of-the-art 
learning-based algorithms (e.g., Pensieve [7]) have the abil-
ity to train the adaptation logics based on an arbitrary 
given QoE objective, due to the unawareness for QoE pref-
erence, the streaming vendor merely trains one single logic 
according to a certain preference and then keep the logic 
unmodified after its deployment [7]. As a result, these ex-
isting algorithms often lead a wrong path for the viewers’ 
actual QoE preference, leading to the resultant QoE being 
far less than optimal.  

To address this problem, this work develops a unified 
framework called Post Streaming Quality Analysis (PSQA), 
which incorporates different sets of conflicting QoE objec-
tives to offer a self-adaptive system for automatic QoE op-
timization. PSQA provides two options: First, if a viewer is 
aware of their QoE preference explicitly, he/she can specify 
the preference before/during online streaming through an 
option list of the video player, then PSQA will automati-
cally optimize/tune the adaptation logic based on the cor-
responding QoE objective to maximize the QoE for the 
given preference. Second, for cases where the viewer is 
clueless about the QoE preference choice, PSQA will ena-
ble a generic adaptation logic. This logic is exposed to all 
available QoE objectives during its training to avoid over-
specialization to any particular environment, such that it 
can be broadly applicable to various environments without 
requiring the viewer to specify the preference. To the best 
of our knowledge, PSQA is the first streaming framework 
so far that can thoroughly address the QoE preference 
problem. 

Extensive evaluations showed that PSQA has three as-
pects of superiority. First, PSQA breaks through the barri-
ers to the algorithm design under different QoE objectives, 
so that the QoE performance achieved by PSQA is substan-
tially better than the existing approaches, and even close to 
optimal in some scenarios. Second, PSQA is a general 
framework which is to complement rather than replace the 
existing streaming algorithms (i.e., only tuning their adap-
tation logics while keeping their streaming workflows in-
tact). This offers an immediate and ready solution for the 
streaming platforms already in service. Last but not least, 
PSQA not only has QoE-optimization awareness, but also 
opens a new paradigm to network-optimized adaptive 
streaming. This enables PSQA to have strong robustness 
and achieve consistently better performance across a wide 
range of network environments. 

The rest of the paper is organized as follows. Section 2 
reviews the background and related works; Section 3 
demonstrates the limitations of the existing adaptive 
streaming algorithms; Section 4 presents PSQA framework 
and applies it to optimizing the existing algorithms; Sec-
tion 5 evaluates PSQA using trace-driven simulations; Sec-
tion 6 reports real experimental results from a prototype 
implementation; and Section 7 summarizes the study and 
outlines some future works. 

2 BACKGROUND AND RELATED WORKS 
In this section, we first review the studies on the method-
ology of QoE quantification, and then review the state-of-
the-art adaptive streaming algorithms. 

2.1 Quality of Experience  
In video streaming, Quality-of-Experience (QoE) is a no-
tion to quantify the goodness of the viewing experience 
perceived by the viewers, and it is the most important met-
ric to evaluate the efficacy of a streaming system. In gen-
eral, QoE is composed of a series of QoE metrics, such as 
video quality [10], the frequency of video quality switches 
[11], the magnitude of video quality switches [11], startup 
delay (waiting time for playback to commence) [12], the 
frequency of playback rebuffering [13], the duration of 
playback rebuffering [13], playback latency [14], and so on. 

Existing studies typically employed QoE function, i.e., a 
combination of different QoE metrics, to quantify the over-
all QoE performance where the coefficients (weights) in the 
function reflect the impact of each QoE metric. Many dif-
ferent formats of QoE functions have been proposed in re-
cent years, such as weighted sum [6,7,14,15], exponen-
tial/logarithmic [16,17], threshold-based table look-up [13], 
decision tree [18], etc. The value of the coefficients in the 
QoE function was usually configured by two common 
methods. For example, Mok et al. [13] and Liu et al. [16] em-
ployed subjective experiments carried out by real human 
subjects while Dobrian et al. [12] used a crowd-sourcing 
method to access the effects on user viewing engagement. 

Overall, QoE function is a good tool for quantifying the 
QoE performance achieved by the streaming systems, so it 
has been widely adopted to guide the design and optimi-
zation of streaming algorithms. 

2.2  Adaptive Streaming Algorithms 
In recent years, much work has been done in the area of 
video streaming. Beginning with non-adaptive streaming, 
the industry soon realized that the inherent bandwidth 
fluctuations posed significant challenges to the band-
width-sensitive streaming services [33]. This led to intense 
research in recent years on the design of adaptive stream-
ing systems. The principle is to divide a video into a series 
of fixed-duration segments (e.g., each a few seconds) and 
then encode them with multiple target bitrate versions. 
The client implements a bitrate adaptation algorithm that 
monitors the network condition (e.g., via measured 
throughput) and then dynamically selects the best bitrate 
version for downloading future video segments. This not 
only enables the client to stream videos across a wide range 
of networks with different bandwidth limits, but also ena-
bles it to adapt to short-term bandwidth fluctuations that 
commonly exist in mobile networks [27]. The above led to 
the Dynamic Adaptive Streaming over HTTP standard (or 
simply known as DASH [19]) proposed by the MPEG 
standard committee.  

To support the development of DASH, in recent years, 
many adaptive bitrate streaming (ABR) algorithms have 
been proposed. A detailed review of the existing work is 
beyond the scope of this paper. We refer the interested 
readers to the recent survey by Kua et al. [20] and Bentaleb 
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et al. [21] for the details. In the following, we briefly review 
some state-of-the-art studies.  

First, many adaptation algorithms were developed 
based on human intuitions. For example, Jiang et al. [4] 
proposed FESTIVE which uses harmonic mean through-
put over downloading past segments to decide the video 
bitrate. Spiteri et al. [5] devised an online control algorithm 
called BOLA which employs Lyapunov optimization to 
adapt the bitrate according to the buffer occupancy. Yin et 
al. [6] proposed MPC that makes bitrate decisions by solv-
ing a QoE maximization problem over a horizon of several 
future segments. Akhtar et al. [9] proposed Oboe that pre-
computes the discount factor of MPC according to differ-
ent network conditions, and then dynamically adjusts the 
discount factor at runtime to adapt to the network condi-
tion changes. Elgabli et al. [38] developed FastScan that op-
timizes QoE through solving a combinatorial optimization 
problem. 

Second, another branch of adaptation algorithm design 
was built upon machine learning techniques. For instance, 
Mao et al. [7] proposed Pensieve that uses A3C (a deep re-
inforcement learning algorithm [22]) to train neural net-
works for bitrate adaptation. Zhang et al. [8] developed 
EAS-GP that employs genetic programming [23] to auto-
matically evolve an adaptation algorithm ensemble for dif-
ferent network conditions. Zhao et al. [40] devised L2AC 
which also uses A3C, but in addition to bitrate adaptation, 
it also contains a playback rate adaptation logic specifically 
for achieving ultra-low playback latency in live video 
streaming. 

In practice, however, an important fact is that the view-
er's QoE preferences typically differ significantly under 
different streaming scenarios, e.g., some prefer high video 
quality while others expect less rebuffering, and the de-
tailed QoE preference of each viewer is difficult to look into 
due to its diversity. Thus, the streaming vendor nowadays 
typically designs/trains the adaptation algorithms based 
on a limited set of QoE objectives, and then keeps the algo-
rithm unmodified after deployments. As a result, it is not 
surprising that the QoE performance would exhibit sub-
stantial degradation and variation under different QoE 
preferences. To tackle this problem, this work develops the 
novel PSQA framework that can relate an arbitrary stream-
ing algorithm to an arbitrary QoE objective, and then auto-
matically optimize the algorithm’s performance with re-
spect to the given QoE objective. 

2.3 Relation to an Early Version of PSQA  
An early version of PSQA was reported in [24]. This study 
extends the earlier work in four significant aspects. First, 
adaptive streaming algorithms can be classified into two 
categories, namely heuristic-based and learning-based, 
and their techniques for generating the adaptation logic 
are different. In contrast to our earlier work only targeting 
optimizing the heuristic-based algorithms, we extended 
the scope in this work to support the learning-based ones.  

Specifically, we evaluated the state-of-the-art learning-
based algorithms, i.e., Pensieve [7], EAS-GP [8], and L2AC 
[40], and found that they exhibit far more substantial QoE 
variations over different streaming environments than the 

heuristic ones (c.f. Section 3.2). This motivates us to extend 
PSQA to optimize them, where PSQA utilizes the inborn 
offline training of the learning techniques to automatically 
generate a set of candidate adaptation logics based on dif-
ferent QoE functions, and then dynamically adjusts the 
logics online to cater to the diverse QoE preference (c.f. Sec-
tion 4.3). Overall, this extension enables PSQA to be gener-
alized enough to function on almost all the state-of-the-art 
streaming algorithms. 

Second, one hard requirement of the earlier work is to 
require the viewers to input their QoE preference. How-
ever, in practice, it is likely that the viewer is a layperson 
of streaming so that he/she has no clue about the QoE pref-
erence choice. To this end, we extended PSQA to generate 
a generic adaptation logic. This logic is exposed to all avail-
able QoE objectives during its training to avoid over-spe-
cialization to any particular environment, such that it can 
be broadly applicable to various environments without 
specifying any preference (c.f. Section 4.3 and 5.2). This ex-
tension effectively eliminates the obstacles to the QoE op-
timization under different streaming configurations. 

Third, the experiments and performance evaluations 
have been expanded substantially in this work. While our 
earlier work already employed four different QoE func-
tions for evaluations, this work further expanded the scope 
to include three new ones, i.e., by Mao et al. [7], Liu et al. 
[16], and Yi et al. [14], which favor high video quality and 
low playback latency. Furthermore, we also added five 
new state-of-the-art on-demand/live streaming algorithms, 
i.e., BOLA [5], MPC [6], Pensieve [7], EAS-GP [8], and 
L2AC [40], for comparison. Overall, the far broader range 
of evaluations enables us to obtain a better understanding 
for the algorithms’ behaviors under different QoE objec-
tives (c.f. Section 3 and Section 5). 

Last but not least, we implemented a prototype of the 
PSQA framework with dash.js [25] and reported the real 
experimental results in Section 6. The results verify the fea-
sibility of PSQA for deployment in today’s real streaming 
platforms and demonstrate its potential performance gains 
in practical operational environments. 

3 VIDEO STREAMING ALGORITHM RE-EXAMINED 
In this section, we evaluate the state-of-the-art adaptive 
streaming algorithms to demonstrate the QoE preference 
problem in the existing streaming platform. 

3.1 Experiment Setup 
To emulate the diversity of the QoE preference in practice, 
we employed eight existing QoE functions from the litera-
ture to cover different QoE preferences: 

QoE Function 1 (U1): Developed by Mok et al. [13]. This 
QoE function only includes factors about playback 
smoothness, so we define the QoE preference as “ultra-
smooth playback”. Its detailed definition is: 

 1 4.23 0.0672 0.742 0.106ti fr trU L L L      (1) 

where Lti denotes startup delay, Lfr is rebuffering frequency 
(defined as the total number of playback suspensions in 
one streaming session due to client buffer underflow), and 
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Ltr is rebuffering duration (defined as the total time con-
sumed at playback suspension). 

QoE Function 2 (U2): Developed by Joskowicz et al. [17]. 
This QoE function merely quantifies the perceptual video 
quality based on video bitrate, so we define the QoE pref-
erence as “ultra-high quality”: 

     
0.77

2 4.75 4.5 |krU avg e k  (2) 

where rk is the video bitrate selected for video segment k. 
  QoE Function 3 ~ QoE Function 5 (U3 ~ U5): Proposed 

by Yin et al. [6]. This QoE function considers multiple con-
flicting QoE metrics: 
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where Zp is the total rebuffering duration in one streaming 
session, Z is the startup delay, rk is the bitrate selected for 
segment k, |rk+1 – rk| represents the quality variations, and 
K is the total number of segments in one session. There are 
three sets of configuration options for the component 
weights, namely, Balanced: λ = 1.0 and μ = μ = 3.0, Penalize 
Rebuffering: λ = 1.0 and μ = μ = 6.0, and Penalize Quality 
Instability: λ = 3.0 and μ = μ = 3.0. We denote the three as 
U3, U4, and U5 respectively, and define the corresponding 
QoE preference as “balanced”, “smooth playback”, and 
“low quality variation”. 

QoE Function 6 (U6): Proposed by Mao et al. [7]. This 
QoE function favors high-quality videos, so the QoE pref-
erence is defined as “high quality”: 
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where hk denotes the reward for video bitrate in segment k 
(the mapping between hk and each bitrate version is listed 
in Table 1), Zp is the total rebuffering duration, and K is the 
total number of video segments in one session. 

QoE Function 7 (U7): Proposed by Liu et al. [16]. This 
QoE function is driven by subjective evaluations with real 
human perception and the QoE preference is defined as 
“ultra-balanced”: 

 5 100 0.15

                                                       0.82
ID ST LV ID ST LV
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where IID, IST, and ILV denote the penalty for startup delay, 
playback rebuffering, and poor video quality, respectively. 

QoE Function 8 (U8): Proposed by Yi et al. [14]. This QoE 
function incorporates the playback latency concerned in 
live video streaming, so the QoE preference is defined as 
“low latency”: 
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  (6)          

where lk, rk, and zk represent playback latency, video bitrate, 
and rebuffering duration in downloading segment k, re-
spectively. For the coefficient δ, if the latency lk is lower 
than 1.1s, then δ is 0.05, otherwise δ is 0.1. 

To evaluate the QoE performance in realistic network 
settings, we adopted an open trace-driven simulator devel-
oped by Mao et al. [7] and the source codes are available at 
[26]. In our evaluation, we changed a few parameters from 
their original settings. For example, we adopted the video 
bitrate profile proposed by Apple [31] where the bitrate 
ranges from 0.2 to 8.6 Mbps. The video duration follows an 
empirical distribution extracted from real streaming ser-
vices [32]. The video segment size is derived from an open 
dataset [27] that includes a total of 700+ real-world com-
mercial video contents. All the configurations were listed 
in Table 2.  

Moreover, the simulator is executed over TCP through-
put trace data obtained from real-world production net-
works. To cover different kinds of network properties, we 
used multiple sources of throughput trace [28-29], which 
have quite different throughput features with each other 
due to the various network types (e.g., 3G, 4G, and Wi-Fi), 
collection locations (e.g., campus, subway, supermarket, 
etc.), and service providers (e.g., mobile operator). Their 
detailed statistics are summarized in Table 3. In the rest of 
the paper, unless stated otherwise, the data in all the trace 
sources will be incorporated in the evaluation. In Appen-
dix A.1, we provide more details about the simulator as 
well as the TCP throughput trace data. 

3.2 Result Analysis 
We evaluated six state-of-the-art adaptive streaming algo-
rithms, where three are learning-based: Pensieve [7], EAS-
GP [8] and L2AC [40], and three are heuristic-based: FES-
TIVE [4], BOLA [5], and Robust-MPC [6] (henceforth called 

Table 2: Evaluation Settings 

Parameters Values 
Bitrate profile {0.2, 0.4, 0.8, 1.2, 2.2, 3.3, 5.0, 6.5, 8.6} Mbps 

Video duration Empirical distribution (40s to 600s) 
Segment duration 2s 

Frame rate 25 fps 
Initial video bitrate 0.2 Mbps 

Buffer capacity 60s 
Video content 700+ real-world commercial videos 

      

Table 1: The Mapping between Video Bitrate and hk 

Bitrate (Mbps) → hk 

0.2→0.78,   0.4→1.22,   0.8→2.11,   1.2→3.0,   2.2→13.4, 3.3→16.7,  
 5.0→22.2,   6.5→27.1,   8.6→34.0 

Table 3: Statistics for Five Throughput Trace Sources 

Features #1 #2 #3 #4 #5 
Mean throughput (Mbps) 5.97 1.21 10.1 3.12 4.43 

Variation (CoV)  0.44 0.83 0.52 0.77 0.58 
Network type 3G 3G LTE Wi-Fi Wi-Fi 

Collection location L1 L2 L3 L4 L5 
Service provider S1 S2 S3 S4 S5 

Session number (Kilo) 20 5 15 20 20 
       

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on June 17,2022 at 09:02:04 UTC from IEEE Xplore.  Restrictions apply. 



1536-1233 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TMC.2022.3161351, IEEE Transactions on Mobile Computing

AUTHOR ET AL.:  TITLE 5 

 

‘MPC’). In our evaluation, to emulate the existing algo-
rithms being built upon a limited set of QoE objectives in 
the current commercial platform (c.f. Section 1), we 
trained/optimized Pensieve, EAS-GP, and MPC using only 
QoE function U3 for a balanced preference. As L2AC is 
originally designed for live streaming, we trained it with 
merely U8 to involve playback latency. The adaptation 
logic of BOLA and FESTIVE are pre-programmed so they 
do not target any QoE function.  

We ran each of the algorithms over the eight QoE func-
tions, i.e., (1)~(6), respectively, to emulate the viewer’s QoE 
preference changes. We normalized the obtained absolute 
QoE through the offline optimal QoE, which is the upper 
bound QoE computed by an omniscient policy with com-
plete and perfect knowledge of future network throughput 
(according to Spiteri et al. [5] and the source code is offered 
by Mao et al. [30]). We summarized in Table 4 the overall 
mean QoE as well as the separate QoE under different QoE 
functions (preferences). The main observation is that the 
streaming algorithm’s performance varies substantially 
across different QoE functions. Pensieve is the most obvi-
ous one. It performs best under U2 and U6 whereas worst 
under U1 and U4. This is due to Pensieve’s inherent aggres-
siveness of bitrate selection which can be rewarded more 
under the high video quality preference (i.e., U2 and U6), 
but meanwhile incurs more rebuffering events, resulting in 
significant QoE degradation under the smooth playback 
preference (i.e., U1 and U4). 

In addition, Pensieve’s QoE under U8 is also very bad, 
which is because U8 represents the low latency preference 
and involves a penalty for long playback latency that has 
high correlations with playback rebuffering. The rationale 
is that during each rebuffering event where the player runs 
out of the video data, video playback will be suspended 
until sufficient data are downloaded to resume the play-
back. The live video source, on the other hand, continues 
on and thus the gap between the video playback and the 
rendering would be widened by the rebuffering event [39-
43]. Therefore, the frequent rebuffering events caused by 
Pensieve will cause long playback latency, which in turn 
significantly reduces the performance under U8. 

EAS-GP exhibits similar performance to Pensieve, but 
to a lesser extent. This benefits from EAS-GP that generates 
an ensemble of adaptation logics instead of just one single 
logic as Pensieve does, which enables EAS-GP to have 
stronger robustness than Pensieve over different environ-
ments. Nevertheless, the QoE variation in EAS-GP is also 
significant, from a low of 39.1% to a high of 87.0%.  

The live streaming algorithm L2AC is trained with U8, 
so as expected, it performs best under U8. However, due to 
its excessive focus on low latency, its bitrate selection is 
very conservative, leading to the performance under other 
QoE functions (especially U2 and U6) is extremely poor. As 
a result, L2AC’s mean QoE is the lowest among all algo-
rithms. 

In comparison, the QoE performance of the three heu-
ristic-based algorithms is a bit more stable, but still far 
from consistent. For instance, FESTIVE and BOLA achieve 
high QoE in U1 and U4 but perform much worse in U2 and 
U6. This is due to the fact that they adopt very conservative 
bitrate adaptation logics which can keep a low probability 
of rebuffering but at the expense of substantial video qual-
ity degradation. While MPC has the most stable perfor-
mance among all the algorithms, it performs obviously 
poorly (56.5%) under U5. This indicates that frequent bi-
trate switching is a distinctive feature of MPC’s bitrate ad-
aptation. 

Overall, since all these existing algorithms were not de-
signed with the diverse QoE preference in mind, but built 
on a limited set of QoE objectives, it is not surprising that 
the resulting QoE varies substantially in different scenarios. 
In the next section, we propose the PSQA framework to 
tackle this problem. 

4 POST-STREAMING QUALITY ANALYSIS 
The principle of PSQA is to exploit consistent statistical 
properties exhibited by network throughput over a long 
timescale (e.g., days) [33] to automatically optimize QoE 
for the streaming algorithms. PSQA begins with an offline 
analysis phase where captured throughput trace data from 
past streaming sessions are analyzed to optimize the adap-
tation logic for any given streaming algorithms according 
to any given QoE functions. This is done periodically (e.g., 
daily) to keep updating the adaptation logic for use in the 
second phase – online prediction phase, where the actual 
streaming occurs based on the updated logic. The system’s 
structure is illustrated by the diagram in Fig. 1. In this sec-
tion, we will first introduce the methodology of PSQA, and 
then demonstrate its applicability to the existing streaming 
algorithms. 

4.1 Methodology 
The offline analysis phase optimizes the adaptation logic 
of the target streaming algorithm according to given QoE 
functions. The PSQA framework does not mandate the 

Table 4: Comparison of Normalized QoE (%) across Different QoE Functions 

  
Mean 

U1 
(ultra-smooth  

playback) 

U2 
(ultra-high  

quality) 

U3 
(balanced)  

U4 
(smooth  

playback)  

U5 
(low quality  

variation)  

U6 
(high  

quality) 

U7 
(ultra- 

balanced) 

U8 
(low  

latency) 
FESTIVE 54.9 68.6 42.5 52.1 63.9 62.5 40.4 48.6 61.3 

BOLA 64.0 73.1 51.5 65.9 70.2 68.8 58.2 60.2 64.1 
MPC 67.9 64.1 70.6 74.6 70.1 56.5 72.3 71.0 63.7 

Pensieve 55.7 38.7 77.9 75.8 13.5 71.8 75.2 71.8 20.6 
EAS-GP 68.5 52.8 72.4 87.0 61.1 80.4 75.0 80.3 39.1 

L2AC 48.5 65.2 30.1 41.7 59.5 44.7 35.9 46.5 77.6 
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form nor the coefficients of the QoE functions. Thus, we 
define a general expression U(A) to denote the QoE func-
tion, where A represents a vector of QoE metrics, e.g., 
video bitrate, playback rebuffering, and so on. Note that 
the detailed QoE metrics depend on the definition of the 
chosen QoE function (e.g., (1)~(6)).  

Considering the viewer’s QoE preference being diverse, 
we select a list of QoE functions, denoted by {Us(A)|s = 
0,1,…,S-1}, to construct the objective function in PSQA’s 
optimization where the goal is to maximize every QoE 
function in the list. In addition, since the QoE is experi-
enced under changing network conditions, the objective 
function is calculated upon multiple streaming sessions: 

 
1

0
max ( ) ,   = 0, 1, ..., 1

N

s i
i

U N s S




 A  (7) 

where Ai is the QoE metrics derived from streaming ses-
sion i and N is the total session number. Other formats of 
objective functions (e.g., max-min) are also available and 
again the PSQA framework does not restrict their forms. 

Given the objective function, the QoE metrics inside, i.e., 
Ai, will then be determined by the streaming algorithms, 
so PSQA needs to optimize its adaptation logic such that 
the objective function can be maximized over the N stream-
ing sessions. The structures of the adaptation logic pro-
posed by the existing studies are various, but they can typ-
ically be formulated in the form of a combination of meas-
urable streaming variables (e.g., past throughput, buffer 
occupancy, etc.) and internal parameters. We thus denote 
the adaptation logic with a general function G(): 

 , , ,0 , ,1 , , 1 0 1 1( , ,..., , , ,..., ),  0,1,...,i j i j i j i j K Lr G j J         (8) 

where {i,j,0, i,j,1,…,i,j,K-1} is a total of K streaming variables 
measured at requesting video segment j in streaming ses-
sion i, {0, 1,…, L-1} is a total of L internal parameters, and 
ri,j is the output bitrate decision.  

Next is to execute the adaptation logic in the real 
streaming environment. However, as the real network 
condition is not repeatable, the measurements of more de-
tailed performance metrics such as rebuffering duration, 
playback latency, etc., are difficult to conduct in the real 
network [27]. Therefore, we propose to employ virtual 
streaming [7-9] to mimic the network condition by replay-
ing TCP throughput trace data obtained as a by-product of 

past streaming sessions (e.g., via network capturing tools 
such as tcpdump).  

Specifically, given the set of throughput trace data in 
session i, denoted by Ci, the adaptation logic can be 
executed through: 

 , ,0 , ,1 , , 1 0 1 1( ( , ,..., , , ,..., ), )i i j i j i j K L iF G       A C  (9)  

where the virtual streaming process is denoted by the 
function F() and the output is a list of QoE metrics, e.g., 
average bitrate, rebuffering duration, etc., collectively 
denoted by Ai. Since Ai is also the input of the objective 
function (i.e., (7)), so we can then construct a link to relate 
the adaptation logic to (7): 

0 1

1

, ,0 , ,1 , , 1 0 1 1,... 0
max ( ( ( , ,..., , , ,..., ), )) ,  

              = 0, 1, ..., 1
L

N

s i j i j i j K L i
i

U F G N

s S
 

     




 




 C

(10) 

where the set of internal parameters {0, 1,…, L-1} can be 
dynamically tuned by PSQA to optimize the adaptation 
logic. 

Finally, through solving the optimization problem, i.e., 
(10), PSQA will find the optimized internal parameters un-
der each QoE function Us(.) to maximize their QoE sepa-
rately: 

  * * *
,0 ,1 , 1, ,...,   = 0, 1, ..., 1s s s L s S       (11) 

such that the overall QoE can be maximized. The detailed 
method for solving the optimization problem is elaborated 
in Section 4.2 and 4.3. 

After the offline analysis, PSQA obtains the knowledge 
of the optimal configurations from the past streaming ses-
sions, which will then guide the configuration in online pre-
diction phase. Specifically, the optimized parameter set, i.e., 
(11), will be loaded into the video player as part of the 
streaming metadata (e.g., MPD playlist in DASH [19]). Be-
fore streaming a new session x, the viewers will be 
prompted for specifying their QoE preferences (e.g., high 
video quality, low rebuffering, etc.) through an interface to 
the system (e.g., an option list in the video player). Based 
on the specified QoE preference, PSQA then applies the in-
ternal parameters optimized under the corresponding QoE 
function Us’(.), denoted by  * * *

',0 ',1 ', 1, ,...,s s s L    , to configure 
the bitrate adaptation logic:  

* * *
, , ,0 , ,1 , , 1 ',0 ',1 ', 1( , ,..., , , ,..., ), 0,1,...,x j x j x j x j K s s s Lr G j J         

  (12) 

The rationale of PSQA is that the network throughput 
exhibits consistent properties over a timescale of days, so 
that one can analyze past streaming sessions’ network con-
ditions to achieve predictable performance (QoE) for fu-
ture sessions [33]. In offline analysis, PSQA captures the 
statistical behavior of the underlying network to optimize 
the internal parameter of the adaptation logic, then the op-
timized parameter will likely result in good QoE for the 
new streaming sessions online. PSQA employs a repeated 
cycle of the two phases to guarantee that the value of the 

 

Fig. 1. The overall structure of PSQA. 
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internal parameters can be continuously updated to main-
tain consistent QoE performance despite the evolution of 
the network conditions, system infrastructures, or QoE 
preferences. 

4.2 Application to Heuristic-based Algorithms  
We first apply PSQA to optimizing the existing heuristic-
based algorithms, and then apply it to the learning-based 
ones in Section 4.3. Heuristic-based algorithms are built 
upon human intuitions, which generally have a pre-pro-
grammed adaptation logic to dynamically select the video 
bitrate in the light of measured throughput, buffer occu-
pancy, etc. To optimize them for a specific QoE preference, 
PSQA will directly tune their internal parameters (c.f. (8)) 
to control their bitrate selection behavior. In the following, 
we will introduce two internal parameters and demon-
strate how to tune them. 

Aggressiveness Factor κ0. In general, there are four 
QoE metrics that are commonly considered in streaming 
videos, namely video quality, playback rebuffering, qual-
ity variations, and playback latency (only for live stream-
ing). As discussed in Section 3.2, video quality and play-
back rebuffering are a pair of inherent conflicting metrics, 
and both of them are affected significantly by the bitrate 
selection aggressiveness. In addition, playback latency also 
has high correlations with the playback rebuffering. There-
fore, if one can explicitly regulate the bitrate selection ag-
gressiveness, the tradeoff among these three QoE metrics 
can be well controlled. 

Based on this insight, we introduce the first internal pa-
rameter, named Aggressiveness Factor κ0. To illustrate how 
κ0 works, we take MPC [6] as an example. Specifically, in 
MPC, one of the streaming variables for determining video 
bitrate is the estimated throughput, which is reproduced 
below:  

 (1 )j j jH e    (13) 

where θj is the estimated throughput for determining the 
bitrate of segment j, Hj is the harmonic mean throughput in 
downloading the past 5 segments (i.e., segment j–6 ~ j–1) 
and ej is the maximum of previous estimation error. Since 
MPC relies on θj to determine the video bitrate, we can ap-
ply the Aggressiveness Factor κ0 multiplied by θj to control 
the aggressiveness of bitrate selection: 

 '
0j j     (14) 

where the final output is denoted by '
j .  

In PSQA, κ0 can be applied to different streaming algo-
rithms where the operating mechanism is similar but the 
specific definition of the streaming variables depends on 
the design of different adaptation logic. Table 5 summa-
rizes the detailed description for the streaming variables in 
three heuristic-based algorithms. Specifically, FESTIVE is 
a throughput-based algorithm that also employs harmonic 
mean throughput to determine video bitrate, so κ0 can be 
applied in a similar manner with MPC. BOLA is a bit dif-
ferent as it is a buffer-based algorithm and it has a tunable 
ratio in its utility function [5] to control the mapping be-
tween the selected bitrate and the buffer level, so we use 
the tunable ratio to denote κ0. For the detailed definitions 
of the streaming variables, we refer interested readers to 
the algorithms’ original studies, i.e., [4-6].  

Bitrate Switching Factor κ1. As the video quality varia-
tion cannot be effectively controlled by the Aggressiveness 
Factor κ0, this motivates us to introduce the second inter-
nal parameter — Bitrate Switching Factor κ1. The principle 
is to limit the maximum bitrate switching magnitude 
within κ1 levels.  

Specifically, in practice, the video segments in DASH 
are encoded into discrete bitrate versions {rh |h=0,1,…,H-1}, 
and each bitrate version corresponds to a certain bitrate 
level h. On requesting each segment, the bitrate adaptation 
logic will first determine a candidate bitrate level for the 
pre-download segment j, denoted by hj, then PSQA will 
compare hj with the bitrate level of the already down-
loaded segment hj-1 to limit the bitrate switching magni-
tude within κ1:  

 
1 1 1 1

1 1 1 1

 if ,
ˆ ,  if 

,

j j j

j j j j

j

h h h

h h h h
h otherwise

 

 
 

 

   
   



  (15) 

where ˆ
jh  is the final determined bitrate level1. Similar to 

κ0, this mechanism can also be applied to different existing 
adaptation logics where κ1 is dynamically tuned according 
to the specific QoE preference. However, it is obvious that 
limiting the bitrate switches would hamper the client’s re-
sponsiveness to the throughput fluctuations, so that other 
QoE metrics, e.g., playback rebuffering, could be traded off. 
We will further analyze the tradeoff performance in Sec-
tion 5.3. 

Finally, PSQA will optimize the two internal parame-
ters (i.e., κ0 and κ1) simultaneously in offline analysis, i.e., 
(10), and then apply their optimal value into online predic-
tion, i.e., (12). The optimization problem (10) can be solved 
by brute-force search or Bayesian optimization [37] in a 
short time. Based on our measurement, the time-consum-
ing is typically within 20 minutes in practice. Moreover, 
since PSQA is a general framework, any other internal pa-
rameters in the adaptation logic can also be applied in a 
similar fashion for controlling the QoE metrics. Therefore, 
exploring other effective internal parameters could be a 
fruitful direction for future work. 

Table 5: Streaming Variable and Aggressiveness Factor 
κ0 in the Existing Heuristic-based Algorithms 

Algorithm Type Streaming variable Range of κ0 

FESTIVE 
[4] 

Throughput 
based 

Harmonic mean 
throughput 

0.1~4.0 

BOLA [5] Buffer based Buffer-bitrate mapping 1.0~10.0 

 
MPC [6] 

Hybrid- 
throughput-
buffer based 

Harmonic mean 
throughput divided by 
past estimation error 

 
0.1~3.0 

       

1 We do not claim this method is new. Some previous work, e.g., [48], likely al-
ready implemented some similar methods. 

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on June 17,2022 at 09:02:04 UTC from IEEE Xplore.  Restrictions apply. 



1536-1233 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TMC.2022.3161351, IEEE Transactions on Mobile Computing

8 IEEE TRANSACTIONS ON JOURNAL NAME,  MANUSCRIPT ID 

 

4.3 Application to Learning-based Algorithms 
As opposed to the heuristic-based approaches, another im-
portant branch is to use machine learning techniques to 
generate adaptation logics. Generally, in a separate train-
ing phase, the system is exposed to the target operating en-
vironment where it trains the adaptation logics (e.g., neu-
ral network) and tunes the internal parameters (e.g., neu-
ron weight) automatically through the observations from 
past experiences (e.g., resultant QoE, buffer occupancy, 
throughput, etc.).  

Therefore, in the offline analysis phase of PSQA, we 
propose specialized training to generate/optimize the adap-
tation logic, which takes advantage of the inborn training 
process of the learning techniques to maximize the objec-
tive function, i.e., (10). Specifically, PSQA employs the vir-
tual streaming [7-9] to speed up the training (introduced in 
Section 4.1), where the input is TCP throughput trace data 
and the output is an ensemble of adaptation logics 
{Gs|s=0,1,…,S-1} with the goal of maximizing each QoE 
function in the given set {Us|s=0,1,…,S-1}. To ensure that 
the training experiences enough real network conditions, 
an extensive set of throughput traces, denoted by C, is in-
corporated: 

 ( , ), 0,1,..., 1s x sG T U s S  C  (16) 

where the training process is denoted by function Tx(.), 
which can be an arbitrary machine-learning technique, e.g., 
deep-reinforcement-learning in Pensieve [7] or genetic-
programming adopted by EAS-GP [8].  

The training (i.e., offline analysis) is executed periodi-
cally by PSQA based on newly captured trace data each 
day (reflecting the recent network condition). After each 
training, the generated adaptation logic ensemble, i.e., 
{Gs|s=0,1,…,S-1}, will be equipped with the optimal inter-
nal parameters, i.e., (11), and then applied to the online 
prediction phase, i.e., (12). At runtime, the viewers will be 
prompted for specifying their preference before/during 
online streaming and the system will load the adaptation 
logic trained by the corresponding QoE function. For in-
stance, if the viewer prefers smooth playback, then the ad-
aptation logic optimized by the QoE function with high 
penalties on rebuffering will be selected for service. 

In practice, however, one can envision that the viewer 
can be a layperson for video streaming, so that he/she may 
have no clue on the QoE objective choice, resulting in the 
system being incapable to capture his/her QoE preference. 
In such a case, if the viewer’s actual preference is dissimilar 
to the QoE function used in the training, the trained adap-
tation logic will suffer from extremely poor performance 
because the specialized training makes the trained logic 
over-specialized for the training context. For example, if 
the adaptation logic is trained with the QoE function that 
favors high video quality, then it would give very aggres-
sive bitrate decisions. As a result, numerous rebuffering 
events would degrade the QoE significantly in the case that 
the viewer prefers smooth playback.  

The most intuitive method to avoid over-specialization 
is to expose the adaptation logic to a more diverse training 
environment and optimize the overall performance under 
any potential targets. Thus, unlike maximizing every QoE 

function in the original objective function, i.e., (10), we de-
fine a new form to seek the maximum of the overall QoE: 

0 1

1 1

, ,0 , , 1 0 1,... 0 0
max ( ( ( ,..., , ,..., ), ))  

L

S N

s i j i j K L i
s i

U F G N
 

   


 

 
 
 C (17) 

where the goal is to maximize the summation performance 
of all available QoE functions, i.e., {Us(.)|s=0,1,…,S-1}, 
through deriving a generic adaptation logic with a set of 
internal parameters that are not specific to any particular 
QoE function, i.e.,  * * *

0 1 1, ,... L    . 
The problem (17) can be solved by a novel generic train-

ing in which the QoE of each streaming session will be 
quantified by all the QoE functions selected from the given 
list. Then, the obtained QoE under each function will be 
summed up to get a total reward (i.e., (17)) that will then 
be fed back to the adaptation logic to let the adaptation 
logic experience different QoE preference contexts: 

     0,1,..., 1 ,x sG T U s S C  (18) 

where Tx(.) denotes the learning technique and C is the 
throughput trace data. With the generic training, the out-
put adaptation logic G can be broadly applicable to various 
environments without requiring the viewer to specify the 
QoE preference. 

Conceivably, compared to the specialized training, i.e., 
(16), the adaptation logic generated by the generic training 
would tradeoff a certain degree of QoE due to its seek of 
an overall optimum. In comparison, the specialized train-
ing can make the adaptation logic perform optimal in a 
given context, but its over-specialization would turn into 
obstacles when the target context becomes ambiguous. We 
will further compare the efficacy of the two training meth-
ods in Section 5.2. 

4.4 Deployment Discussion 
System Complexity. In practice, in applying a system to 
real streaming platforms, the computation complexity 
should be configured as low as possible, as the bitrate de-
cision is performed frequently online. This can be easily 
done by PSQA as most of its complexities are consolidated 
into the offline analysis phase that can be executed on the 
server-side, while leaving a simple prediction phase online.  

For example, for offline analysis, the CDN server can be 
easily extended to record the throughput trace data from 
past streaming sessions when it delivers the video data to 
the players over HTTP/TCP. The adaptation logic and the 
internal parameters thus can be optimized by the server 
and will be embedded into the meta-data of the streaming 
protocols (e.g., MPD in DASH) to deliver to the video 
player. For online prediction, the only computation re-
quirement is to periodically update the adaptation logic, 
which is only performed once after each offline analysis. A 
deeper analysis for the system’s complexity is in Appendix 
A.2.  

QoE Preference Selection. PSQA is a general frame-
work that does not mandate the form of the QoE objective, 
so any QoE functions can be included to cover the diverse 
QoE preferences. As introduced in Section 3.1, the eight 
QoE functions, i.e., (1)~(6), can be incorporated into the 
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system to offer eight QoE preferences for viewers to choose 
from, and the detailed mapping is: U1 – “ultra-smooth 
playback”, U2 – “ultra-high quality”, U3 – “balanced”, U4 – 
“smooth playback”, U5 – “low quality variation”, U6 – 
“high quality”, U7 – “ultra-balanced”, and U8 – “low la-
tency”. All these preferences can be presented with an op-
tion list in the video player, and the viewers can specify 
their preference through the option list at any time before 
or during their viewing. Moreover, for cases where the 
viewer does not make any preference choice, the adapta-
tion logic generated by the generic training (i.e., (18)) will 
be used for service by default.  

Overall, PSQA can be readily deployed into the real 
streaming platforms, offering a practical solution for the 
streaming vendors. In Section 6, we implemented a proto-
type for PSQA using dash.js [25] and evaluated its perfor-
mance in the real streaming settings. 

5 PERFORMANCE EVALUATION 
In this section, we apply the PSQA framework to the exist-
ing adaptive streaming algorithms and show how PSQA 
improves their QoE performance. 

5.1 Evaluation Setting 
The evaluation was conducted through trace-driven simu-
lations with the same setup as described in Section 3. PSQA 
was applied to optimizing the six existing streaming algo-
rithms, namely FESTIVE [4], BOLA [5], MPC [6], Pensieve 
[7], EAS-GP [8], and L2AC [40], over the eight QoE func-
tions, i.e., (1)~(6). 

We used a total of 60 weeks’ TCP throughput trace data 
(~80,000 streaming sessions) in the evaluation (see Table 3). 
PSQA was configured to use the past one day’s trace data 
in offline analysis phase and then the optimized adapta-
tion logic was applied to the next day’s online prediction 
phase. For optimizing the heuristic-based algorithms, i.e., 

FESTIVE, BOLA and MPC, the tuning range of κ0 is listed 
in Table 5, and κ1 is tuned in the range of 1 ~ 8. For the 
learning-based algorithms, i.e., Pensieve, EAS-GP, and 
L2AC, the detailed training workflow follows their origi-
nal studies [7,8,40]. 

5.2 QoE Performance Improvement 
We first evaluate the case where the user has explicit QoE 
preference. Table 6~13 summarize the normalized QoE (N-
QoE) performance over all the QoE functions where each 
one represents one particular QoE preference specified by 
the viewer (c.f. Section 3.1 and 4.4). In each table, the col-
umn labeled “Original” is the N-QoE achieved by the 
streaming algorithms under their original settings. Similar 
to Section 3, the original Pensieve, EAS-GP, and MPC were 
trained/pre-optimized with QoE function U3 for a balanced 
preference, and the live streaming algorithm L2AC was 
trained with U8 to achieve low latency. The column labeled 
“PSQA” is the N-QoE achieved after PSQA’s optimization. 
We also calculated the QoE improvement proportion, la-
beled “improvement”, which is the ratio of the improved 
and the original QoE. The columns labeled “κ0” and “κ1” 
are the mean values of the two internal parameters tuned 
by PSQA (see Section 4.2). As the internal parameter of 
Pensieve, EAS-GP, and L2AC are not explicit (c.f. Section 
4.3), these two columns are not applicable to them. We will 
further analyze their internal mechanism in Section 5.3. 

From the results, we can see that PSQA is able to im-
prove the QoE of all the streaming algorithms under all the 
QoE preferences, and the improvement proportions are of-
ten substantial. In addition, for each algorithm, the QoE 
variations over different QoE preferences are significantly 
reduced after the optimization of PSQA. 

We now elaborate on the details. First, QoE functions U1 
and U2 are two extreme cases where U1 only considers 
playback smoothness (e.g., low rebuffering) without re-
gard to video quality, while U2 is just the opposite. As the 

Table 6: Performance under QoE Function U1 
(ultra-smooth playback) 

Algorithms Original PSQA Improvement κ0 κ1 
FESTIVE 68.6% 80.8% 17.8% 0.1 8 

BOLA 73.1% 84.5% 15.6% 1.0 8 
MPC 64.1% 85.7% 33.7% 0.1 8 

Pensieve 38.7% 67.2% 73.6% N/A N/A 
EAS-GP 52.8% 87.5% 65.7% N/A N/A 

L2AC 65.2% 80.1% 22.9% N/A N/A 

Table 7: Performance under QoE Function U2 

(ultra-high quality) 

Algorithms Original PSQA Improvement κ0 κ1 
FESTIVE 42.5% 72.4% 70.4% 4.0 8 

BOLA 51.5% 81.6% 58.4% 10.0 8 
MPC 70.6% 97.6% 38.2% 3.0 8 

Pensieve 77.9% 99.5% 27.7% N/A N/A 
EAS-GP 72.4% 99.1% 36.9% N/A N/A 

L2AC 30.1% 90.2% 199.6% N/A N/A 

       

Table 8: Performance under QoE Function U3 

(balanced) 

Algorithms Original PSQA Improvement κ0 κ1 
FESTIVE 52.1% 63.4% 21.7% 2.7 8 

BOLA 65.9% 72.2% 9.6% 6.7 8 
MPC 74.6% 80.8% 8.3% 1.0 8 

Pensieve 75.8% 82.1% 8.3% N/A N/A 
EAS-GP 87.0% 87.3% 0.3% N/A N/A 

L2AC 41.7% 75.4% 80.8% N/A N/A 

Table 9: Performance under QoE Function U4 
(smooth playback) 

Algorithms Original PSQA Improvement κ0 κ1 
FESTIVE 63.9% 72.2% 13.0% 1.6 8 

BOLA 70.2% 75.1% 7.0% 4.3 8 
MPC 70.1% 80.2% 14.4% 0.7 8 

Pensieve 13.5% 66.3% 391.1% N/A N/A 
EAS-GP 61.1% 83.1% 36.0% N/A N/A 

L2AC 59.5% 80.5% 35.3% N/A N/A 
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two QoE metrics are inherent tradeoffs, the original ver-
sion of the streaming algorithms, e.g., BOLA, typically ex-
hibits good performance in one metric, e.g., U1=73.1%, but 
performs much worse in the other one, e.g., U2= 51.5% (see 
Table 6 and 7).  

For this case, PSQA optimizes the algorithms in two op-
posite directions, where the principle is reflected by the in-
ternal parameter κ0. Specifically, under U1, the value of κ0 
is tuned to the minimum value to keep the bitrate selection 
conservative, so that rebuffering events can be largely 
avoided. On the contrary, at U2, κ0 is tuned to be maximum 
such that higher levels of bitrate can be selected to improve 
the video quality as much as possible. In Table 7, it is worth 
noting that the optimized MPC, Pensieve, and EAS-GP 
achieve 97.6% ~ 99.5% of N-QoE at U2, close to the upper 
bound, which is because they are able to choose the highest 
bitrate level for almost all the video segments (while the 
internal parameter in Pensieve and EAS-GP is not explicit, 
the principle behind them is similar). 

In comparison, other QoE functions are more compre-
hensive, incorporating both the video quality and play-
back rebuffering. Under U3, the QoE of FESTIVE and 
BOLA is improved significantly, by 21.7% and 9.6% re-
spectively (Table 8), which benefits from PSQA tuning the 
κ0 to achieve a more appropriate bitrate selection aggres-
siveness, thereby obtaining a more suitable metric tradeoff. 
To our surprise, PSQA can still improve the QoE of MPC 
and Pensieve by 8.3% at U3 despite that their original ver-
sions are already pre-optimized/trained based on U3. Ac-
cording to our further investigation, we learned that it is 
because PSQA can improve the algorithm's robustness un-
der the changing network conditions. We will further ana-
lyze this point in Section 5.4.   

Compared to U3, U4 puts a larger weight on the penalty 
of playback rebuffering, so PSQA accordingly lowers the 
algorithms’ bitrate selection aggressiveness (i.e., κ0). In this 
way, the inappropriate aggressiveness of the original Pen-
sieve and EAS-GP are well corrected, such that their QoE 

is improved from 13.5%/61.1% to 66.3%/83.1% respectively 
(see Table 9). On the contrary, U6 favors high-quality vid-
eos, thus the bitrate selection aggressiveness is accordingly 
turned up by PSQA (see Table 11). 

U5 emphasizes the penalty of video quality fluctuations. 
In this case, the internal parameter κ1 starts to exhibit its 
effectiveness. For example, in Table 10 the original MPC 
switches bitrates very frequently, so its QoE under U5 is 
substantially lower than others. To tackle the issue, PSQA 
turns down κ1 in MPC to limit its bitrate switching magni-
tude, so that a 23.2% QoE gain is achieved.  

Finally, U8 is the only QoE function incorporating the 
effect of playback latency. From the results in Table 13, it 
was observed that except for L2AC, the QoE of all other 
algorithms is improved by more than 10% by PSQA, which 
is primarily due to PSQA’s optimization for the playback 
latency. Accordingly, we measured the playback latency 
achieved before and after PSQA’s optimization and pre-
sent the results in Fig. 2. It is clear that the latency of almost 
all the algorithms is reduced through the optimization of 
PSQA (especially Pensieve and EAS-GP) where the princi-
ple is that PSQA intelligently detects a positive correlation 
between playback latency and bitrate selection aggressive-
ness and thus turns down κ0 to maintain low latency. 
Moreover, for L2AC, as it was originally trained with U8, 
the QoE improvement is merely 7.8%. In contrast, its QoE 
is improved more significantly under U1 ~ U7, ranging from 
22.9% to 98.6%. 

Table 10: Performance under QoE Function U5 
(low quality variation) 

Algorithms Original PSQA Improvement κ0 κ1 
FESTIVE 62.5% 67.1% 7.4% 2.0 7 

BOLA 68.8% 73.7% 7.1% 5.2 6 
MPC 56.5% 69.6% 23.2% 0.9 4 

Pensieve 71.8% 79.2% 10.3% N/A N/A 
EAS-GP 82.4% 85.6% 6.5% N/A N/A 

L2AC 44.7% 75.9% 69.8% N/A N/A 

Table 11: Performance under QoE Function U6 
(high quality) 

Algorithms Original PSQA Improvement κ0 κ1 
FESTIVE 40.4% 67.9% 68.1% 3.4 8 

BOLA 58.2% 73.2% 25.8% 7.9 8 
MPC 72.3% 80.1% 10.8% 1.6 7 

Pensieve 75.2% 87.2% 16.0% N/A N/A 
EAS-GP 75.0% 84.9% 13.2% N/A N/A 

L2AC 35.9% 71.3% 98.6% N/A N/A 

       

Table 12: Performance under QoE Function U7 
(ultra-balanced) 

Algorithms Original PSQA Improvement κ0 κ1 
FESTIVE 48.6% 62.1% 27.8% 2.1 7 

BOLA 60.2% 74.5% 23.8% 6.1 7 
MPC 71.0% 79.9% 12.5% 0.9 6 

Pensieve 71.8% 81.7% 13.8% N/A N/A 
EAS-GP 80.3% 86.2% 7.3% N/A N/A 

L2AC 46.5% 78.1% 68.0% N/A N/A 

Table 13: Performance under QoE Function U8 
(low latency) 

Algorithms Original PSQA Improvement κ0 κ1 
FESTIVE 61.3% 69.1% 12.7% 1.2 8 

BOLA 64.1% 73.4% 14.5% 3.2 8 
MPC 63.7% 75.2% 18.1% 0.5 7 

Pensieve 20.6% 61.3% 197.6% N/A N/A 
EAS-GP 39.1% 78.1% 99.7% N/A N/A 

L2AC 77.6% 83.4% 7.5% N/A N/A 

    

 
   Fig. 2. Playback latency before and after PSQA’s optimization. 
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All the above experiments only focus on the cases with 
explicit QoE preference, but as discussed in Section 4.3, the 
viewer with unknown QoE preference also existed, so we 
propose the generic training in Section 4.3 to fill this func-
tional gap. In this section, we use EAS-GP to test the effec-
tiveness of the generic training and compare it to the spe-
cialized training (i.e., require specifying preference) as well 
as the original version (i.e., trained only with U3).  

The resulting QoE performance is presented in Fig. 3, 
where EAS-GP-g, EAS-GP-s, and EAS-GP-o denote the ge-
neric training, specialized training, and the original ver-
sion, respectively. Obviously, EAS-GP-g can effectively fix 
the extremely poor performance of EAS-GP-o at U1, U4, 
and U8, and achieve more stable QoE over the eight QoE 
preferences. However, when compared to EAS-GP-s, its 
QoE loss shows up, ranging from 2.8% to 12.3%, which is 
inevitable because EAS-GP-g seeks an overall optimum 
without being informed of the QoE preference. Overall, the 
experimental results validate the efficacy of the generic 
training and indicate that it can effectively address the QoE 
preference unknown problem in practice. 

5.3 Tradeoff Analysis among QoE Metrics 
The QoE improvement shown in Section 5.2 is primarily 
contributed by PSQA’s optimization for the tradeoffs 
among different QoE metrics. Therefore, in this section, we 
take MPC (heuristic-based) and Pensieve (learning-based) 
as examples to further uncover the underlying mechanism.  

We first investigate the PSQA optimized MPC (hence-
forth abbreviated as PSQA-MPC). As its mechanism is the 
automatic adjustment for the two internal parameters κ0 
and κ1, we manually tuned the value of the two parame-
ters respectively to quantify their effectiveness on different 
QoE metrics and N-QoE. Fig. 4 plots the results of κ0. In 
the upper chart, the increasing κ0 incurs the increment of 
both video bitrate and rebuffering duration, which is due 
to the increased bitrate selection aggressiveness that 

changes the tradeoff point between the two metrics. In the 
lower chart, as the three QoE functions have quite different 
weights on bitrate and rebuffering (i.e., different prefer-
ences), the peak points of QoE correspond to different val-
ues of κ0. For example, the peak point under U4 has the 
lowest κ0 as a more conservative adaptation logic is re-
quired while under U6 is the highest as high video quality 
can be rewarded more.  

Fig. 5 illustrates the result for κ1. It is observed in the 
upper chart that although decreasing κ1 can significantly 
reduce the video quality variations, it also leads to video 
quality degradation and more rebuffering events. The rea-
son is that limiting the bitrate switches weakens the adap-
tation logic’s capability to adapt to the throughput fluctu-
ations. The resultant QoE performance is depicted in the 
lower chart. With κ1 decreasing, U5 reaches the peak at 
κ1=4, whereas U3 keeps degrading. 

Next is to investigate PSQA-Pensieve. Analyzing the 
machine-learning based algorithm is challenging because 
the trained adaptation logic (e.g., neural network) is too 
opaque to gain insights. To shed light on PSQA-Pensieve, 
we adopted a new method. Specifically, we freeze the less 
critical streaming variables in the logic, e.g., set buffer oc-
cupancy to fixed 2s and the last segment bitrate to 200kbps, 
and then quantify the relationship between the bitrate 

 
Fig. 3. The normalized QoE performance (%) under Generic Training and Specialized Training. 

 
Fig. 4. The impact of the internal parameter κ0 (PSQA-MPC). 

       

 
Fig. 6. Bitrate selection aggressiveness across three QoE functions 

(PSQA-Pensieve). 

 
Fig. 5. The impact of the internal parameter κ1 (PSQA-MPC). 
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choice versus the measured throughput, so that the bitrate 
selection behavior under the training with different QoE 
functions can be explicitly compared. 

We plotted the results in Fig. 6 to compare the perfor-
mance under U3, U4, and U6. Note that the calibration val-
ues of the y-axis indicate the available video bitrate ver-
sions. We observed that, as the measured throughput in-
creases, the selected bitrate of the three cases all gradually 
increases, but their rising slopes are different. First, under 
U4, it is clear that PSQA-Pensieve intentionally selects bi-
trates much lower than the measured throughput to pre-
vent rebuffering. On the contrary, the bitrate selection un-
der U6 is most aggressive, even occasionally selecting bi-
trates higher than the measured throughput, so that high 
video quality can be maintained to prevent unnecessary 
QoE degradation. By comparison, the bitrate selection at 
U3 is more moderate and balanced. 

5.4 Network-optimized Adaptive Streaming 
One experiment in Section 5.2 (i.e., in Table 8) shows that 
although the original version of MPC and Pensieve are pre-
optimized/trained with U3, their QoE can still be improved 
significantly after PSQA’s optimization. We conjecture that 
this is due to PSQA’s ability to improve the streaming al-
gorithm's robustness across different network conditions. 
To verify our conjecture, in this section, we further investi-
gate PSQA’s performance under different network envi-
ronments separately. Note that we only show MPC’s re-
sults as Pensieve has similar performance patterns. In ad-
dition, the training and testing of MPC and PSQA-MPC are 
all under U3. 

At first, in Table 14, we rank the network condition of 
the five throughput trace sources #1 ~ #5 as “Good”, “Me-
dium”, and “Poor”, based on their mean throughput and 
variations, and then measure their QoE and the internal 
parameter κ0 separately. From the results, it is clear that 
PSQA is able to improve MPC’s QoE in all the five trace 
sources, ranging from 5.4% to 11.6%. The mechanism can 
be reflected by the value of κ0 which is varied by PSQA to 
appropriately adjust the bitrate selection aggressiveness 
according to the specific network conditions of each trace 
source. For instance, PSQA holds the lowest κ0 in #2 where 
the network condition is poor (low throughput and high 
variation), and conversely, gives the largest κ0 in #3 to ex-
ploit the abundant throughput.  

Next, we further study the temporal variations of κ0. Fig. 
7 plots the daily mean value of κ0 over a period of 70 days 
where the x-axis is the number of days. In addition, the 
daily mean throughput and CoV are also plotted to show 
the network condition. The major observation is that κ0 is 
constantly changing over time and its trajectory clearly 
correlates with the daily network conditions over the 70 
days. This suggests that PSQA’s periodical optimization is 
essential to its performance, because it enables PSQA to 
have the ability to adapt to the long-term (e.g., day) varia-
tions in the network condition (e.g., throughput variations) 
and thus achieve strong robustness over the complicated 
streaming/network environments. 

In the default setting, the adaptation logic in PSQA is 
updated on a daily basis, so one might be interested in the 
effects of offline analysis with shorter or longer intervals. 
To this end, we tuned the time interval from 5 minutes to 
7 days to see the impacts on the QoE performance. Note 
that the throughput trace data used in offline analysis is 
merely from the last interval. Since PSQA-Pensieve re-
quires longer processing time than PSQA-MPC, it is not 
appliable to the time intervals shorter than 1 hour. The re-
sult is summarized in Table 15 which is observed that both 
too short and too long of time intervals can result in poorer 
QoE performance. Longer intervals decrease the updating 
frequency for the adaptation logic, thereby hampering the 
PSQA’s responsiveness to the network condition changes. 
On the contrary, shorter intervals introduce more noises in 
the throughput detection, thereby reducing the correlation 
of the network states. Therefore, in this work, we adopted 
1 day as the default value. A deeper sensitivity analysis for 
the amount of training data and the processing time is 
shown in Appendix A.2. 

6 REAL IMPLANTATION 
We implemented a prototype of PSQA with the well-
known video player dash.js (version 3.11) [25] to validate 
PSQA’s feasibility and performance in real-world stream-

 
Fig. 7. The evolution of the internal parameter κ0 over 70 days 

(PSQA-MPC). 

Table 14: QoE Performance and Internal Parameter κ0 
across Five Throughput Trace Sources 

Features #1 #2 #3 #4 #5 
Network condition G P G M M 

Mean throughput (Mbps) 5.97 1.21 10.1 3.12 4.43 
Variation (CoV)  0.44 0.83 0.52 0.77 0.58 

N-QoE of MPC (%) 78.1 70.1 76.4 72.8 73.5 
N-QoE of PSQA-MPC (%) 82.3 78.2 83.7 79.2 80.4 

Improvement (%) 5.4 11.6 9.6 8.8 9.4 
κ0 1.07 0.79 1.13 0.91 0.94 

* In the row of Network Condition, "G" means "Good", "P" means 
"Poor" and "M" means "Medium". 

       
Table 15: Sensitivity Analysis on the Time Interval of  

Offline Analysis 

 5 mins 1 hour 6 hours 1 day 7 days  
PSQA-MPC 67.6 74.3 78.9 80.8 76.4 

PSQA-Pensieve N/A 68.4 77.8 82.1 80.8 
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ing setups. Specifically, we implemented the original ver-
sion of the six streaming algorithms (i.e., [4-8, 40]) into 
dash.js. For Pensieve and L2AC, dash.js was configured to 
fetch the bitrate choice decisions from a specialized bitrate 
decision server where the trained neural network is de-
ployed. Other four algorithms were directly embedded 
into “AbrController.js” of dash.js to execute. For PSQA, we 
implemented its offline analysis phase with Python script 
(version 2.7.18) and then ran the optimized adaptation 
logic online via dash.js.  

In the streaming setup, the video server host ran Linux 
with the Apache httpd [34] serving video data over TCP 
CUBIC [35] and the video client was a Google Chrome 
browser running in a smartphone with the Android oper-
ating system. We employed an improved version of Dum-
myNet [36] to emulate the network conditions between the 
client and the server, where the available throughput is 
constricted by the TCP throughput trace data [28-29] along 
with 80 ms minimal RTT to model propagation delay.  

In addition, we selected several 300s-long videos from 
the open dataset [27] which includes a total of 700+ real-
world commercial video contents. Each video was divided 
into 150 segments, so every segment is approximately 2s of 
playback. These videos were encoded into different bitrate 
versions via H.264 codec (using FFmpeg) [44], where the 
available bitrate levels are {0.2, 0.4, 0.8, 1.2, 2.2, 3.3, 5.0, 6.5, 
8.6} Mbps. Other evaluation settings were identical to 
those described in Section 3 and a sensitivity analysis on 
the impact of the video codecs is shown in Appendix A.3.  

We ran each streaming algorithm twice, i.e., using their 
original settings (i.e., without PSQA) for the first time, and 
then applying PSQA for a second time. Both of the runs 
executed 1,000 streaming session traces (over 7 days) 
where each session was evaluated by a random QoE func-
tion from (1)~(6). Note that the throughput trace data used 
for each run were exactly the same.  

Table 16 summarizes the absolute QoE achieved by the 
original version (denoted by “Original”) and the PSQA-
optimized version (denoted by “PSQA”) of each algorithm. 
Accordingly, we calculated the proportion of the QoE im-
provements. We observed that PSQA is able to improve 
the QoE of all the six streaming algorithms significantly, 
ranging from 18.9% to 58.0% (a bandwidth consumption 
analysis is shown in Appendix A.4). In summary, the real 
experimental results verify PSQA’s efficacy in the practical 
operational environments and demonstrate that PSQA has 
the ability to offer an immediate and practical solution for 
real streaming platforms.  

7 SUMMARY AND FUTURE WORKS 
The PSQA framework developed in this study introduces 
a novel paradigm to QoE optimization. For any existing 
adaptive streaming algorithms, PSQA is able to 
automatically optimize/tune their adaptation logic with 
respect to any format of QoE objectives. This enables the 
optimized streaming algorithms to achieve consistently 
better QoE performance and stronger robustness across 
different streaming scenarios. Moreover, PSQA offers a 
useful tool to systematically investigate and explore the 
impact of different kinds of adaptation logic on various 
QoE metrics. This can potentially provide more insights on 
the design of new adaptive streaming algorithms. 

There are two directions for future work. First, this 
work only incorporates the cases of on-demand and live 
video streaming. However, PSQA is a generic framework 
that can be potentially extended to any other type of 
streaming service, such as 360-degree video streaming, 
short video streaming, and so on. Second, since PSQA is 
decoupled from the underlying streaming algorithms, we 
can further modify the latter to explore the use of other 
machine learning or heuristic paradigms to further 
improve QoE. 
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