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Relative Acoustic Transfer Function Estimation in
Wireless Acoustic Sensor Networks

Jie Zhang , Richard Heusdens , and Richard Christian Hendriks

Abstract—In this paper, we present an algorithm to estimate the
relative acoustic transfer function (RTF) of a target source in wire-
less acoustic sensor networks (WASNs). Two well-known methods
to estimate the RTF are the covariance subtraction (CS) method
and the covariance whitening (CW) approach, the latter based on
the generalized eigenvalue decomposition. Both methods depend
on the use of the noisy correlation matrix, which, in practice, has to
be estimated using limited and (in WASNs) quantized data. The bit
rate and the fact that we use limited data records therefore directly
affect the accuracy of the estimated RTFs. Therefore, we first theo-
retically analyze the estimation performance of the two approaches
in terms of bit rate. Second, we propose a rate-distribution method
by minimizing the power usage and constraining the expected es-
timation error for both RTF estimators. The optimal rate distri-
butions are found by using convex optimization techniques. The
model-based methods, however, are impractical due to the depen-
dence on the true RTFs. We therefore further develop two greedy
rate-distribution methods for both approaches. Finally, numerical
simulations on synthetic data and real audio recordings show the
superiority of the proposed approaches in power usage compared
to uniform rate allocation. We find that in order to satisfy the same
RTF estimation accuracy, the rate-distributed CW methods con-
sume much less transmission energy than the CS-based methods.

Index Terms—Sensor networks, relative transfer function, co-
variance subtraction, covariance whitening, model/data-driven
rate distribution, quantization, convex optimization.

I. INTRODUCTION

ACOUSTIC transfer function (ATF) identification is re-
quired by many algorithms in wireless acoustic sensor

networks (WASNs), e.g., Wiener filtering [1]–[3] or beamform-
ing [4]–[7] based noise reduction, or, sound source localiza-
tion [8]. Often, instead of the ATF, algorithms use the relative
acoustic transfer function (RTF) [5], which is obtained by nor-
malizing the ATF with its value at the reference microphone.
The RTF of a single desired source spans the signal subspace
of interest and directly determines the formation of the target
spatial autocorrelation matrix.

Manuscript received October 15, 2018; revised March 19, 2019 and May 20,
2019; accepted June 14, 2019. Date of publication June 18, 2019; date of cur-
rent version June 28, 2019. This work was supported by the China Scholarship
Council under Grant 201506010331. The associate editor coordinating the re-
view of this manuscript and approving it for publication was Dr. Maria de Diego.
(Corresponding author: Jie Zhang.)

The authors are with the Faculty of Electrical Engineering, Mathematics and
Computer Science, Delft University of Technology, 2628 CD Delft, The Nether-
lands (e-mail: j.zhang-7@tudelft.nl; r.heusdens@tudelft.nl; r.c.hendriks@
tudelft.nl).

Digital Object Identifier 10.1109/TASLP.2019.2923542

Assuming a perfect voice activity detector (VAD) is available,
the microphone recordings can be classified into noise-only seg-
ments and speech+noise segments. During each of these peri-
ods, we can estimate the noise and noisy correlation matrices,
respectively, using sample correlation matrices. Given the esti-
mated noise and noisy correlation matrices and assuming that
the target speech and noise signals are mutually uncorrelated,
the low-rank target spatial correlation matrix (more strictly, with
a rank equal to the number of target point sources of interest)
can be obtained by subtracting the noise correlation matrix from
the noisy correlation matrix. Most existing RTF estimation al-
gorithms are based on the use of sample correlation matrices.
Due to the estimation errors in the sample correlation matrices,
particularly in noisy and reverberant environments, the autocor-
relation matrix of the target sources will be full-rank in prac-
tice [1]. The estimation errors on the correlation matrices will
directly affect the accuracy of the estimated RTFs.

In centralized WASNs, where all the network nodes are wire-
lessly connected to a fusion center (FC), the nodes need to quan-
tize and transmit their microphone recordings to the FC. The
quantization of the data is thus another source for inaccuracies
when estimating the RTFs. Moreover, the number of quantiza-
tion levels (i.e., the bit-rate) used to transmit data to the FC
is one-to-one related to the required transmission power. The
power usage is another point of concern in WASNs as typically
the wireless sensors are battery-driven with limited power bud-
get. The transmission power can be assumed to be exponentially
related with the communication rate (e.g., in bits per sample) [9],
[10]. Intuitively, the lower the rate, the less power is required,
but the worse the RTF estimation, leading to a trade-off between
RTF estimation accuracy and power consumption. In this pa-
per, we investigate the relation between power usage required
for data transmission in WASNs and the estimation accuracy of
the RTFs (due to quantization errors, limited data when calcu-
lating samples covariance matrices and limited signal-to-noise
ratio). As a result, we obtain an algorithm to estimate the RTF
at prescribed accuracy, at low rate and low power usage.

Given the target speech correlation matrix, the RTF can be
estimated by simply extracting its normalized first column vec-
tor, i.e., covariance subtraction (CS) [1], [11]–[14], or by cal-
culating the normalized principal eigenvector [1], [8]. The idea
behind the CS method is that the true speech correlation matrix
is rank-1 under the assumption that only a single target speech
point source is present. Alternatively, given the noise and noisy
correlation matrices, we can first whiten the noisy correlation
matrix using the noise correlation matrix, then the RTF can be
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estimated by taking the normalized first column of the whitened
noisy correlation matrix, or by computing the normalized prin-
cipal eigenvector of the whitened noisy correlation matrix, i.e.,
covariance whitening (CW) [15]–[18]. Using the technique of
generalized eigenvalue decomposition (GEVD) for a matrix pen-
cil (i.e., noise and noisy correlation matrices), the CW method
is then equivalent to extracting the normalized principal gener-
alized eigenvector. In this work, we will only discuss the two
extreme cases, i.e., 1) the CS method where the RTF is ob-
tained by extracting the normalized first column vector and 2)
the CW method where the RTF is obtained by calculating the
normalized principle eigenvector of the whitened noisy correla-
tion matrix, as the presented results can easily be extended to the
other two cases. In the remainder of this work, we refer to these
two cases as the CS and CW method, respectively. In general,
the CW method can achieve better performance than the CS
method, especially in severe noisy scenarios [13], [18]. How-
ever, the CS method is more appealing from an implementation
point of view, since it only requires to extract the first column
vector of a matrix, while the other one requires computation-
ally more demanding matrix eigenvalue decompositions and/or
matrix inversion. In [13] and [18], Markovich-Golan and Gan-
not analyzed the performance of the CS and CW methods using
synthetic non-stationary Gaussian signals, respectively. We will
take the performance analysis of both methods as the basis of
the energy-aware RTF estimation procedures that are presented
in this work.

A. Contributions

The contributions of this paper can be summarized as follows.
Firstly, we briefly analyze the performance of the CS method and
the CW method in a theoretical fashion, with quantization noise
being taken into account. This is based on the work presented
in [13], [18]. It is shown that the estimation errors of both meth-
ods are related to the signal-to-noise ratio (SNR), the communi-
cation rate and the number of available segments which are used
to estimate the second-order statistics (SOS). We show that the
CW always performs better than the CS method. This is because
the performance of the CW method depends on the output SNR
of a minimum variance distortionless response (MVDR) beam-
former, while the CS method depends in a similar way on the
input SNR, which is always lower than the MVDR output SNR.

Secondly, based on the framework presented in [19], we de-
velop for both the CS and CW approach a model-driven rate-
distribution algorithm for RTF estimation in WASNs, referred
to as MDRD-CS and MDRD-CW. The model-driven problems
are formulated by minimizing the total transmission costs be-
tween all microphone nodes and the FC and constraining the
expected RTF estimation performance. Using convex optimiza-
tion techniques, the MDRD-CS/CW problems are derived as
semi-definite programs. Through distributing bit rates optimally,
the transmission cost in WASNs can be saved significantly com-
pared to a blind full-rate transmission strategy, meanwhile satis-
fying the prescribed desired estimation performance on the RTF.
Note that the MDRD-CS/CW methods depend on the true RTF
and noise SOS, which are unknown in practice. The proposed

model-driven methods are thus not practical from the perspec-
tive of implementation.

To make the model-based methods practical, we further pro-
pose two corresponding data-driven methods (i.e., DDRD-CS
and DDRD-CW), which are (performance-wise) near-optimal
and use a greedy rate distribution strategy, but only rely on re-
alizations. Since the microphone nodes send the quantized data
to the FC frame-by-frame, we can estimate the RTF and noise
SOS using the previously received segments, and then solve the
model-driven problems based on the estimated RTF and noise
SOS. Then, each node quantizes the new segment at the rate
that is obtained by the model-driven method. As such, the data-
driven methods can avoid the dependence on the true RTF and
noise SOS.

Finally, the proposed approaches are validated via numerical
simulations in a simulated WASN. We find that both the MDRD-
CS and the MDRD-CW satisfy the performance requirement,
and the DDRD-CS (or DDRD-CW) method converges to the
MDRD-CS (or MDRD-CW) method when increasing the num-
ber of available segments. We conclude that the sensors that are
closer to the FC are more likely to be allocated with a higher
rate, since they are cheaper in transmission. Besides, we show
that at higher bit-rates, redundant information is transmitted, as
the performance of CS/CW-based methods does not gain much
with increasing bit rate. Hence, the proposed methods can re-
duce the redundant bits and save energy usage compared to the
unnecessary full-rate quantization. Furthermore, it is shown that
given the same performance requirement, the MDRD-CW (or
DDRD-CW) method consumes much less transmission energy
compared to the MDRD-CS (or DDRD-CS) method.

B. Outline and Notation

The paper is structured as follows. Section II presents prelim-
inaries on the signal model and the estimation of sample corre-
lation matrices. In Section III, we theoretically analyze the per-
formance of the CS/CW-based RTF estimators. Section IV for-
mulates the rate-distributed RTF estimation problem and solves
it in the context of the CS and CW methods, respectively. In Sec-
tion V, we show the proposed greedy methods. The proposed
methods are validated in Section VI via numerical simulations.
Finally, Section VII concludes this work.

The notation used in this paper is as follows: Upper (lower)
bold face letters are used for matrices (column vectors). (·)T or
(·)H denotes (vector/matrix) transposition or conjugate transpo-
sition. (·)∗ denotes the conjugate of a complex number. diag(·)
refers to a block diagonal matrix with the elements in its ar-
gument on the main diagonal. IN and ON denote the identity
matrix and the N ×N matrix with all its elements equal to zero,
respectively. e1 is a column vector with 1 at the first entry and
zeros elsewhere. 0N is an N × 1 all-zeros column vector. E{·}
denotes the statistical expectation operation. Tr(·) and rank(·)
denote the trace and rank of a matrix, respectively. || · ||2 denotes
the �2 norm.A � Bmeans thatA−B is a positive semidefinite
matrix. Furthermore, � denotes the Hadamard (elementwise)
product. X̂ and X̃ denote the estimate of a random variable X
and the corresponding estimation error, respectively.
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II. FUNDAMENTALS

A. Signal Model

We consider K microphones that sample the sound field con-
sisting of one target point source, degraded by acoustic back-
ground noise. In the short-time Fourier transform (STFT) do-
main, letting l and ω denote the index of time frame and angular
frequency, respectively, the noisy DFT coefficient at the kth mi-
crophone, say Yk(ω, l), k = 1, . . . ,K, is given by

Yk(ω, l) = Xk(ω, l) + Uk(ω, l), (1)

where Xk(ω, l) = ak(ω)S(ω, l) with ak(ω) the ATF of the tar-
get signal with respect to the kth microphone and S(ω, l) the
DFT coefficient of the target source signal at the source loca-
tion. In this work we assume that the ATF is time-invariant, i.e.,
the target source is assumed static, during the time period of
interest. Therefore, ak(ω) is not a function of l. In (1), the term
Uk(ω, l) represents the total received noise at the kth micro-
phone (including interfering sources and sensor noise). In this
work, the noise signals contained in Uk(ω, l) are assumed sta-
tionary during the time period of interest. This assumption is not
strictly necessary for the theory that we will derive. However,
the expressions that we present depend on the SOS that can only
be estimated if the sources are stationary for a fixed period of,
say L time-frames. In a centralized WASN, we assume that a FC
is employed to collect data and process the tasks at hand. In this
case, the microphone nodes need to transmit their recordings
to the FC, and the recordings should be quantized at specified
communication rates. Taking the utilization of quantizers into
account and lettingQk(ω, l) denote the quantization noise1 con-
tained in the transmitted data from the kth microphone node, the
quantized version of the kth microphone measurements that is
received by the FC is given by

Ŷk(ω, l) = Xk(ω, l) + Uk(ω, l) +Qk(ω, l). (2)

Note that the quantization takes place in the STFT domain di-
rectly. Given a bit-rate, the real and imaginary parts of Yk(ω, l)
are quantized separately, as the bit-rate is equally distributed
to the real and imaginary parts [20]. A more optimal but com-
plicated rate distribution for quantizing complex Gaussian ran-
dom variables can be found in [21]. For notational convenience,
the frequency variable ω and the frame index l will be omit-
ted now onwards bearing in mind that the processing takes
place in the frequency domain. Using vector notation, the quan-
tized signals from the K microphones are stacked in a vector
ŷ = [Ŷ1, . . . , ŶK ]T ∈ CK . Similarly, we define K dimensional
vectors y, x, u, q and a for the microphone recordings, the tar-
get speech component, the received noises by the microphones,
the quantization noise and the ATFs, respectively, such that (2)
can be rewritten as

ŷ = aS + u+ q, (3)

with the clean speech component given by x = aS. Further-
more, we definen = u+ q as the total noise at the FC including
quantization noise. Without loss of generality, we assume that

1In real-life applications, Yk(ω, l) is already quantized, since it is acquired
by the analog-to-digital converter of the kth sensor. In this case, Qk(ω, l) would
represent the error from changing the bit resolution of Yk(ω, l).

the first microphone is taken as the reference microphone. The
RTF can then be defined as

d = a/a1, (4)

where a1 refers to the first entry of vector a.

B. Estimating Sample Covariance Matrices

We assume that the quantization noise is uncorrelated with
the microphone recording,2 and that the noise components and
the target signal are mutually uncorrelated, such that from the
signal model (2), the SOS of the noisy microphone signals during
speech+noise segments are given by

Rŷŷ = E{ŷŷH} = Rxx +Ruu +Rqq. (5)

Further, the SOS of the noise are given by

Rnn = Ruu +Rqq. (6)

Assuming that the speech and noise signals are mutually uncor-
related, Rxx can be calculated as

Rxx � σ2
Saa

H = σ2
X1

ddH

= Rŷŷ −Rnn, (7)

with σ2
S = E{|S|2} and σ2

X1
= E{|X1|2}, respectively, repre-

senting the power spectral density (PSD) of the target source
and the PSD of the speech component at the reference micro-
phone. Obviously, we have the relation σ2

X1
= |a1|2σ2

S . Note
that Rŷŷ and Rnn are full-rank (positive definite) matrices, and
rank (Rxx) = 1 in a single speech point source scenario. More
importantly, both Rŷŷ and Rnn depend on Rqq, while Rxx

does not. From (5) and (6), we know that the communication
rate affects Rŷŷ and Rnn by the addition of the matrix Rqq.
Hence, in caseRnn andRŷŷ are perfectly estimated (e.g., given
sufficiently long data measurements), Rqq can be eliminated by
calculating Rxx with the subtractive operation in (7).

In practice, given L speech+noise segments, the SOS Rŷŷ

can be estimated by average smoothing, that is

R̂ŷŷ =
1

L

L∑

l=1

ŷlŷ
H
l . (8)

The SOS estimator in (8) is unbiased and the corresponding
estimation error is denoted by

R̃ŷŷ = R̂ŷŷ −Rŷŷ. (9)

Similarly, we can estimate Rnn by

R̂nn =
1

|T |
∑

l∈T
nln

H
l , (10)

whereT indicates a set of noise-only time segments. However, to
make the analysis on the CS and CW method consistent, we will
assume that Rnn is known and can be used to estimate the RTF
vector. This could be argued for under conditions of relatively
stationary noise sources. In that case, Rnn can be estimated
with relatively small error as sufficiently long time segments
can be used. The assumption that Rnn is known is required in
the derivation of the CW-based RTF estimation accuracy. How-
ever, in the derivation of the CS-based RTF estimation accuracy

2This assumption holds under high rate communication. At low rates, this can
be achieved by applying subtractive dither [22], [23].
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this assumption is strictly speaking not necessary and expres-
sions can also be derived taking estimation errors on Rnn into
account. In the derivation of the estimation accuracy under the
CW approach it is not trivial to take both estimation errors on
R̃ŷŷ and Rnn into account. As such this is a disadvantage of
the CW approach. However in order to make comparison of both
methods possible, we make the same assumption in both meth-
ods. From now on we therefore assume R̃ŷŷ is estimated and
Rnn is known. However, in Section III-A, for completeness, we
will give the expressions for the CS estimation accuracy when
also Rnn is estimated. With R̂ŷŷ and Rnn at hand, using (7)
we can obtain the estimate of R̂xx by

R̂xx � R̂ŷŷ −Rnn, (11)

which can be reformulated as

R̂xx = Rxx + R̃xx, (12)

with R̃xx = R̃ŷŷ. Although rank(Rxx) = 1, in practice we
have rank(R̂xx) > 1 due to the estimation error in R̂ŷŷ. The
RTF estimators presented in the sequel are based on the SOS
Rxx, Rŷŷ and Rnn, whereas in practice these matrices are re-
placed by the sample correlation matrices R̂xx, R̂ŷŷ and R̂nn.

For the SOS of the quantization noise, we assume that each
microphone node employs a uniform quantizer for quantization,
such that given bk bits per sample, the PSD of the quantization
noise is given by [24], [25]

σ2
qk

= Δ2
k/12, ∀k, (13)

where the uniform intervals have widthΔk = Ak/2
bk withA/2

denoting the maximum absolute value of the kth microphone
measurement. Assuming that the quantization noise across mi-
crophones is mutually uncorrelated, the correlation matrix of the
quantization noise across microphones reads

Rqq =
1

12
× diag

([
A2

1

4b1
,
A2

2

4b2
, . . . ,

A2
K

4bK

])
. (14)

III. PERFORMANCE ANALYSIS FOR RTF ESTIMATORS

In this section, we will theoretically analyze the RTF estima-
tion performances of the CS method and the CW method, which
is based on the work presented in [13] and [18], respectively,
which we extend by taking quantization noise into account. The
estimation accuracy is defined as the ratio between the expected
squared norms of the error vector d̃ and the true RTF vector
as [13]

ε � E[||d̃||22]/||d||22. (15)

A. Performance Analysis for CS Method

The CS method takes the normalized first column of the matrix
R̂xx as the RTF estimate [1], [11], i.e.,

d̂CS � R̂xxe1

eT1 R̂xxe1
, (16)

which is based on the rank-1 model for the clean-speech correla-
tion matrix Rxx. The denominator of (16) represents the signal
power at the reference microphone, i.e.,

σ̂2
X1

� eT1 R̂xxe1. (17)

In order to analyze the CS-based RTF estimator, we write the
RTF estimate from (16) as

d̂CS = d+ d̃CS. (18)

In [18], it was shown that the estimation error term d̃CS is given
by

d̃CS =
1

|a1|2σ̂2
S

(
I− deT1

)
R̃xxe1. (19)

Assuming the estimation error R̃ of the covariance matrix R
of a Gaussian random variable when estimated as in (8) obeys
a complex Wishart distribution [26], it can be shown (see [18])
that given the noise SOS Rnn, the RTF estimation error εCS of
the CS-based method from (15) is given by [13], [18]

εCS =
1 + 1

η

L||d||22σ̂2
X1

· Tr
((

I− deT1
)
Rnn

(
I− deT1

)H)
,

(20)
where η is referred to as the signal-to-(total)noise ratio at the
reference microphone, i.e.,

η �
σ̂2
X1

eT1 Rnne1
=

eT1 R̂xxe1
eT1 Rnne1

. (21)

Finally, taking the quantization noise into account as Rnn =
Ruu +Rqq, and for readability, defining

G =
(
I− deT1

)
(Ruu +Rqq)

(
I− deT1

)H
,

such that the final CS error model can be formulated as

εCS =
1 + 1

η

L||d||22σ̂2
X1

· Tr (G) . (22)

Note that (22) differs from the one in [13] by the facts that 1)
quantization noise is taken into account 2) similar as in [18]
we assume Rnn to be known (estimated based on larger data
records), resulting in the term 1

η in (22).
Further, in case Rnn is estimated based on a different number

of frames, say T = |T | frames, that are different (independent)
from the L frames used to estimate Rŷŷ, we obtain

εCS =

1
L + 1

η

(
1
L + 1

T

)

||d||22σ̂2
X1

· Tr (G) . (23)

IfL = T , (23) will be identical to the error model derived in [13].

B. Performance Analysis for CW Method

The CW method takes the normalized principal eigenvector
of the whitened noisy covariance matrix as the estimated RTF,
which is given by

d̂CW =
R

H/2
nn ψ̂

eT1 R
H/2
nn ψ̂

, (24)

where ψ̂ is the principal eigenvector of the matrix R̂zz =
1
L

∑L
l=1 zz

H with z = R
−H/2
nn ŷ. In [18], it was shown that the

error vector of the CW method can be approximated by

d̃CW =
θ

a1

(
I− deT1

)
RH/2

nn ψ̃, (25)

where θ =
√
aHR−1

nna, and ψ̃ denotes the estimation error vec-
tor of the principal eigenvector, and its covariance matrix is given



ZHANG et al.: RELATIVE ACOUSTIC TRANSFER FUNCTION ESTIMATION IN WIRELESS ACOUSTIC SENSOR NETWORKS 1511

by [27]

Θψ =
λ1

L(λ1 − 1)2
(
I−ψψH

)
, (26)

where λ1 = aHR−1
nnaσ̂

2
S + 1 denotes the principal eigenvalue,

and the true principal eigenvector is given by ψ = R
−H/2
nn a/θ.

Hence, the covariance matrix of d̃CW can be formulated as

Θ
(a)
=

|θ|2
|a1|2

(
I− deT1

)
R

H
2
nnΘψR

1
2
nn

(
I− deT1

)H

(b)
=

1 + 1
σ̂2
X1

dHR−1
nnd

Lσ̂2
X1

(
I− deT1

)
Rnn

(
I− deT1

)H
, (27)

where (a) is obtained by substitution of (25) and (b) is due to
the fact that (I− deT1 )d = 0K . Finally, taking the quantization
noise into account, we can formulate the CW-based RTF esti-
mation error as

εCW =
Tr(Θ)

||d||22
=

1 + 1
σ̂2
X1

dHR−1
nnd

L||d||22σ̂2
X1

· Tr (G) . (28)

Note that in fact the term σ̂2
X1

dHR−1
nnd is the output SNR of an

MVDR beamformer [4], [28]–[30].
Remark 1: By inspection, the estimation errors of both the

CS method and the CW method are influenced by the SNR,
frame length and communication rate, the signal power and the
location of source, i.e., ||d||22. The final expression in (22) or
(28) differs from the one derived in [13], [18] by the fact that the
quantization noise is now also taken into account. Comparing
(28) to (22), the only difference lies in the SNR term. Since after
the use of an MVDR beamformer, the SNR can be improved,
i.e.,η ≤ σ̂2

X1
dHR−1

nnd, we can conclude that the CW-based RTF
estimator always achieves a higher accuracy than the CS method.

IV. MODEL-DRIVEN RATE-DISTRIBUTED METHODS

In this section, we first present the transmission energy model,
and then formulate the general rate-distributed RTF estimation
problem. Finally, we propose convex optimization approaches
for the resulting rate distribution problems for the CS-based and
CW-based methods.

A. Transmission Energy Model

In WASNs, the sensors transmit data to the FC via wireless
links, and the communication channels are inevitably corrupted
by additive noise. Let us assume that the transmission channel
noise is white Gaussian with PSD Vk, ∀k. Given a transmitted
power Ek from the kth microphone node in the WASN, the re-
ceived energy by the FC will be D−r

k Ek with Dk and r denoting
the transmission distance from the kth microphone to the FC and
the path loss exponent, respectively. Typically, 2 ≤ r ≤ 6 [9],
[31]. We assume r = 2 throughout this work without loss of gen-
erality. The loss in the received energy is caused by the channel
power attenuation. With these, the SNR of the kth channel can
be formulated as

SNRk = D−2
k Ek/Vk, ∀k, (29)

which is different from the acoustic noise or acoustic SNR that is
mentioned before. Assuming that the transmitted speech signals

are Gaussian distributed in the STFT domain, the capacity based
on the Shannon theory [32] for Gaussian channels is then given
by

bk =
1

2
log2 (1 + SNRk) , ∀k, (30)

which is valid for one frequency bin. To achieve reliable trans-
missions, bk bits per sample at most can be transmitted from
microphone k to the FC at each frequency bin. Based on the
channel SNR (29) and the capacity (30), we can formulate the
transmitted energy as [9], [10], [19], [20], [33]

Ek = D2
kVk(4

bk − 1), ∀k. (31)

Notice that the above energy model holds under two condi-
tions [9], [10]: 1) band-limited input signals, and 2) the mi-
crophone recordings are quantized at the channel capacity.

B. General Problem Formulation

The proposed model-driven rate-distributed RTF estimation
method is formulated by minimizing the total transmission costs
while constraining the RTF estimation error, which can be ex-
pressed as the following optimization problem:

min
b

K∑

k=1

D2
kVk(4

bk − 1)

s.t. εCS/CW ≤ β

α
, (P1)

bk ∈ Z+, bk ≤ bmax, ∀k,
where εCS/CW indicates the use of either εCS or εCW from (22)
and (28), respectively, Z+ denotes a non-negative integer set,
bmax the maximum rate, and β the optimal performance, which
can be the RTF estimation error of the CS or CW-based method
when all the sensor measurements are quantized at the max-
imum bit rate, and α ∈ (0, 1] is the parameter to control the
desired performance. In practice, β/α is just a number, which
can be assigned by users, not necessarily dependent on the op-
timal performance. By solving (P1), we can determine the op-
timal rate distribution that the microphone nodes can utilize to
quantize their recordings, such that a desired RTF estimation
accuracy is achieved with minimum energy usage. One way to
solve (P1) is exhaustive search, i.e., evaluating the performance
for all (bmax + 1)K possible candidate rate distributions, but ev-
idently this is intractable unless bmax or/and K are very small.
Note that (P1) is formulated per frequency bin. Also, (P1) is
non-convex due to the facts that:
� the constraint εCS/CW ≤ β

α is non-linear in b;
� the bit-rate b is constrained to be integer valued.
Next, we will solve (P1) using convex optimization techniques

in the context of the CS and CW methods, respectively.

C. Model-Driven Rate-Distributed CS (MDRD-CS)

For the first constraint εCS ≤ β
α in (P1), using the expression

εCS from (22), we can rewrite it as

c1 ·
[
c2 +Tr

((
I− deT1

)
Rqq

(
I− deT1

)H)]
≤ β

α
,
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or rearranged as

Tr
((

I− deT1
)
Rqq

(
I− deT1

)H)
≤ β

αc1
− c2, (32)

where the constants c1 and c2 are given by

c1 =
1 + 1

η

L||a||22σ̂2
S

=
1 + 1

η

L||d||22σ̂2
X1

, (33)

c2 = Tr
((

I− deT1
)
Ruu

(
I− deT1

)H)
. (34)

Clearly, (32) is non-convex and non-linear in terms of the bit
rates bk, ∀k. For linearization, we equivalently rewrite (32) into
two new constraints by introducing a new Hermitian positive
semi-definite matrix Z ∈ SK

+ with S+ denoting the set of Her-
mitian positive semi-definite matrices, i.e.,

Tr (Z) ≤ β

αc1
− c2, (35)

(
I− deT1

)
Rqq

(
I− deT1

)H
= Z. (36)

Now, (35) is linear in the new variable Z, however, (36) is still
non-convex in bk. To convexify (36), we can relax it to

Z �
(
I− deT1

)
Rqq

(
I− deT1

)H
, (37)

since (37) and (35) are sufficient to obtain the original constraint
in (32). By inspection, (37) can be written as a linear matrix
inequality (LMI) using the Schur complement [34, p.650], i.e.,

[
R−1

qq I− deT1
(
I− deT1

)H
Z

]
� O2K , (38)

where R−1
qq can be computed from (14) as

R−1
qq = 12× diag

([
4b1

A2
1

,
4b2

A2
2

, . . . ,
4bK

A2
K

])
. (39)

Note that (38) is not an LMI in the unknown parametersb, but in
4bk , ∀k. Finally, we define a constant vector f = [ 12A2

1
, · · · , 12

A2
K
]T

and introduce a variable change tk = 4bk ∈ Z+, ∀k, such that
R−1

qq = diag (f � t) and (38) are both linear in t. For the in-
teger constraint bk ∈ Z+, ∀k, we relax it to bk ∈ R+, i.e.,
tk ∈ R+, ∀k. Altogether, we obtain a standard semi-definite
programming (SDP) problem [34, p.128] as

min
t,Z

K∑

k=1

D2
kVk(tk − 1)

s.t. Tr (Z) ≤ β

αc1
− c2,

[
diag (f � t) I− deT1
(
I− deT1

)H
Z

]
� O2K , (P2)

1 ≤ tk ≤ 4bmax , ∀k.

D. Model-Driven Rate-Distributed CW (MDRD-CW)

Applying the expression from (28) to (P1), one can consider
the MDRD-CW problem. Then, the first constraint εCW ≤ β

α in
(P1) can be rewritten as

Tr
((

I− deT1
)
Rqq

(
I− deT1

)H)
≤ β

αc′1
− c2, (40)

where c′1 is defined by

c′1 =
1 + 1

σ̂2
X1

dHR−1
nnd

L||d||22σ̂2
X1

, (41)

and R−1
nn can be calculated as

R−1
nn

(a)
= (Ruu +Rqq)

−1

(b)
= R−1

uu −R−1
uu

(
R−1

uu +R−1
qq

)−1
R−1

uu, (42)

where (b) is derived from the matrix inversion lemma [35, p.18].3

Similar to Section IV-C, by introducing a matrix Z ∈ SK
++, (40)

can equivalently be rewritten into two new constraints, e.g., (35)
and (36), and the latter one can be relaxed to the LMI in (38).

Further, due to the fact that the unknown rates also sit in c′1
and c′1 is non-convex in terms of the bit rate b, we relax (41) as

c′1 ≥
1 + 1

σ̂2
X1

dHR−1
nnd

L||d||22σ̂2
X1

. (43)

With the substitution of the expression for R−1
nn from (42) into

(43), we obtain

δ ≥ dHR−1
uu

(
R−1

uu +R−1
qq

)−1
R−1

uud, (44)

where δ is given by

δ = dHR−1
uud−

1/σ̂2
X1

c′1L||d||22σ̂2
X1

− 1
. (45)

Using the Schur complement, (44) can be reformulated as the
following LMI:

[
R−1

uu +R−1
qq R−1

uud

dHR−1
uu δ

]
� OK+1. (46)

Note that (45) is non-convex in c′1, which can be relaxed to

δ ≤ dHR−1
uud−

1/σ̂2
X1

c′1L||d||22σ̂2
X1

− 1
, (47)

since (47) and (44) are sufficient conditions for obtaining (40).
As a consequence, the MDRD-CW problem can also be formu-
lated as an SDP problem:

min
t,Z,c′1,δ

K∑

k=1

D2
kVk(tk − 1)

s.t. Tr (Z) ≤ β

αc′1
− c2,

[
diag (f � t) I− deT1
(
I− deT1

)H
Z

]
� O2K ,

[
R−1

uu + diag (f � t) R−1
uud

dHR−1
uu δ

]
� OK+1, (P3)

1/σ̂2
X1

c′1L||d||22σ̂2
X1

− 1
− dHR−1

uud+ δ ≤ 0,

1 ≤ tk ≤ 4bmax , ∀k.

3
(
A+CBCT

)−1
= A−1 −A−1C

(
B−1 +CTA−1C

)−1
CTA−1.
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Remark 2: Both the MDRD-CS problem in (P2) and the
MDRD-CW problem in (P3) can be solved in polynomial time
using interior-point methods or solvers, like CVX [36] or Se-
DuMi [37]. The computational complexity for solving both
problems is of the order of O(K3). After (P2) or (P3) is solved,
the allocated bit rates can be resolved by bk = log4 tk, ∀k. Since
the solution of (P2) or (P3) are continuous values, we need to fur-
ther refine the rates. We recommend to utilize randomized round-
ing, since this technique can guarantee that the integer solution
obtained in this way always satisfies the performance require-
ment. The randomized rounding technique is detailed in [19],
[38], the complexity of which is linear in K.

V. GREEDY RATE-DISTRIBUTED METHODS

Strictly speaking, the MDRD-CS/CW estimators proposed in
the previous section are not practical, since the rate-distribution
solver in (P2) or (P3) depends on the signal power σ2

X1
, the true

RTF d, SNR and noise SOS Ruu. Although we can estimate
σ2
X1

, SNR and Ruu in practice using the microphone measure-
ments, we have no knowledge on d. However, the model-driven
methods can provide a lower bound on the optimal rate distribu-
tion that we can achieve with the constraint on the RTF estima-
tion performance. Based on the model-driven estimators, we will
propose two practical low-rate RTF estimators in this section,
which are referred to as the data-driven rate-distributed CS/CW
methods (i.e., DDRD-CS and DDRD-CW, respectively). In what
follows, we will take the DDRD-CS algorithm as an example
to clarify the proposed greedy methods, because the updating
procedures for both methods are similar.

Due to the fact that the microphone nodes quantize and trans-
mit their recordings to the FC on a frame-by-frame basis, we
can update the rate distribution at the FC end using the previ-
ously received data and estimated RTF. In detail, for the first
time frame,4 we initialize the bit rates at the maximum rate, and
the microphone nodes quantize data at the initial rates. At the
FC end, we can estimate the initial correlation matrices R̂qq,
R̂ŷŷ and R̂xx using (14), (8) and (11), respectively. Also, we
can compute the signal power σ̂2

X1
and the SNR at the reference

microphone η̂ using (17) and (21), respectively. Based on the
estimate of R̂xx, we can extract its normalized first column as
the estimated RTF, i.e., d̂CS, using (16). Using this information,
we can update the constants c1 and c2 as

ĉ1 =
1 + 1

η̂

l||d̂||22σ̂2
X1

, (48)

ĉ2 = Tr
(
(I− d̂eT1 )(Rnn − R̂qq)(I− d̂eT1 )

H
)
, (49)

where l denotes the number of received segments by the FC, e.g.,
in the initial case l = 1, and the estimate of the acoustic noise
statistics is given by R̂uu = Rnn − R̂qq. Based on these, we

4Note that for the proposed rate distribution methods, we only need to transmit
the speech+noise segments, since the statistics of the acoustic noise is assumed
known in this work. This is the assumption that we made in Section II-B in order
to make the analysis on the CS and CW methods consistent.

can update the rate distribution by solving (P2), i.e.,

min
t,Z

K∑

k=1

D2
kVk(tk − 1)

s.t. Tr (Z) ≤ β

αĉ1
− ĉ2,

⎡

⎣
diag (f � t) I− d̂eT1
(
I− d̂eT1

)H

Z

⎤

⎦ � O2K ,

1 ≤ tk ≤ 4bmax , ∀k.

(50)

Note that (50) is an instantaneous optimization problem of (P2)
for one specific frame, as ĉ1, ĉ2 and d̂ need to be updated frame-
by-frame and they get more accurate with more frames received
by the FC.

Subsequently, the microphone nodes quantize the next frame
at the recently obtained bit rates. The FC then updates the SOS
and the parameters required by (50) using the past segments to-
gether with the newly received measurements in a similar way.
This procedure will continue until all the frames at the micro-
phone end have been transmitted. This data-driven approach is
summarized in Algorithm 1,5 where we also include the DDRD-
CW method. The proposed DDRD-CW method is obtained by
replacing the CS-steps using the CW-steps, e.g., d̂ is the normal-
ized eigenvector of the matrix pencil (R̂ŷŷ,Rnn) correspond-
ing to the maximum eigenvalue. Note that when the number of
frames l 
 L, it is possible that (50) is infeasible due to in-
sufficient segments for estimating the SOS. To circumvent the
infeasibility, we can relax β in (50) using

β̂ = Lβ/l, (51)

such that the constraint Tr (Z) ≤ β̂
αĉ1

− ĉ2 gradually becomes
tighter when increasing the number of frames, resulting in an in-
crease in the bit-rates per frame that are required for quantization.
To this end, we can conclude that the complexity of the greedy
approaches for each frame is the same as the model-driven meth-
ods, i.e., O(K3), and the complexity for all the frames is of the
order of O(LK3).

VI. EXPERIMENTAL RESULTS

In this section, we evaluate the RTF estimation performance
of the proposed methods using synthetic data and natural speech
data. Note that in simulations, the matrix Rnn is already esti-
mated using sufficiently long noise-only segments.

A. Simulations on Synthetic Data

Fig. 1 shows the experimental setup, whereK = 20 candidate
microphones are placed in a 2D room with dimensions (3× 3)
m. The microphones are distributed uniformly on a circle with
the origin at (1.5, 1.5) m and a radius of 0.5 m. The FC (black

5The current setup assumes the sources to be stationary in both time and
space. For non-stationary sources, e.g., moving sources, Algorithm 1 should

be modified as R̂ŷŷ = 1
P

∑l

ι=l−P
ŷιŷ

H
ι , where P denotes the number of

frames from the past that we want to include. If the sources are completely
stationary, then P = l − 1.
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Fig. 1. An illustration of experimental setting with 20 microphones. The FC
and the first microphone are placed at the same position.

Algorithm 1: DDRD-CS/CW Methods.
1: Require: Ruu;
2: Initialize: bk = bmax, ∀k;
3: for l = 1 : L do
4: Transmit the lth noisy segment using bk bits;

5: R̂qq = 1
12 × diag([

A2
1

4b1
,
A2

2

4b2
, . . . ,

A2
M

4bM
]);

6: R̂ŷŷ = 1
l

∑l
ι=1 ŷlŷ

H
l ;

7: R̂xx = R̂ŷŷ −Ruu − R̂qq;
8: σ̂2

X1
= |a1|2σ̂2

S = eT1 R̂xxe1;

9: η̂ =
σ̂2
X1

eT
1 (R̂qq+Ruu)e1

;

10: Case 1: DDRD-CS
11: d̂CS = σ̂−2

X1
R̂xxe1;

12: ĉ1 =
1+ 1

η̂

l||d̂||22σ̂2
X1

;

13: ĉ2 = Tr((I− d̂CSe
T
1 )Ruu(I− d̂CSe

T
1 )

H);
14: update bCS by solving (P2);
15: Case 2: DDRD-CW
16: d̂CW = R̂

H/2
nn ψ̂

eT
1 R̂

H/2
nn ψ̂

;

17: ĉ2 = Tr((I− d̂CWeT1 )Ruu(I− d̂CWeT1 )
H);

18: update bCW and c′1 by solving (P3);
19: end for
20: return bCS,bCW, d̂CS, d̂CW

solid square) is assumed to be at the first microphone node, i.e.,
(2, 1.5) m. As the first node is considered to be the FC, it can
be assumed that it always quantizes at the maximum rate, since
it does not cost any transmission energy. The sensors are in-
dexed in an anti-clockwise order. One target source (red solid
circle) and one interfering source (blue star) are positioned at
(2.1, 0.9) m and (0.6, 2.4) m, respectively. We assume that the
positions of all sources and microphones do not change. In this
section, the simulations are performed directly in the STFT do-
main at a single frequency bin using a synthetic non-stationary
Gaussian source signal and synthetic ATFs. The target source

is modelled as S(ω, l) ∼ CN (0, σ2
S(l)) (i.e., the real and imag-

inary parts of S(ω, l) are both zero-mean Gaussian distributed
with variance σ2

S(l)). The non-stationarity is realized by vary-
ing the variance as σ2

S(l) ∼ 0.5e0.5 (which is a scaled exponen-
tial random variable with an average of one, i.e., σ2

S = 1), such
that the resulting average variance of the target source is one.
The interference consists of a stationary coherent source and
spatially-white sensor noise. We employ the SNR to measure the
ratio between the variances of the target source and the sensor
noise. Signal-to-interferer ratio (SIR) is used to measure the ra-
tio between the variances of the target source and the interfering
sources. The ATFs of the sources are modelled as a summation
of a direct-path component and reflection components modelled
as a complex Gaussian random variable6. The ratio between the
power of the direct-path component and the reflections power is
denoted as direct-to-reverberation ratio (DRR). The simulation
parameters are set as follows: bmax = 16 bits per sample, SNR
= 20 dB, SIR = 0 dB, DRR = 30 dB and the number of frames
L = 8000. The channel noise PSD is set to be Vk = 1, ∀k. Note
that the level of SNR or SIR is averaged over time, since the
variance of the target source is time-variant. We set β in (P1)
to the estimation error of the classical CS method when each
sensor quantizes at the maximum bit rate. The presented results
are averaged over 100 Monte-Carlo trials. In order to focus on
the rate-distributed RTF estimation problem, we assume that the
internal clocks of the sensors are synchronized.

1) Evaluation of MDRD-CS/CW Methods: To study the per-
formance of the rate distribution, we compare the proposed
MDRD-CS/CW methods to the CS/CW methods using a uni-
form rate allocation (referred to as uni.CS and uni.CW, re-
spectively). For instance, given the rate distribution bk ob-
tained by the MDRD-CS method, the uni.CSmethod distributes
round(

∑K
k=1 bk/K) bits to each sensor and estimates the RTF

using the classic CS method. Similarly, the uni.CW method is
based on the rate distribution that is obtained by the MDRD-
CW method. In addition, we also compare uni.PowerCS/CW
methods, which distribute the total transmission powers that
are consumed by the MDRD-CS/CW methods uniformly to
all the sensors, respectively. As such, the uni.PowerCS (or
uni.PowerCW) method uses the same amount of transmission
energy as the proposed MDRD-CS (or MDRD-CW) approach,
but most likely with different bit-rate distributions. Fig. 2 shows
the RTF estimation error and transmission cost parameterized
by α. Clearly, the better the accuracy, the more transmission
cost is required. Hence, the proposed methods can trade-off
the performance and energy usage by controlling the parameter
α. From the simulations it follows that the proposed MDRD-
CS/CW methods always satisfy the performance requirement.
Moreover, their transmission costs are always much lower com-
pared to the full-rate quantization (i.e., when α = 1) or uniform

6The direct path is characterized by the gain and delay values. The gain can
be viewed as the reciprocal of the distance from the source to the sensors, and
the delay (in number of samples) is caused by the propagation of the source.
Using the power of the direct-path component and the DRR parameter, we
can calculate the power (or variance) of the reflection components. Then, the
reflection components can be generated as zero-mean complex Gaussian random
variables.
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Fig. 2. RTF error and transmission cost of the model-based methods in terms
of α. The cost function in x-axes means the total transmission power per frame.
The “total” refers to the summation of transmission costs over microphones and
“per frame” indicates the average over L frames.

Fig. 3. (a) An example for rate distribution when α = 0.8. (b) RTF accuracy
in terms of rate increment.

rate allocation. Given the same RTF performance requirement,
the MDRD-CW method consumes much less transmission en-
ergy than the MDRD-CS method. In other words, given the same
power budget, the CW method always performs better than the
CS method.

Fig. 3(a) shows the rate distributions obtained by the pro-
posed MDRD-CS/CW from Fig. 2 at α = 0.8. Clearly, to fulfil
a desired RTF estimation performance εCS/CW ≤ β

α , we do not
need full-rate quantization for all the sensors, as the optimal
rate distributions are far below the maximum rate bmax per sen-
sor. Given the same performance requirement, the MDRD-CW
method needs less bit rates than the MDRD-CS method. Sensor
one is allocated the maximum number of bits, as this is the FC
and no additional transmission energy is required. Further, we
see that in order to save transmission energy, the sensors that are
closer to the FC are allocated with a higher rate. In Fig. 3(b),
we show an example on how the RTF accuracy changes by fur-
ther increasing the rate, starting from the optimal distributions
given in Fig. 3(a). The resulting RTF accuracy is plotted as

Fig. 4. RTF error and transmission cost of model-driven methods in terms
of the number of available segments for α = 0.8. The cost function in x-axes
means the total transmission power per frame.

a function of the rate increment Δb. For Δb = 0, we use the
optimal rate distribution given in Fig. 3(a). Then, for Δb > 0,
we increase each bk, ∀k by Δb bits per sample. The resulting
rate is upper-bounded by bmax, i.e., the bit rates are increased
to bk = min (bmax, bk +Δb) , ∀k. Obviously, by increasing the
bit-rate, we do not gain significantly in the RTF accuracy of
the MDRD-CS method, which reveals that many bits are redun-
dant and it is unnecessary to use full-rate quantization. Notably,
the performance gain (e.g., 8 dB) in the MDRD-CW method is
caused by the fact that β is set as the best performance of the
classic CS method.

Fig. 4 compares the RTF accuracy and the energy usage pa-
rameterized by the number of segments L for α = 0.8. Clearly,
the more segments for estimating the correlation matrices, the
more accurately the CS/CW-based estimators perform and the
more transmission costs required. To achieve the same RTF esti-
mation performance, the proposed methods consume much less
transmission cost.

For further studying other influence factors on the proposed
model-driven rate distribution approaches, we place the FC in
Fig. 1 at the center of the room, such that all the microphone
nodes have the same distance from the FC. The locations of the
target source and the noise source are fixed, that is, only the
SNRs across microphones vary from each other. Fig. 5 shows
an example of the resulting rate distributions for such a scenario.
We can clearly see that the SNR does affect the rate distributions,
as roughly the sensor having a lower SNR (e.g., sensor 18 which
is closest to the interfering source) is allocated with a higher rate.
This reveals that the more noisy the microphone measurements
are, the more bits are required for quantization. Comparing the
ranges of the distributed rates between Fig. 5 and Fig. 3(a), it can
be concluded that the distance between a sensor and the FC is
more relevant than the SNR for the proposed rate optimization
problems.

2) Evaluation of DDRD-CS/CW Methods: Fig. 6 compares
the proposed DDRD-CS/CW methods to the model-driven ver-
sions, uni.CS/CW and uni.PowerCS/CW. For each segment,
the uni.CS/CW methods use uniform rate allocation, and
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Fig. 5. Rate distributions of the proposed model-driven methods for the sce-
nario where the FC is located at the center of the room and α = 0.8.

Fig. 6. RTF accuracy of the data-driven methods for α = 0.8. The total num-
ber of received frames (i.e., x-axis) increases from 1 to L = 8000.

uni.PowerCS/CW use uniform power allocation as before.
Clearly, by increasing the number of available segments, the
DDRD-CS method and the DDRD-CW method converge to the
MDRD-CS method and the MDRD-CW method in terms of per-
formance, respectively. The proposed DDRD-CW method con-
verges faster. Note that the final rate distributions of the MDRD-
CS (or MDRD-CW) method and the DDRD-CS (or DDRD-CW)
method are not necessary to be the same. Fig. 7 shows the trans-
mission cost per frame of the data-driven methods as a function
of the number available frames. The cost of the DDRD-CS/CW
methods gradually increases, which is caused by the relaxation
β̂ = Lβ/l for overcoming the infeasibility of (50) when l 
 L.

Since the constraintTr (Z) ≤ β̂
αĉ1

− ĉ2 gradually gets tighter by
increasing the number of frames, more and more bits are needed
to fulfill the performance requirement. More importantly, the
DDRD-CS/CW methods use much less transmission energy than
the uni.CS/CW methods.

B. Simulations on Natural Speech Data

In this section, we will show the performance of the proposed
methods using natural speech data in a simulated WASN. The

Fig. 7. Transmission cost of the data-driven methods per frame for α = 0.8.
The total number of received frames (i.e., x-axis) increases from 1 to L = 8000.
The y-axes means the total transmission power per frame.

Fig. 8. RTF estimation performance of the proposed methods using the real
speech recordings forα = 0.8. The total number of received frames (i.e., x-axis)
increases from 1 to L = 500.

experimental setup is same as Fig. 1. The single target source is a
speech signal originating from the TIMIT database [39]. The co-
herent interfering source is a stationary Gaussian speech shaped
noise signal. The microphone self noise is modeled as uncorre-
lated noise at an SNR of 50 dB. All signals are sampled at 16
kHz. We use a square-root Hann window of 100 ms for framing
with 50% overlap. The real RTFs are generated using [40] with
reverberation time T60 = 200 ms.

At first, we show the RTF estimation performance of the pro-
posed methods in Fig. 8 for α = 0.8. This is a similar compar-
ison as in Fig. 6, but now using real speech signals. The total
number of segments is L = 500. We can see that similar to the
synthetic data case in Fig. 6, the DDRD-CS and DDRD-CW
methods converge to MDRD-CS and MDRD-CW in the sense
of RTF accuracy, respectively. Both methods satisfy the perfor-
mance requirement. Similarly, the transmission cost per frame
is shown in Fig. 9.

Secondly, we validate the application of the proposed meth-
ods in multiple reverberation conditions. The performance is
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Fig. 9. Transmission cost per frame of the proposed methods using the real
speech recordings for α = 0.8. The total number of received frames (i.e., x-
axis) increases from 1 to L = 500. The cost function in y-axes means the total
transmission power per frame.

Fig. 10. RTF estimation accuracy and transmission cost of the proposed meth-
ods for multiple reverberation conditions with α = 0.8. The cost function in
x-axes means the average transmission power per frame.

examined for different values of T60, selected from {0, 200,
400, 600, 800} ms. The RTF estimation accuracy and the aver-
age transmission power per frame of the proposed methods and
the reference methods are shown in Fig. 10 for α = 0.8. Note
that in reverberant environments, the early and late reverbera-
tions of the source signal might fall into different frames, since
the frame length is fixed. When estimating the noisy correlation
matrix and updating the RTF estimate frame-by-frame, the late
reverberation of the interfering source will thus be regarded as
another source of noise. Increasing the level of reverberation will
lead to a lower long-term SIR. As Fig. 5 shows that the sensors
with a lower SNR should be allocated with a higher rate, the
proposed methods need to distribute more bits to the sensors,
i.e., more transmission power, in a more reverberant environ-
ment. Also, that is why with an increase in the reverberation
time, both the RTF estimation error and the transmission power
increase in Fig. 10.

Fig. 11. RTF error of the proposed methods in terms of the distance from the
target source to the center of the room, i.e., (1.5, 1.5) m, for α = 0.8.

Finally, since the RTF performance is also affected by the
source location (e.g., see Eqs. (22, 28)), we further evaluate the
RTF performance for different positions of the target source.
To do so, we randomly place the target source on the diagonal
of the room, i.e., on the line from the bottom-left corner to the
top-right corner. The RTF estimation performance in terms of
the distance from the target source to the center of the sensor
array is shown in Fig. 11. The proposed CS/CW-based methods
obtain a similar performance variation in terms of the source
location. Clearly, the proposed approaches achieve a better RTF
estimation performance when the sources are located in the near-
field, since the SNR is higher in this case.

VII. CONCLUDING REMARKS

In this work, we investigated the RTF estimation problem us-
ing the CS/CW methods under low bit-rate. Taking quantization
noise into account, we showed that the estimation errors of both
methods are influenced by the SNR, the number of available
frames and the bit rate. Motivated by this, we formulated to mini-
mize the energy usage for data transmission between sensors and
the FC by constraining the RTF estimation performance, such
that the optimal rate distribution can be found for the sensors to
quantize their measurements. The problem was first solved by
semi-definite programming, which was called MDRD-CS/CW.
Since the proposed model-based methods are not practical (they
depend on the true RTF), we further proposed two corresponding
greedy approaches (i.e., DDRD-CS/CW). We can conclude that
� Both the model-based methods and the greedy methods sat-

isfy the performance requirement on the RTF estimation,
more importantly, with a significant saving of transmission
cost compared to the full-rate quantization or uniform rate
allocation;

� The performance of the greedy method converges to that
of the model-based method with increasing the number of
available frames;

� Given the same performance bound, the proposed CW-
based methods need less bit rates, resulting in less energy
consumption compared to the CS-based methods;
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� The resulting rate distributions are affected by the distance,
the SNR, etc. In general, the sensors that are closer to the
FC are allocated with a higher rate because they are cheaper
in data transmission, and the sensors that have a lower SNR
should be allocated with a higher rate.

The benefits of the proposed approaches can be concluded as
� The considered methods can provide an effective strategy

for saving the energy consumption over WASNs through
distributing the quantization rates.

� The proposed methods can remove the redundant bits con-
tained in the raw microphone measurements and be applied
in noisy/reverberant environments.
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