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Abstract—Fueled by the emerging short video applications (e.g., TikTok), streaming short-form videos nowadays is ubiquitous 
among mobile users. During the viewing, one common action is to scroll the screen to switch videos, which is a handy operation 
for the viewers to quickly search for content of interest. However, our empirical measurements reveal that frequent video switching 
can result in nearly half of the mobile data quota being used for transferring the video data that is never watched. This problem is 
called data loss in this work. Given the immense cost of the network infrastructure, such a high proportion of data loss is financially 
tremendous to both mobile users and streaming vendors. To tackle the problem, this study proposes a novel system called Data 
Usage Aware Short Video Streaming (DUASVS), where a new Integrated Learning is used to capture the characters of past 
network conditions and then trains intelligent adaptation models to reduce data loss and save data usage. Extensive evaluations 
show that DUASVS is able to save 70.7%~83.2% of mobile data usage without incurring any QoE degradation. Moreover, the 
system exhibits strong robustness, performing consistently over a wide range of network environments as well as video streaming 
sessions. 

Index Terms—Short video streaming, Mobile network, Data usage, Quality-of-Experience, Video reliability 

——————————      —————————— 

1 INTRODUCTION
OBILE video streaming has seen tremendous growth 
in the past decade and is now a mainstream applica-

tion on the mobile Internet. Beginning with the delivery of 
professionally authored video content (e.g., movies, news), 
a new trend in recent years was the streaming of user-gen-
erated videos to share personal lives. This trend drove the 
explosive advances of some short-form video applications 
such as TikTok [1], Douyin [2], and Kwai [3], which have 
been downloaded over billions of times globally in the past 
few years [4-6].  

One common operation from these short video applica-
tions is known as scrolling the screen. Specifically, with so 
many genres of videos, it is not surprising that not all the 
application-recommended videos satisfy the taste of view-
ers. If a viewer is not interested in the video content cur-
rently being played, he/she can scroll the screen at any time 
to switch to the next one. For viewers, scrolling the screen 
is such a handy action to promptly search for the content 
of interest. However, for the ongoing video sessions, if the 
videos are switched before being completely played back, 
the already downloaded but unwatched part would be dis-
carded by the player, such that the bandwidth consumed 
in transferring them would be wasted. At first glance, such 
bandwidth wastage may not appear to be a severe problem. 
However, previous studies [4-6] as well as our empirical 
measurements (see Section 3) found that it is common for 
the viewers to switch the short videos frequently during 
the viewing, which results in an average of 44.2% mobile 
data losses. 

In fact, the cause of the data loss is rooted in the archi-
tecture of the short video streaming system. First, it adopts 
the HTTP-based protocol that transfers data as fast as TCP 
allows. Whenever the HTTP/TCP throughput is higher 
than the video bitrate, the video player will keep fetching 
the short videos following a playlist and then buffer them 
locally. While such buffering mechanism can effectively 
avoid the playback rebuffering events as the buffered 
video data is able to absorb the bandwidth fluctuation, it 
would lead to a large amount of mobile data being lost in 
the presence of frequent video switching. Second, unlike 
the conventional video-on-demand (VoD) platforms (e.g., 
YouTube) adopting the bitrate adaptive scheme (c.f. DASH 
[7]), the short video streaming system encodes the video 
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contents into a fixed low bitrate version (approximately 1 
Mbps according to our measurement). In practice, how-
ever, such a bitrate version is typically lower than the 
available HTTP/TCP throughput, and, as a result, the data 
loss problem is exacerbated.  

The mobile data loss can result in substantial financial 
losses due to the expensive operating costs of the network 
infrastructure. First, a previous study [8] reported that, the 
streaming vendors typically spent hundreds of millions of 
dollars on the CDN bandwidth annually, which means 
that the 44.2% of mobile data loss (measured in Section 3) 
wastes at least tens of millions of dollars each year, which 
is far from trivial. Second, today’s mobile data service pur-
chased by users typically has a hard data quota, e.g., 10 GB 
per month [35]. If data usage exceeds the given quota, us-
ers have to purchase additional data at a higher price. In 
terms of the 44.2% mobile data loss, users in fact consume 
nearly half of their data quota for transferring the video 
data that is never watched. 

One conventional method to reduce the mobile data 
loss was to limit the amount of video prefetch data (i.e., the 
data in the buffer) [9-11]. Intuitively, if a video player 
merely prefetches 1s of video data at most, then in the 
worst case only the 1s worth of data will be lost upon the 
video switching. However, the video prefetch exists for an 
important reason – to buffer video data such that the play-
back can be sustained during the periods of poor network 
condition. Too little prefetch data will likely lead to more 
rebuffering events and thus significant QoE degradation, 
which is an even bigger problem than the data loss [16]. 
Therefore, a grand challenge posed is how to effectively re-
duce the mobile data loss while keeping the QoE intact.  

This work tackles this challenge by developing a novel 
system called Data Usage Aware Short Video Streaming 
(DUASVS), which saves the mobile data usage through the 
dynamically adaptive control for video prefetch and bi-
trates. Specifically, our empirical study on real-world 
streaming traces showed that, in streaming short videos, 
the network conditions experienced differ significantly 
across different viewers, which suggests that training one 
single adaptation model for all the viewers is unlikely to 
achieve optimal performance [26]. Built upon this insight, 
we developed the novel Integrated Learning in DUASVS 
to first segregate the network conditions into different cat-
egories, and then automatically generate/train a special-
ized adaptation model for each category to determine the 
video bitrate as well as the prefetch threshold for each 
video. At runtime, whenever a viewer starts a video ses-
sion, the system will match him/her to a particular cate-
gory based on his/her past network condition and then ap-
ply the corresponding adaptation model for use in online 
streaming. In this way, DUASVS can enhance the system 
strength to effectively reduce the data loss in various 
streaming environments. 

Extensive evaluations showed that DUASVS is able to 
save 70.7%~83.2% of mobile data usage without incurring 
any QoE degradations, which significantly outperforms 
the state-of-the-art algorithms in current short video 
streaming. Moreover, DUASVS exhibits strong robustness, 

performing consistently across a wide range of networks 
as well as video sessions. Last but not least, DUASVS can 
be readily deployed into the real streaming platform, offer-
ing an immediate and practical solution to the data loss 
problem.  

The rest of the paper is organized as follows: Section 2 
reviews the background and related work; Section 3 con-
ducts an empirical study to measure the mobile data loss; 
Section 4 presents the design of DUASVS; Section 5 evalu-
ates the performance of DUASVS and compares it to the 
state-of-the-art algorithms; Section 6 discusses the imple-
mentation and deployment of DUASVS, and Section 7 
summarizes the study and outlines some future works. 

2 BACKGROUND AND RELATED WORKS 
In the short video streaming system, the streaming server 
learns the interests of viewers from their previous access 
records and then pushes relevant genres of videos to them. 
The videos are downloaded one by one following a playlist 
and then are played back in a full-screen manner on the 
client's mobile devices. If the viewer is not interested in the 
video content currently being played, he/she can switch 
the video at any time. Since these short video applications 
(e.g., TikTok, Douyin) were merely launched a couple of 
years ago, only a few studies have focused on them. 

The earliest work was by Chen et al. [4] who conducted 
a measurement study on Douyin [2] and revealed many 
problems. For instance, they found that a considerable pro-
portion of videos pushed by the recommended system fail 
to attract the interest of viewers, such that these uninter-
ested videos would be switched/terminated rapidly. In ad-
dition, the short videos were encoded with only one fixed 
bitrate version around 1 Mbps without adopting the bitrate 
adaptation scheme like DASH. However, while this study 
pointed out many limitations for the current short video 
streaming, the authors did not propose any methods to ad-
dress them. 

In another study, He et al. [5] found that frequent video 
switching in watching short videos is a very common be-
havior among the viewers (consistent with our findings in 
Section 3). They measured that such behaviors can rapidly 
drain the buffered video data, resulting in substantial play-
back rebuffering events. To this end, they proposed a new 
strategy called LiveClip, which tries to predict the viewer’s 
future switching behavior and estimate the viewing dura-
tion of the subsequent videos (i.e., when the videos will be 
switched). Based on this, their system will then determine 
the downloading sequence for the follow-up videos to 
maintain a safe buffer occupancy to avoid rebuffering.  

Ran et al. [6] developed SSR which breaks the current 
encoding mechanism for short-form videos (i.e., using one 
fixed bitrate version) and turns to encode the video content 
into multiple bitrate versions to perform bitrate adaptation. 
This system also tries to predict the viewer’s future switch-
ing behavior, and then allocates high-level bitrate to the 
videos with longer predicted engagement time and low bi-
trate to that will be rapidly switched. As a result, the video 
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quality experienced by the viewers can be substantially im-
proved under the limited bandwidth resources.  

However, both the systems by He et al. [5] and Ran et al. 
[6] rely heavily on the estimation for the viewing duration 
of the subsequent videos, and their estimation is merely 
based on the viewer’s past behavior. According to our in-
vestigation, this is far from enough to achieve high predic-
tion accuracy, as when the viewers switch the videos is also 
influenced by many other factors, such as their interests in 
the video content, playback smoothness, and so on [30]. 
Therefore, while these two systems can somewhat improve 
the QoE performance, they cannot effectively tackle the 
data loss problem investigated in this study.  

In the conventional VoD streaming, there are some 
studies to save data usage by limiting the client buffer ca-
pacity. For example, Yarnagula et al. [9] proposed SARA, 
which limits the amount of data in the buffer with a pre-
defined 20s buffer threshold. The methodology is that 
when the client buffer occupancy reaches the buffer thresh-
old, the client request for downloading the next segment 
will be delayed until the buffer occupancy falls below the 
threshold. Similarly, Chen et al. [10] proposed an algorithm 
that also adopts the buffer threshold but set the value to 
30s. In another study by Huang et al. [11], the solution is 
slightly different. They proposed to use the Lyapunov op-
timization theory to design a dynamic buffer allocation 
strategy and the goal is to save the total data usage for all 
the mobile users served by one base station. Although lim-
iting the buffered data is also in principle effective in re-
ducing the data loss in short video streaming, as discussed 
in Section 1, it can lead to far more rebuffering events, thus 
degrading the QoE performance significantly.  

In comparison, to our knowledge, the proposed DU-
ASVS is the first system so far that can thoroughly tackle 
the data loss problem in short video streaming while keep-
ing the QoE intact. An early version of DUASVS is pro-
posed in our conference paper [12], where the system is 
called WAS. This study extends the conference version in 
three significant aspects.  

First, to reduce the data loss, the early version WAS em-
ploys two tunable parameters to control the video prefetch 
and the bitrate selection respectively. It extracts the corre-
lation between the data loss and QoE by capturing the fea-
tures from the past network environment to reduce the ad-
verse impacts on QoE. However, our investigation showed 
that the two tunable parameters in WAS are not expressive 
enough to cover all the features in the past environments 
such that the resulting performance is inevitable sub-opti-
mal. Therefore, in this work, we turn to using deep rein-

forcement learning A3C [13] to learn from the past envi-
ronments, and then train deep neural networks to express 
the learned features. More details will be elaborated in Sec-
tion 4.1~4.2. Moreover, we conducted experiments in Sec-
tion 5 to quantify the performance improvement of DU-
ASVS over WAS. 

Second, the early version WAS suffers from deploy-
ment issues in practice. Specifically, as the network condi-
tion may differ significantly across different video clients, 
WAS's parameter optimization is designed as per-viewer 
basis to match different network environments. Therefore, 
as the number of viewers (i.e., video clients) increases, the 
computational overhead increases dramatically. This un-
doubtedly occupies a large amount of computational re-
source when the client scales and thus would hinder the 
large-scale deployment on the real streaming platforms.  

In comparison, in DUASVS, we developed Integrated 
Learning which first segregates the network conditions 
into a limited number of categories, and then trains the 
specialized adaptation model for each category to deter-
mine the video bitrate as well as the prefetch threshold for 
each video. At runtime, the system will match each video 
session to a particular category based on their network 
condition and then apply the corresponding adaptation 
model for use in the online streaming. In this way, DU-
ASVS not only achieves a much lower training overhead, 
but also has strong robust performance over various 
streaming environments. More details for the Integrated 
Learning are provided in Section 4.3 and 4.4. 

Third, the scope of the experiments and performance 
evaluations has been expanded substantially in this work. 
While our earlier work already employs TCP throughput 
trace data for experiments and performance evaluation, 
this work further expands the scope to incorporate five in-
dependent trace sources (see Section 5.1), which include 
3G, 4G/LTE, as well as Wi-Fi networks. In addition, these 
network traces were captured from different locations and 
served by multiple service providers. The far broader 
scope of the evaluation environments enables us to gain a 
better understanding for the behaviors and performance of 
the streaming algorithms (see Section 5.3). 

3 EMPIRICAL STUDY 
In this work, we collaborated with an anonymous (short 
video) streaming vendor who provided us with a stream-
ing trace dataset collected from their commercial video 
servers. This dataset records three months of video access 
log over 6 million video sessions from 120 thousand view-
ers (we call these data as video property trace in the rest of 
this paper). We have publicized part of formatted trace 

 
Fig. 2. Probability Density Function (PDF) of video bitrate. 

 
Fig. 1. Probability Density Function (PDF) of video physical duration. 
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data in [31], and we will gradually publicize the whole da-
taset after obtaining the permission from the streaming 
vendor. Based on the dataset, we conducted an empirical 
study to investigate the current commercial setup of the 
short video streaming platform. 

3.1 Commercial Setup 
Fig. 1 plots the PDF distribution for the video physical du-
ration. We observed that most of the videos (~82%) in the 
dataset last less than 60s, which is significantly shorter 
than that in the conventional VoD services (e.g., YouTube) 
[15]. Furthermore, there are two prominent peaks at 13s 
and 57s in the figure, which is because the streaming ven-
dor pre-configured two video duration thresholds (15s and 
60s) with the purpose of restricting the maximum physical 
duration for the videos captured/uploaded from the clients.  

Next, we investigated the video encoding bitrate. In Fig. 
2, we plotted the PDF distribution for the actual bitrate 
over different videos. We observed that the bitrate of most 
videos in the dataset is lower than 2 Mbps, typically sur-
rounding 1 Mbps. This suggests that the videos are en-
coded with a fixed bitrate version (as opposed to the bitrate 
adaptive streaming like DASH [7]), where the target en-
coding bitrate is approximately set at 1 Mbps. With regard 
to adopting such encoding configurations, the streaming 
vendor has two practical considerations. On one hand, 
since the short video applications are merely applicable to 
mobile devices with limited screen size, the video quality 
perceived by the viewer is typically higher than that on the 
PC monitors. On the other hand, the adopted bitrate is gen-
erally lower than today’s available TCP throughput, so 
that playback rebuffering can be largely avoided. There-
fore, the resulting viewing experience from the adopted 
encoding bitrate (i.e., about 1 Mbps) is acceptable to most 
viewers. 

However, in fact, such configurations are far from opti-
mal, which can be reflected by the throughput utilization 
ratio κi, defined as 

 =i i ir X  (1) 

where ri is the mean bitrate of video i and Xi is the mean 
measured throughput during downloading video i. Fig. 3 
plots the CDF distribution for κi across all the videos. To 

our surprise, more than 80% of the streamed videos only 
utilize less than 20% of the available throughput. In this 
case, the video player often prefetches/buffers a large num-
ber of videos prior to its playback schedule. While the buff-
ered video data can compensate for the bandwidth fluctu-
ations to avoid rebuffering, it would lead to a large amount 
of mobile data loss upon frequent video switching. We will 
investigate this problem in detail next.         

3.2 Mobile Data Loss Measurement 
Data loss is caused by the downloaded video data not be-
ing watched but discarded by the video player when the 
video is switched. Therefore, to quantify the data loss, we 
need to measure the proportion of each video being 
watched and downloaded [30].  

The viewing ratio i is defined as the ratio for the video 
watched duration Vi to the total video physical duration Li 
in video i, i.e., 

 i i iV L   (2) 

Similarly, we define download ratio τi that is the ratio for 
video downloaded duration Di to the total video physical 
duration Li, i.e., 

 i i iD L   (3) 

In Table 1, we calculate the average of the two ratios 
over all the videos, respectively. It is evident that a signifi-
cant proportion of videos are switched/terminated early, 
with an overall average viewing ratio of 54.4%. In compar-
ison, the download ratio is much higher with an overall 
average of 97.1%. Furthermore, we plot the CDF distribu-
tions for the two ratios in Fig. 4 where we can observe a 
huge gap between the two CDF curves. All these results 
reveal a fact that a large amount of downloaded video data 
is not played but discarded by the player, so the mobile 
data consumed in transferring them is ultimately lost. 

Next, we measured the daily amount of data loss from 
the perspective of the streaming vendor side (their servers 
on average stream 216 million short videos every day). The 
data loss amount is calculated from the difference between 
the video data downloaded and viewed: 

 
Fig. 3. Cumulative Distribution Function (CDF) of  

throughput utilization ratio. 

Table 1. Video Switching and Data Loss 
Video duration Mean viewing ratio (%) Mean download ratio (%) Data loss ratio (%) Daily data loss amount (Petabyte) 

<30s 70.1 99.0 29.6 1.05 
≥30s 48.1 96.2 50.1 3.27 
All 54.4 97.1 44.2 4.32 

 
Fig. 4. Cumulative Distribution Function (CDF) of  

video download ratio and viewing ratio. 
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where Wk is the data loss at day k, dk,i,j, sk,i,j, lk,i,j, vk,i,j are the 
video data downloaded, segment size, full segment dura-
tion, and viewed segment duration for the segment j in 
video i, respectively. Furthermore, we compute the data 
loss ratio, denoted by R, from 
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We summarize the data loss measurement results in Ta-
ble 1 as well where the results for the videos longer and 
shorter than 30s are presented separately. There are three 
observations: First, the most noticeable one is the 44.2% 
data loss ratio, which is such a tremendous proportion in-
dicating nearly half of the video data delivered being lost. 
Second, on average, 4.32 Petabytes of mobile data are lost 
every day. Given the pricing of Amazon CDN [17], such an 
amount of data loss can consume the streaming vendor 
nearly $100 million annually which is a striking cost. Third, 
the longer videos (i.e., ≥30s) exhibit more substantial data 
loss than their shorter counterparts (i.e., <30s), e.g., 50.1% 
vs. 29.6%. This is because the longer videos are generally 
switched relatively earlier by the viewers (reflected by the 
viewing ratios 48.1% vs 70.1%), resulting in a larger 
amount of prefetch video data being discarded. 

Considering the mobile data loss is directly caused by 
the viewer's decision on the video switching, so we next 
measured the switching behavior of the individual viewers. 
We randomly picked three viewers (A, B, and C) from the 
dataset and calculated their viewing ratio and data loss ra-
tio over a period of six weeks. The results are shown in Ta-
ble 2. We can see that the three viewers exhibit quite dif-
ferent viewing behaviors as well as the resultant data loss. 
For example, viewer C's viewing ratio is relatively lower 
while the data loss is the highest. On the contrary, viewer 
B has the highest viewing ratio but losses the least amount 
of data. In comparison, in the view of the time series, all 
the three viewers’ viewing ratios and data loss ratios are 
relatively consistent from week to week, which suggests 
that there are no significant changes in their individual be-
haviors. 

From the results in Table 2, we conjecture that the net-
work throughput is likely to have similar characters, be-
cause the network condition is also the key factor for the 
degree of the data loss. To this end, in Table 3, we meas-
ured the weekly mean throughput and throughput coeffi-
cient-of-variation (CoV) from the same three viewers. As 
expected, both the mean throughput and CoV differ dra-
matically across different viewers but exhibit a high degree 
of consistency over the six weeks. This consistency can be 
presumably explained by the fact that the geographic loca-
tion of each viewer is relatively fixed when streaming the 
short videos day by day (as observed from the dataset), so 
each of them has a high probability to be served by the 
same Wi-Fi hotspots or cellular base stations that typically 
have similar quality of service [15]. Overall, the results of-
fer an insight that the significant network condition differ-
ences over different viewers and the potential network en-
vironment changes due to the geographic location change 
should be considered in the system design. 

4 DATA USAGE AWARE SHORT VIDEO STREAMING 
Inspired by the findings from Section 3, we develop a novel 
system called Data Usage Aware Short Video Streaming 
(DUASVS) to help the users save the data usage in stream-
ing the short-form videos. DUASVS incorporates two key 
modules: 1) Integrated Learning (see Section 4.3) that is to 
train a set of candidate data-saving aware adaptation mod-
els (the structure of the model is described in Section 
4.1~4.2), and 2) Online Model Selection (see Section 4.4) that 
is to select/pick out the most appropriate trained model for 
use in the streamed videos online. 

4.1 Data Saving Mechanisms 
Since the mobile data loss is primarily attributed to the 
downloaded but unwatched video data, the most intuitive 
solution is to control and limit the video prefetch. Based on 
this insight, we define a prefetch threshold βi to function in 
video i. The mechanism is to limit the actual prefetch du-
ration Bi within βi: 

 min{ , }i i iB L  (6) 

where Li is the video physical duration of video i. Once the 
prefetch duration reaches Bi, the video player will shift to 
fetching video i+1, and the rest part of video i will be down-
loaded when it starts to be played back.  

Table 2. Viewing Ratio and Data Loss Ratio of Three 
Viewers over Six Weeks 

 Two ratios 
(%) 

Weeks 
Viewers 1 2 3 4 5 6 

A VR 57.5 56.7 53.1 60.8 56.7 61.4 
DLR 32.1 34.9 38.2 30.4 34.9 30.1 

B VR 76.7 70.2 78.1 79.4 75.7 78.2 
DLR 22.7 28.9 21.4 20.2 23.3 21.6 

C VR 32.7 31.2 33.0 37.9 31.3 34.7 
DLR 66.5 68.2 65.5 61.6 67.3 63.2 

 * “VR” denotes Viewing Ratio (%); “DLR” is Data Loss Ratio (%). 

Table 3. Network Conditions of Three Viewers over Six 
Weeks 

 Throughput 
metrics 

Weeks 
Viewers 1 2 3 4 5 6 

A MT (Mbps) 5.56 4.11 5.19 7.33 6.86 7.10 
CoV 0.83 0.92 0.74 0.77 0.95 0.99 

B MT (Mbps) 22.6 32.9 23.2 19.6 31.8 26.8 
CoV 0.44 0.39 0.53 0.69 0.59 0.40 

C MT (Mbps) 18.0 18.7 19.2 13.1 10.3 14.2 
CoV 0.37 0.41 0.22 0.41 0.30 0.39 

* “MT” is Mean Throughput (Mbps); “CoV” denotes throughput variations 
quantified by coefficient-of-variation. 
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As discussed, however, too small a βi will likely lead to 
substantial rebuffering events, especially in poor network 
conditions. Therefore, we develop an adaptation model (in 
Section 4.2) to dynamically tune the value of βi based on 
the specific network environment. To facilitate the design 
of the adaptation model, we discretize βi into several can-
didate values, denoted by 

 ,0 ,1 , 1{ , ,..., }i i i Z      (7) 

The adaptation model will be introduced in Section 4.2. 
Furthermore, as discussed in Section 3, the fixed low en-

coding bitrate for the short videos is the catalyst for the 
substantial data loss, so another intuitive method is to 
make the video bitrate match the TCP throughput so as to 
slow down the video prefetch and buffering process (intu-
itively assuming the bitrate is always exactly equal to the 
available throughput, videos do not need to be prefetched 
while no rebuffering events will occur).  

To this end, we turn to encode the videos into multiple 
bitrate versions: 

 ,0 ,1 , 1{ , ,..., }i i i Hr r r    (8) 

and then develop an adaptation model (see Section 4.2) to 
automatically determine the bitrate level to enable the size 
of the requested video segments to match the changing 
throughput. In this way, not only the data loss can be 
reduced, but video quality can be improved. 

4.2 Data-usage Aware Adaptation Model 
Built upon the two mechanisms in Section 4.1, we define 
the structure of the adaptation models for the data loss 
control. Since the learning process of DUASVS is to employ 
A3C [13] (a state-of-the-art deep reinforcement learning 
technique), the adaptation model is an Actor-Critic neural 
network. The structure is illustrated in Fig. 5, which con-
tains three neural networks, namely, Actor Network 
(Prefetch), Actor Network (Bitrate), and Critic Network. 
The descriptions for their input states and output actions 
are summarized in Table 4. We will elaborate on them in 
the following. 

Moreover, it is worth noting that the reason for adopt-
ing A3C is its widespread application in the design of the 
video streaming algorithms [5,6,18,19,20] as well as the fact 

that it can achieve quite good performance. Nevertheless, 
there are still many other candidate machine learning tech-
niques to choose from, such as Q-learning [21], DQN [22], 
Policy Gradient [23], and so on. We have also implemented 
them into our cases and compared them to A3C in Section 
5. 

Input States. On requesting each short video, e.g., video 
i, the adaptation model takes input states Si into its neural 
networks, which contain five independent states: State 0 is 
to detect the current network condition. It is a vector of 
measured throughput where the mean throughput during 
downloading each of the past K segments is formed as a 
sample, i.e., {ci,0, ci,1, …, ci,K-1,}. State 1 is the current whole 
buffer occupancy bi (at the timepoint on requesting video i) 
which alerts the potential playback rebuffering events. 
State 2 is the size of the video at the H encoding bitrate lev-
els, denoted by {si,0, si,1, …, si,H-1}, which indicates the actual 
bitrate variation [24]. State 3 is the video physical duration, 
denoted by Li, which is to incorporate the viewer behaviors 
in watching different durations of videos (c.f. Section 3.2). 
State 4 is the determined bitrate for the last requested video 
i-1, denoted by ri-1, which works as a prompter for the 
video quality fluctuations. 

Actor-Critic Network and Output Actions. The neural 
network structure shown in Fig. 5 is defined as a combina-
tion of one-dimensional CNNs and fully connected net-
works to build the deterministic policy for the prefetch 
threshold as well as the video bitrate. Specifically, the Ac-
tor Network (Prefetch) specifies the mapping from any cer-
tain states to the prefetch threshold. Upon receiving the in-
put state Si, it will determine an action, i.e., the prefetch 
threshold, for the next video, where the decision is based 
on the deterministic policy function represented by the 
neural network. Its output is a SoftMax activation function 
[25] to normalize and formulate the probability distribu-
tion over different candidate values of prefetch threshold, 
i.e., (7), denoted by 

  , , 0,1,..., 1i z iP S z Z    (9)  

Table 4. Inputs and Outputs of the Actor-Critic Network 

 
 
 

Input 
states Si 

State 0 The measured TCP throughput in 
past K segments, {ci,0, ci,1, …, ci,K-1,}. 

State 1 Current buffer occupancy bi. 
State 2 The size of the video at different bi-

trate levels, {si,0, si,1,…, si,H-1}. 
State 3 Video physical duration Li. 
State 4 The video bitrate of the last re-

quested video ri-1. 
 
 

Output 

Actor  
network 

(Prefetch) 

The probability of prefetch threshold 
βi,z being selected at state Si, i.e., 

P(βi,z|Si), z=0,1,...,Z-1. 
Actor  

network 
(Bitrate) 

The probability of bitrate level ri,h be-
ing selected at state Si, i.e., P(ri,h|Si), 

h=0,1,...,H-1. 
Critic  

network 
The estimated value at state Si to cal-

culate TD error, denoted by v(Si). 
 

 
Fig. 5. The adaptation model of DUASVS. 
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representing the probability of prefetch threshold βi,z being 
selected upon state Si. The final decision will be randomly 
made based on the probability distribution.  

The Actor Network (Bitrate) has exactly the same struc-
ture as the Actor Network (Prefetch) except for the output: 

  , , 0,1,..., 1i h iP S hr H   (10) 

which denotes the probability of bitrate level ri,h being se-
lected at the input state Si. Similarly, the system will then 
randomly choose a candidate bitrate from (8) based on the 
probability distribution. 

The two actor networks determine the actions for the 
next video, while the Critic network outputs a value, i.e., 
v(Si), which is used to calculate the TD (Temporal Differ-
ence) error [13,37] based on the observed rewards. The TD 
error will then be fed back to the neural networks to further 
promote the training for achieving better performance. 

4.3 Integrated Learning 
Once the structure of the adaptation model is defined, it 
does not require any manual tuning anymore, but its inter-
nal neuron weights will be optimized through offline train-
ing. Specifically, the adaptation model will be exposed to 
the training streaming environment and the actions (i.e., (9) 
and (10)) will be determined based on the observed states 
(i.e., Si). The neuron weights will then be evolved accord-
ing to the resultant reward computed from past experi-
ences. After the training, a fixed mapping between the in-
put states and the outputs actions will be formed in the ad-
aptation model, which is the deterministic policy function. 
At runtime, the adaptation model will be used for online 
streaming where the real streaming environment will pro-
vide the input states and then the adaptation model will 
determine the action automatically based on the determin-
istic policy function. 

We have introduced the input states and the output ac-
tions of the adaptation model in Section 4.2, and in this sec-
tion, we will introduce the definition of the reward func-
tion and how to build the streaming environment to train 
the adaptation model. 

Reward Function. After each action decision, the video 
with the determined bitrate level will be requested and 
streamed in the streaming environment, and meanwhile, 
the prefetch duration of each video will be limited within 
the determined prefetch threshold. The reward can then be 
calculated through the resulting streaming performance to 
express the goodness of the past action decisions. There-
fore, the definition of the reward function will directly 
guide the system’s training direction.  

In order to enable the adaptation model with data usage 
saving awareness as well as maintaining high QoE, we de-
fine the reward function by combining QoE function U (as 
a positive utility) and data loss amount W (as a penalty 
utility) into a unified utility function to make the problem 
become a utility-maximization problem, i.e., 

 F U W    (11) 

where U can be any format of conventional QoE functions, 
e.g., [18,24,27], typically including video bitrate, rebuffer-
ing, etc. (a sample of the QoE function is shown by (22) in 
Section 5.1), and μ is the penalty weight for the data loss W. 

In practice, however, reducing the data loss may af-
fect/impair the QoE (e.g., too short a prefetch duration may 
incur rebuffering), but due to the complexity of the net-
work environment, it is unclear how to appropriately nor-
malize the utilities between the two metrics in (11) to avoid 
the QoE impairment. Therefore, we adopted a different ap-
proach where we let the penalty weight μ to be tunable to 
control the performance tradeoff. For instance, a smaller 
value of μ will train an adaptation model with better QoE 
performance but less significant data usage saving, and 
vice versa. Based on this principle, we define a total of P 
values of μ, i.e., {μp|p=0,1,…,P-1}, to generate P different 
reward functions: 

  0,1, ,, 1p p pF U W P      (12) 

which will be used to train p different adaptation models 
separately. We will introduce the training later. 

Network Condition. To speed up the training, DU-
ASVS employs virtual streaming [18,30,32] to emulate the 
streaming environment, where the adaptation model is ex-
ecuted in a simulated streaming environment replayed by 
TCP throughput trace data captured from real networks 
[28-29] and video property trace introduced in Section 3. 
Specifically, for downloading each video, the download 
time is first calculated based on the determined video bi-
trate as well as the throughput. Then the video duration 
will be accumulated to the buffer occupancy to simulate 
the completion of the video downloading. For simulating 
the video playback, the simulator maintains a playback 
buffer and the consumption of the buffered data is affected 
by the viewing duration (i.e., the time consumed before the 
viewer switching the video) and the video physical dura-
tion [5]. During the whole streaming process, the simulator 
keeps tracking and recording each rebuffering event (i.e., 
the scenarios where the video download time is longer 
than the current buffer occupancy) for post-analysis. 

One key insight from Section 3 is that the network con-
ditions differ significantly across different viewers (see Ta-
ble 3), which suggests that training one single adaptation 
model for all the viewers is unlikely to achieve optimal per-
formance [26]. To this end, in this work, DUASVS segre-
gates the network environments into different classes and 
then trains the specialized adaptation model for each class.  

According to our measurement upon the throughput 
trace data as well as the experimental results from the pre-
vious studies [26,32], two network features, namely, mean 
throughput and throughput variation (quantified by coef-
ficient-of-variation (CoV)), can well reflect different types 
of network conditions, so we use them to segregate the net-
works. We denote the mean throughput of video i as Xi, 
that can then be mapped to the discrete throughput level xi 
through a linear quantization policy: 

  0min , 1i ix X M       (13) 
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where Δ0 is the quantization step size and M is the maxi-
mum number of the mean throughput class. Similarly, the 
throughput CoV can be quantified by: 

  1min , 1i iy Y N       (14) 

where Yi is the throughput CoV of video i, Δ1 is the quan-
tization step size, and N (e.g., =5) is the total CoV class 
number. Therefore, with the throughput level xi and CoV 
level yi, the trace data of all the videos, i.e., Ei, i=0,1,…,I, can 
be divided into M×N network classes: 

  , , , ,   

0,1, , 1,  0,1,..., 1
m n i i iC E x m y n i

m M n N

   

   
 (15) 

Algorithm Training. Finally, with the set of network 
classes, i.e., {Cm,n| m=0,1,…,M-1, n=0,1,…,N-1} and reward 
functions, i.e., {Fp| p=0,1,…,P-1}, DUASVS will execute the 
offline training: 

 , , ,( , ),  
0,1,..., 1, 0,1,..., 1, 0,1,..., 1

m n p m n pA G C F
m M n N p P



     
 (16)  

where function G(.) represents the learning algorithm A3C 
[13] and Am,n,p is a set of trained adaptation models in which 
each member is an Actor-Critic neural network (the struc-
ture is defined in Section 4.2). Note that A3C was originally 
proposed by Google DeepMind, and in this work, we 
adopted the same training workflow as their original study 
(i.e., [13], which includes the detailed pseudocode). 

As discussed, reducing the data loss may affect/impair 
the QoE. Thus, to avoid the QoE degradation, we will fur-
ther filter the trained adaptation models to keep the actual 
QoE achieved at the same level as that without DUASVS 
(e.g., the current commercial setup) [15,30]. Specifically, 
we denote the original QoE (i.e., unaffected by DUASVS) 
as Uori. The system will then sequentially filter the adapta-
tion models trained with different reward functions {Fp | 
p=0,1,…,P-1} (c.f. (12)) with the objective of minimizing the 
amount of data loss and at the same time restricting the 
actual achieved QoE larger than or equal to Uori, 

 
, ,

, ,

min     

s.t.    ,  
0,1,..., 1,  0,1,..., 1

m n pp

m n p ori

W

U U
m M n N



   

 (17) 

where Wm,n,p and Um,n,p are the data loss amount and QoE 
achieved by the corresponding adaptation models, i.e., 
Am,n,p. In practice, all the metrics in (17), e.g., Wm,n,p, Um,n,p 
and Uori, can be measured/recorded in the training because 
it is virtual streaming. Finally, the filtered adaptation mod-
els will be used for online streaming: 

  *
,  0,1,..., 1,  0,1,..., 1m nA m M n N     (18) 

The filtering for the adaptation model in (17) only tar-
gets avoiding any degradation of QoE performance. In 
practice, however, different viewers can have different 
habits and interests, so they may have very different pref-
erences for the data saving and QoE. For example, some 

viewers expect to achieve more significant data saving 
even at the cost of some QoE, while some cannot afford to 
lose any bit of QoE. To this end, we further modified the 
system and proposed an enhanced version of DUASVS 
that offers explicit options for the viewers to choose. The 
details are elaborated in Appendix A.1. 

4.4 Online Model Selection 
The Integrated Learning (introduced in Section 4.3) 
trains/outputs a set of candidate adaptation models, i.e., 
(18), where different members are specialized for different 
network conditions, i.e., (15). Thus, at runtime, the sys-
tem’s major task is to select out the most appropriate 
model for use in the online streamed videos.  

As discussed in Section 3, the network environment 
over different viewers varies greatly. In addition, even for 
a specific viewer, when its geographical location changes, 
the network environment can be different. Therefore, the 
system needs to select the specialized adaptation model for 
each video session (a video session denotes one process 
where a viewer uses the short video app to stream short 
videos from beginning to end, and it typically contains 
multiple streamed videos). However, how to judge the net-
work condition for a video session is a significant challenge 
because while the throughput series can be known ahead 
in the training as the throughput trace data are given, it 
cannot be obtained before streaming the actual videos 
online.  

To address the challenge, we proposed a method to es-
timate the network condition of the current video session 
online. Specifically, during streaming the session, the vid-
eos are requested consecutively one by one, and the re-
questing time interval is typically low due to the video 
physical duration being short. Thus, the network condition 
can be well expressed by the throughput series in down-
loading the initial a few videos, e.g., i=0,1,…,K-1, and the 
mean throughput X can be estimated by 

 0,1,..., 1, 0i
i

i

sX avg i K t
t

             
 (19) 

where si and ti are the video size and download time of the 
initially requested video i, and function avg(.) is to compute 
the arithmetic mean (a previous study [34] measured that 
arithmetic mean is outstanding for the throughput estima-
tion). Similarly, the throughput CoV can be calculated by  

 0,1,..., 1, 0i
i

i

sY std i K t X
t

             
 (20) 

where function std(.) is to compute the standard deviation 
of the throughput. At last, the estimated throughput fea-
tures X and Y will then be discretized by the a linear quan-
tization policy, i.e., (13) and (14), to determine the adapta-
tion model. 
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5 PERFORMANCE EVALUATION 
In this section, we evaluate DUASVS’s effectiveness in ad-
dressing the data loss problem and compare its perfor-
mance to the state-of-the-art streaming algorithms. 

5.1 Experiment Setup 
To evaluate the performance of the streaming algorithms 
in realistic streaming settings, we employed trace-driven 
simulations where the simulator executes the algorithms 
over a simulated streaming environment reproduced by 
trace data. There are two kinds of trace data adopted, 
namely TCP throughput trace and video property trace.  

TCP throughput trace emulate the network conditions, 
which were captured from real production networks. To 
cover different kinds of network properties, we employed 
five independent trace sources [28-29] and their statistics 
are summarized in Table 5. Among them, #1~#3 are cap-
tured from cellular networks (3G and 4G/LTE), #4 and #5 
are from Wi-Fi networks. In the rest of the paper, unless 
stated otherwise, the throughput trace used for evaluation 
consists of all the data from #1~#5. Video property trace in-
clude video viewing duration and video physical duration, 
which are extracted from the commercial dataset intro-
duced in Section 3. On the whole, these two kinds of trace 
data cover a total of 6 million videos over 120 thousand 
viewers. In this work, 50% of the data were used for train-
ing and the remaining 50% were for testing (c.f. Appendix 
A.2). 

We implemented a total of five streaming algorithms for 
the evaluation. A summary for the algorithm settings is 
listed in Table 6. 

1) CA – the current commercial setup. Its detailed con-
figurations have been introduced in Section 3.  

2) DUASVS – the algorithm proposed in this work. Its 
adaptation model tunes the prefetch threshold (see (7)) 
within 2s ~ 60s and the available bitrate (see (8)) within 0.2 
Mbps ~ 8.0 Mbps. In Integrated Learning, the throughput 
traces are classified by the bin size Δ0 = 1 Mbps and Δ1 = 0.2, 
and the network class numbers are M=10 and N=5 (see (13) 

and (14)). A total of 14 penalty weights are adopted in (12) 
ranging from 0.01 to 1.8. Uori in (17) is equivalent to the QoE 
achieved by CA. For the learning process of A3C, the en-
tropy weight [13] is randomly initialized within 1~5, then 
is linearly degraded in a gradual manner until ultimately 
reaches 0.01 after 100,000 iterations.  

3) DUASVS-β – a variant of DUASVS. In contrast to DU-
ASVS, DUASVS-β only has the Actor Network (Prefetch) 
to tune the prefetch threshold β and it is not available to 
tune the bitrate. The motivation to evaluate this variant is 
to quantify the efficacy of controlling the video prefetch in 
DUASVS.  

4) WAS [12] – the earlier version of DUASVS proposed 
in our conference paper. Its differences from DUASVS 
have been described in Section 2. 

5) LiveClip [5] – an existing short video streaming algo-
rithm, which dynamically adjusts the download sequence 
for the follow-up videos based on predicting when the 
viewer will switch the videos. LiveClip can neither tune 
the video prefetch nor the bitrate. 

For the performance metric, in addition to quantifying 
the data loss using the metrics defined by (4)~(5), we also 
compute the data saving ratio by comparing the differ-
ences in the amount of data loss between CA (i.e., the com-
mercial setup) and other algorithms: 

  ( )i i i
i i

W W W
 

    (21) 

where iW  is the data loss produced by CA in video i, and 
Wi is that by other algorithms. Moreover, the QoE perfor-
mance is evaluated using an existing QoE function pro-
posed by Mao et al. [18]: 

1
1

1 1 1min min min

log log log 2.66
I I I

i i i
i

i i i

r r rU
r r r






  

     
              

     
    

 (22) 

where ri is the bitrate selected for video i, rmin is the mini-
mum available bitrate 0.2 Mbps (see Table 6), the logarith-
mic function log(.) is to quantify the video quality, σi is the 
rebuffering duration during downloading video i, and I is 

Table 5. Statistics of Five TCP Throughput Trace Sources 

Features #1 #2 #3 #4 #5 
Mean throughput (Mbps) 5.97 1.21 10.1 3.12 4.43 

Variation (CoV)  0.44 0.83 0.52 0.77 0.58 
Network type 3G 3G LTE Wi-Fi Wi-Fi 

Collection location L1 L2 L3 L4 L5 
Service provider S1 S2 S3 S4 S5 

 

Table 6. Prefetch and Bitrate Settings of the Algorithms 

Algorithms Prefetch threshold (s) Bitrate version (Mbps) 
DUASVS  2~60 (tunable) 0.2~8.0 (tunable) 

DUASVS-β 2~60 (tunable) 1.0 
WAS 2~60 (tunable) 0.2~8.0 (tunable) 
CA N/A 1.0 

LiveClip N/A 1.0 
 

Table 7. Data Loss and QoE Performance over Five Streaming Algorithms 

 QoE Daily data loss amount (Petabyte) Data loss ratio (%) Data saving ratio (%) 
DUASVS 0.82 0.99 12.1 77.1 

DUASVS-β 0.81 3.06 35.7 29.2 
WAS 0.82 1.81 20.7 58.4 
CA 0.81 4.32 44.2 0 

LiveClip 0.76 3.99 42.1 7.63 
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the total number of videos. The QoE function in (22) is the 
default one in the evaluation, and we also test some other 
QoE functions in Section 5.4.  

5.2 Data Loss and QoE Performance 
We first evaluate the system’s effectiveness in reducing 
data loss as well as its impacts on QoE. Table 7 compares 
the QoE performance, the daily amount of data loss, data 
loss ratio, and data saving ratio over the five streaming al-
gorithms. It is not surprising that CA, i.e., the current com-
mercial setup, incurs the largest amount of data loss 
among all the algorithms due to its naïve configurations.  

The performance of LiveClip is also far from satisfac-
tory. Although it is specifically designed for short video 
streaming, the QoE obtained is even 6.11% worse than CA. 
In addition, while LiveClip can save 7.63% of mobile data, 
such a ratio is too trivial to solve the data loss problem. The 
root reason is that LiveClip only concerns the prediction of 
the short-term viewing behavior, such as the viewing du-
ration of the subsequent a few videos, but this is heavily 
influenced by the viewer's interest in the video content, re-
buffering events, and many other factors, resulting in the 
low accuracy of the prediction. 

In comparison, the rest three algorithms, DUASVS, DU-
ASVS-β, and WAS, do not work from the perspective of 
viewer behavior prediction, but make decisions by analyz-
ing real network conditions. As a result, the three algo-
rithms are able to achieve more significant data saving ra-
tios (29.2%~77.1%) while maintaining the QoE intact.  

Nevertheless, there are also huge performance differ-
ences among the three algorithms. Most remarkably, DU-
ASVS achieves the lowest data loss, and the data saving 
ratio reaches 77.1%, outperforming all other algorithms 
substantially. DUASVS-β only tunes the prefetch threshold 
without adapting the video bitrate, such that it only saves 
29.2% of mobile data. This result well reflects the effective-
ness of the two data saving mechanisms proposed in Sec-
tion 4.1, and we will further quantify their efficacy later.  

For WAS, although both of the two data saving mecha-
nisms are incorporated, its data saving ratio is still merely 
58.4% that is much worse than DUASVS. This demon-
strates that compared to purely tuning the parameters (i.e., 
WAS), the neural network model adopted in DUASVS can 
better express the features of the streaming environment, 

enabling a fuller release of the efficacy potential of the two 
mechanisms. 

To uncover the principle of the two data saving mecha-
nisms (Section 4.1), we thus quantify their efficacy sepa-
rately. Specifically, we disabled one mechanism in DU-
ASVS and tuned the other one to see its impacts on the data 
loss and QoE. The left chart of Fig. 6 shows the results for 
tuning the prefetch threshold. We observed that as the 
prefetch threshold decreases from 60s to 40s, the QoE 
keeps constant while the data loss is reduced from 4.32 to 
3.11 Petabyte. Then from 40s to 10s, both the data loss and 
QoE decrease linearly, but the dropping slope of data loss 
is much larger than QoE. This is why DUASVS-β can re-
duce the data loss at the cost of little or even no QoE loss.  

The right chart is for tuning the video bitrate. Compared 
to the performance of the fixed bitrate setting, i.e., under 
the bitrate around 1 Mbps, changing the bitrate not only 
can reduce the data usage but can also further improve the 
QoE. Thus, by jointly using the two mechanisms, the po-
tential QoE improvement can provide a margin to reduce 
the data loss while avoiding the QoE degradation. As a re-
sult, DUASVS can achieve much more significant perfor-
mance than DUASVS-β. 

5.3 DUASVS over Various Streaming Scenarios 
The Integrated Learning (introduced in Section 4.3) trains 
a set of adaptation models where different ones are spe-
cialized for different network conditions. In this section, 
we will evaluate its contribution to the system’s robustness 
over the various network environments.  

In Table 8, we compare the data loss performance of 
DUASVS and CA over the five throughput trace sources. 
It is evident that DUASVS achieves a substantial data sav-
ing ratio across all the sources, ranging from 76.4% to 
80.2%. Moreover, compared to CA, DUASVS achieves a 
more consistent data loss amount across different sources, 
although the data loss amount is still slightly larger at the 
sources with higher mean throughput (e.g., #1 and #3). 

Table 8. The Efficacy of Data Usage Saving over Five  
Throughput Trace Sources 

 
Algorithms 

    Data loss amount (PB) Data saving  
ratio (%) CA DUASVS 

Th
ro

ug
hp

ut
   

tr
ac

e 
so

ur
ce

s #1 5.01 1.02 79.6 
#2 3.95 0.91 76.7 
#3 5.24 1.04 80.2 
#4 4.14 0.92 77.8 
#5 4.07 0.96 76.4 

 
Table 9. The Decisions from DUASVS’s Adaptation 

Model across Five Throughput Trace Sources 

Network characters and  
adaptation model decisions 

Throughput trace sources 
#1 #2 #3 #4 #5 

Throughput (Mbps) 5.97 1.21 10.1 3.12 4.43 
Coefficient of Variation (CoV) 0.44 0.83 0.52 0.77 0.58 
Mean prefetch threshold (s) 10.8 17.3 10.2 15.4 13.9 
Throughput utilization (%) 61.2 42.5 66.8 49.1 55.7 

 
Fig. 6. The effectiveness of the two data saving mechanisms  

(the left chart is for prefetch threshold, and the right is for bitrate). 
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This is inevitable as the bitrate adaptation model selects 
higher video bitrate at higher throughput levels and hence 
the larger video segment size would naturally lead to more 
data loss. On the whole, DUASVS exhibit strong robust-
ness performance over different network environments. 

To deeply investigate the rationale, we further evalu-
ated the dynamics of the data saving mechanisms with re-
spect to different throughput trace sources. We list in Table 
9 the prefetch and bitrate decisions made by the adaptation 
model under the five sources, where the decisions are 
quantified by the mean prefetch threshold and the 
throughput utilization (defined by (1)), respectively. It is 
clear that both the prefetch and bitrate decisions vary sub-
stantially across the five sources. For example, in the trace 
sources with more stable and higher throughput (e.g., #1 
and #3), the prefetch threshold is tuned to a smaller value 
while the throughput utilization is larger. This indicates 
that DUASVS is able to exploit the (better) network condi-
tion with abundant throughput to increase the algorithm’s 
bitrate selection aggressiveness while shortening the dura-
tion of prefetch data, so that the data loss can be largely 
reduced in the case of frequent video switching. On the 
contrary, in the trace sources with poor network conditions 
(e.g., #2), the prefetch threshold is tuned to be larger and 
the throughput utilization is kept lower to avoid playback 
rebuffering and QoE degradation. 

Overall, these results suggest that using the trace data 
from a sufficiently wide spectrum of network conditions in 
the Integrated Learning, DUASVS is able to effectively 
save the data usage over a broad range of network envi-
ronments. 

5.4 Sensitivity Analysis 
To see if the above observations are consistent under dif-
ferent QoE metrics, we evaluate the algorithms with three 
more QoE functions, i.e., QoE2 ~ QoE4 [18, 24, 27], in addi-
tion to the QoE1 defined by (22). The data saving ratios un-
der the four QoE functions are summarized in Table 10. We 
observed very similar results obtained over different QoE 
functions, where DUASVS saves 70.7%~83.2% of the mo-
bile data usage and outperforms all other algorithms con-
sistently. It is worth noting that the performance of 
LiveClip is exactly the same over different cases, because 
its training does not incorporate any QoE function. 

In this work, we employed A3C [13] to train the adap-
tation model for DUASVS, while there are many other can-
didate machine learning techniques to choose from, e.g., 
Q-learning [21], DQN [22], Policy Gradient [23], and so on. 
To this end, we implemented DUASVS with other learning 
techniques to see the performance. The results are shown 
in Table 11 where we compare the data saving ratio over 
different learning techniques. We can see that DUASVS 

trained with A3C performs the best and outperforms other 
three approaches by 20.3% ~ 65.8%. Q-learning is the worst 
performing one due to its rather simple learning model (i.e., 
a tabular form [21]) that limits the choice of the state space. 
Despite that DQN and Policy Gradient have much better 
performance than Q-learning, there is still a large gap to 
A3C. Moreover, as opposed to the multi-core training in 
A3C [13], all the comparison learning techniques can only 
exploit one single CPU core, so their training convergence 
speed is much slower. 

6 REAL IMPLEMENTATION AND DEPLOYMENT 
Considering the significant differences in the configuration 
and capacity of the mobile devices (e.g., CPU, memory, etc.) 
[36], DUASVS is best implemented as a server-side stream-
ing system. Specifically, the streaming servers (e.g., CDN) 
can be easily extended to record the streaming trace data 
used for the offline training when it delivers the video con-
tent to the clients. With the recorded trace data, the training 
can then be conducted through the virtual streaming (as 
introduced in Section 4).  

After the training, the trained adaptation models will be 
delivered to a specialized adaptation server to decide the 
prefetch threshold and video bitrate for each video at 
runtime. Then, the adaptation server is to send the bitrate 
and prefetch decision to the client via the streaming 
metadata (e.g., the m3u8 playlist in Apple’s HLS protocol 
[14]), and the client will request the corresponding video 
content from the conventional streaming server. We have 
implemented a real prototype for DUASVS to validate its 
feasibility in the practical streaming platform. The details 
are described in Appendix A.3. 

Moreover, another practical issue is that although DU-
ASVS employs Integrated Learning to train a set of adap-
tation models for different network environments and 
switches the trained model online whenever the network 
conditions change, it is conceivable that the offline training 
may still need to be re-conducted when encountering com-
pletely new network environments that have not been in-
corporated into the training, e.g., the future 6G networks 
with a much higher bandwidth limit. Nevertheless, we ar-
gue that the frequency of the re-training will be very low 
as long as the Integrated Learning can be exposed to a suf-
ficiently wide spectrum of network environments. Overall, 
DUASVS offers an immediate and practical scheme for the 
current short video streaming platform. 

7 SUMMARY AND FUTURE WORK  
This work investigates the mobile data saving topic in to-
day’s short video streaming. In the empirical study, we 

TABLE 11. Data Saving Ratio Achieved by DUASVS with 
Different Learning Technologies 

Learning  
Techniques 

A3C 
[13] 

Q-learning 
[21] 

DQN 
[22] 

Policy  
Gradient [23] 

Saving Ratio (%) 77.1 46.5 64.1 60.5 

Table 10. Data Saving Ratio (%) across QoE Functions 

QoE Functions QoE1 [18] QoE2 [18]  QoE3 [24]  QoE4 [27]  
DUASVS 77.1 79.8 83.2 70.7 

DUASVS-β  29.2 33.5 32.1 25.2 
WAS 58.4 66.7 60.3 51.3 

LiveClip 7.63 7.63 7.63 7.63 
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found that the frequent video switches can incur signifi-
cant mobile data loss. To this end, we developed the novel 
system DUASVS to tackle this problem, which not only can 
substantially save the data usage by 70.7%~83.2%, but also 
avoid any adverse impacts on QoE. Therefore, it offers a 
practical tool to help the viewers and the streaming vendor 
save the mobile data usage in streaming the short-form 
videos. 

This study is only the first step in this direction and 
there are many potential problems to be investigated in the 
future. First, as we discussed, predicting the viewer 
switching behavior is a very difficult topic as the behavior 
is affected by many factors. Nevertheless, if we can obtain 
some insights from these influential factors and then de-
velop a predictor to achieve accurate prediction for the fu-
ture viewing duration, then data loss can be completely 
avoided. This could be a fruitful direction for future work.  

Second, while the proposed DUASVS has been evalu-
ated in various streaming environments, it has not yet been 
tested and validated through a large-scale deployment. We 
are currently in discussions with the streaming vendor 
about the deployment issues, and after their permission, 
we will deploy DUASVS into their commercial servers that 
have millions of daily visitors. We believe that the far 
broader scope of the evaluation environments will enable 
us to gain a better understanding for the system’s behav-
iors and performance. 
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