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Abstract—Wireless acoustic sensor network (WASN) has a
wide range of applications in internet of things, where signal
estimation is one of the network design objectives. Due to the
existence of ambient noises, the recorded audio signals are
inevitably corrupted, resulting in a low signal-to-noise ratio
(SNR), which triggers the necessity of signal enhancement. As
using all sensor measurements brings a large amount of data
transmissions and computational cost, the narrowband sensor
selection was proposed to choose an informative subset of sensors
to perform noise reduction in the audio context. However, the
resulting frequency-dependent selection status has to be switched
across frequencies. In order to avoid the complicated switching
operations, we consider frequency-invariant sensor selection in
this work. We propose to minimize the total power consumption
over the WASN by constraining the broadband SNR, which can
be solved using broadband semi-definite optimization (BroadOpt)
or narrowband voting (NaVo) approaches. In order to further
reduce the time complexity, we propose two near-optimal greedy
methods, including gradient removal (GradR) and weighted input
SNR removal (SnrR). As comparison, we also show a broadband
energy removal (EnergyR) method. The greedy methods remove
one sensor at each iteration from the complete network until the
performance constraint is not satisfied. Numerical results using
a simulated large-scale WASN show that the greedy methods can
achieve a comparable performance compared to the optimization
based counterparts, while the corresponding time complexity is
much lower. In general, the sensors around the target source and
the fusion center are more likely to be selected.

Index Terms—Sensor selection, MVDR beamforming, noise
reduction, convex optimization, greedy removal, energy efficiency,
internet of audio things, wireless acoustic sensor networks.

I. INTRODUCTION

RCENTLY, wireless portable devices (e.g., smartphone,
laptop) become often-used in our daily life owing to

the advanced micro-electronics. Usually, each device has a
small microphone array equipped, which can then monitor the
acoustic scene. In principle, we are surrounded by a wireless
acoustic sensor network (WASN), or the so-called internet
of audio things (IoAuT) [1], which is an emerging research
field positioned at the intersection of the internet of things,
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audio processing, signal estimation, artificial intelligence, and
human-machine interaction. The WASN refers to the networks
of computing devices embedded in physical objects (i.e.,
audio things) dedicated to the production, reception, analysis,
and understanding of audio in distributed environments. The
wireless nodes are connected by an infrastructure that enables
multidirectional communication, both locally and remotely [2].
Regarding the network topology, the WASN can be organized
in a centralized fashion by using a fusion center (FC) or in
a distributed fashion [3]. The information exchange occurs
between two neighbouring nodes or between nodes and the
FC, and the user can thus control the devices remotely. WASNs
have a broad range of applications for e.g., amateur drone
surveillance [4], binaural hearing aids [5], source localization
[6], vehicle classification [7], environmental noise monitoring
in smart cities [8], to list a few.

In practice, the recorded audio signals are degraded in-
evitably due to the existence of noises (e.g., competing speak-
ers, ambient noise, sensor self-noise, reverberation), which
heavily affects the speech quality as well as the speech interac-
tion performance. In order to improve the performance, usually
speech enhancement (or noise reduction) is involved as a front-
end speech processing step [9]. Compared to the conventional
microphone array based speech enhancement systems [10], the
utilization of WASNs for speech processing can potentially
bring several benefits. For instance, as the wireless devices
can be distributed anywhere, they might be very close to the
target source, resulting in high-quality recordings. For hearing-
aid applications, although only a small microphone array is
equipped locally, if external wireless devices can share their
measurements, more data is then available at binaural hearing
aids, leading to a performance improvement [5].

A. Motivation and related works

In general, the more sensor measurements that are included
for noise reduction in the context of WASN or conventional
microphone array [10], [11], the better the performance, but
the higher the power consumption and computational complex-
ity. As the multi-microphone recordings are highly correlated,
some sensor measurements might be even redundant. In case
a sensor is distant from the target speaker, the corresponding
audio stream is of low quality in terms of signal-to-noise
ratio (SNR), which will have a marginal contribution to noise
reduction. In addition, the power consumption has to be taken
into account, particularly in WASNs, as each sensor is driven
with a limited amount of battery resource and the energy
consumption directly affects the network lifetime. Intuitively,
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the sensors that have a marginal contribution can be excluded
from the complete network, such that the power consumption
can be saved at the cost of a tiny performance sacrifice. As
both the noise reduction performance and energy consumption
are related to the number of sensors, which thus somehow
controls the trade-off between two metrics, the challenge
in the context of noise reduction over WASNs that has to
be addressed becomes: given an expected noise reduction
performance, how to optimally select the most informative
subset of sensors from a large-scale WASN?

It was shown in [12] that sensor selection is effective for
reducing the cardinality of sensors for computation at the cost
of a controllable performance sacrifice. Mathematically, it was
formulated by optimizing a certain performance measure and
constraining the number of the selected sensors, or in the other
way around. In principle, this is a combinatorial optimization
problem. In order to perform sensor selection efficiently,
convex relaxation techniques [13] or greedy heuristics (e.g.,
submodularity) [14] can be leveraged. In literature, sensor
selection techniques have already been applied into, e.g., state
estimation [15], spectrum sensing [16], field estimation [17],
time-delay of arrival based source localization [18], [19],
target tracking [20], [21], speech enhancement [11], [22], [23],
robotic systems [24]. Note that in the context of communica-
tions (e.g., multiple input multiple output (MIMO) cognitive
radio networks), sensor selection might be called antenna se-
lection [25]–[28] (or more generally resource allocation [29]),
yet the optimization criteria are similar. By only incorporating
the selected sensor subset, the resource consumption can thus
be saved significantly compared to blindly using all sensor
measurements, as many non-informative sensors are excluded.

In order to reconstruct an energy-efficient WASN as well
as to achieve a desired noise reduction performance, in [23] a
sparsity-promoting sensor selection based minimum variance
distortionless response (MVDR) beamformer was proposed.
The optimal sensor subset is solved by considering a semi-
definite programming (SDP) problem, which is derived from
minimizing the total power consumption in terms of the selec-
tion status of sensors and constraining the narrowband output
noise power. The MVDR beamformer is then designed using
the selected sensor subset, such that the number of sensors
used for data transmission and computation is reduced. We call
this formulation as narrowband sensor selection (NSS) in this
work. The NSS problem was further extended in [11] by taking
the effects of the estimation error of relative acoustic transfer
function (RTF) into account. Since the NSS problem is con-
sidered separately for each frequency bin, the sensor selection
results across different frequencies might be different. Such a
frequency-variant heterogeneous selection method might cause
many switching operations for sensors. For example, in case a
sensor is selected in one frequency bin, while it is not selected
in another frequency bin, we have to switch off this sensor for
energy saving, as keeping a sensor activated also consumes
a certain amount of battery resource. Also, the switching-
on operations might occur similarly. From the perspective of
network complexity, these switching operations would bring
some extra message passing on the basis of certain commu-
nication protocols. To avoid complex switching operations, in

this work we therefore propose a frequency-invariant sensor
selection (FISS) approach for MVDR beamforming based
noise reduction in large-scale WASNs.

B. Contribution

The proposed FISS problem minimizes the total transmis-
sion power over the network subject to a constraint on the
broadband output SNR, which is a joint optimization problem
in terms of the spatial filter and the selection variable. By
constraining the broadband performance, the proposed FISS
approach therefore has only one optimization problem and the
resulting sensor selection solution is unique. However, given F
frequency bins, the NSS method in [23] separately considers F
optimization problems and each has an independent solution.
Therefore, compared to [23] the contribution of this work is
that two broadband sensor selection methods together with two
low-complexity approaches are proposed.

At first, we show that the MVDR beamformer is a solution
to the FISS problem, which is thus simplified by substituting
the MVDR filter as an optimization problem in terms of the
selection variable. Due to the fact that the broadband SNR con-
straint is non-convex, we separate it into multiple constraints
on the narrowband output SNR, such that the FISS problem
can be relaxed as minimizing the total power consumption
subject to multiple constraints on the narrowband SNR. We
show that each narrowband constraint can be formulated as
a linear matrix inequality (LMI), such that an SDP surrogate
is obtained, which is called BroadOpt method in this work.
In case all narrowband constraints are satisfied, it is sufficient
that the expected global broadband SNR can be achieved.

Second, as the proposed BroadOpt method involves multiple
LMI constraints, which heavily affects the computational effi-
ciency, we consider to optimize multiple local SDP problems,
and each is constrained by the narrowband SNR. Due to the
fact that the selection solutions vary across frequencies, in
order to resolve a unique status we design a narrowband voting
(NaVo) approach, which can be regarded as an extension of
the NSS method in [23] by averaging the frequency-dependent
selections. Note that both BroadOpt and NaVo have a cubic
time complexity in terms of the number of sensors.

Third, in order to reduce the computational complexity,
we propose two low-complexity greedy approaches: GradR
and SnrR. One is based on the use of the gradient of FISS
problem, and the other is on the weighted input SNR. As the
gradient somehow measures the contribution of a sensor to
minimizing the objective function, we initialize the selected
subset using the complete network and remove the sensor that
has the smallest gradient with respect to the current selected
subset. Alternatively, the input broadband SNR weighted by
the individual transmission cost is further used to measure the
contribution to the considered energy-aware noise reduction
performance. Based on the weighted SNR, we can thus design
an SnrR method, which removes the sensor that has the
smallest weighted SNR at each iteration. The proposed greedy
sensor selection approaches follow a similar removal criterion
in [30], where however the power consumption is not taken
into account. As comparison, we show that the weighted
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broadband input energy can also be utilized to perform sensor
selection, which is termed as EnergyR in this work.

Numerical simulations using a large-scale WASN show that
the proposed methods can satisfy the performance requirement
with a much smaller sensor subset compared to the complete
network, which reveals that in practice many sensors are non-
informative for energy-aware noise reduction. The sensors that
are close to the target source and the FC are more informative,
as they are beneficial for enhancing the target signal and
saving the power consumption, respectively. It is shown that
the proposed greedy approaches have an obvious superiority in
computational efficiency over the optimization based methods.

C. Outline and Notation

The remainder of this paper is structured as follows. Sec-
tion II introduces the signal model and problem description. In
Section III, we present the proposed broadband FISS methods,
i.e., BroadOpt and NaVo. In Section IV, we propose three
greedy sensor removal approaches, i.e., GradR, SnrR and
EnergyR. Section V presents the experimental results using
a simulated WASN. Finally, Section VI concludes this work.

Notation: The notation used in this paper is as follows:
Upper (lower) bold face letters are used for matrices (column
vectors). (·)T or (·)H denotes vector/matrix transposition or
conjugate transposition. E(·) denotes the mathematical expec-
tation operation. diag(·) refers to a block diagonal matrix with
the elements in its argument on the main diagonal. O and
1 denote an all-zeros square matrix and an all-ones column
vector of proper size, respectively. IN is an identity matrix of
size N . ek denotes an M -dimensional column vector with the
kth element equal to one and zeros elsewhere. A � B means
that A−B is a positive semidefinite matrix. |S| denotes the
cardinality of set S.

II. SIGNAL MODEL AND PROBLEM FORMULATION

A. Signal model

Given a WASN consisting of M spatially distributed acous-
tic sensor nodes, we assume that the FC is one of the nodes
and each node is equipped with a single microphone without
loss of generality. In the short-time Fourier transform (STFT)
domain, let l and ω, respectively, denote the frame index
and the angular frequency index. The noisy signal Yk(ω, l)
recorded by the kth microphone is written as

Yk(ω, l) = Xk(ω, l) +Nk(ω, l), k = 1, . . . ,M, (1)

where Xk(ω, l) denotes the target signal component at mi-
crophone k, and Nk(ω, l) the corresponding additive noise
component, which might include coherent noise sources (e.g.,
competing speakers) and incoherent noises (e.g., late reverber-
ations, sensor self-noise). For the single target source case, the
signal component can be written as

Xk(ω, l) = ak(ω)S(ω, l), (2)

where ak(ω) denotes the acoustic transfer function (ATF) of
the target source with respect to the kth microphone node, and
S(ω, l) the target signal at the source position. Without loss

of generality, we take the FC as the first node and assign it
as the reference (a more general and sophisticated reference
microphone selection method can be found in [31]), such that
the RTF can be defined as

hk(ω) = ak(ω)/a1(ω), (3)

which is the normalized ATF with respect to the reference.
Both the ATF and RTF are time-invariant under the assumption
that the target source keeps static during the observation
period. The introduction of RTF is due to the fact that in
practice the RTF can be estimated using covariance subtraction
or covariance whitening method [32]. The ATF is a scaled
version of RTF, and the scaling factor makes the estimation
of ATF ambiguous. More importantly, the utilization of RTF
does not degrade the beamforming performance. In case of
the utilization of ATF, the classic MVDR beamformer returns
an estimate of the original target source, i.e., Ŝ(ω, l); in
case of the usage of RTF, we can obtain an estimated signal
component at the reference microphone, i.e., X̂1(ω, l). In both
cases, the output SNRs are equal. For notational brevity, we
will omit the time-frame index in the sequel.

Let y(ω) = [Y1(ω, l), Y2(ω, l), . . . , YM (ω, l)]T , which
stacks the sensor measurements for each time-frequency bin.
Similarly, we define vectors n(ω), a(ω), h(ω) and x(ω)
for stacking the noise components, ATFs, RTFs and signal
components, respectively, such that the signal model can be
compactly given by

y(ω) = a(ω)S(ω) + n(ω) = h(ω)X1(ω) + n(ω). (4)

Further, we define the noise and noisy covariance matrices as

Φnn(ω) = E{n(ω)n(ω)H}, Φyy(ω) = E{y(ω)y(ω)H},

where the expectation is taken over time frames. Applying
a voice activity detector (VAD), the microphone signal can
be categorized as speech-absent and speech-present frames,
and during these two periods the noise and noisy covari-
ance matrices can be estimated using the average smoothing
technique. We assume that the signal component and noise
components are mutually uncorrelated, such that Φyy(ω) =
Φxx(ω) + Φnn(ω) and Φxx(ω) can be estimated by

Φxx(ω) , σ2
S(ω)a(ω)a(ω)H , σ2

X1
(ω)h(ω)h(ω)H (5)

= Φyy(ω)−Φnn(ω), (6)

where σ2
S(ω) = E{|S(ω, l)|2} and σ2

X1
(ω) = E{|X1(ω, l)|2}

denote the power spectral densities (PSD) of the target signal at
the source position and at the reference position, respectively.

In this work, we aim at estimating the target signal using a
subset of sensor measurements, which is chosen by optimizing
the transmission energy between the selected sensors and the
FC subject to an expected estimation performance bound.

B. Problem description

In order to formulate the FISS problem, it is necessary to
define a selection vector

p = [p1, p2, . . . , pM ]T ∈ {0, 1}M , (7)
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where pk = 1,∀k indicates that the kth microphone is selected,
and otherwise unselected. With the vector p, we can find
the selected subset of sensors as Sin = {k|pk = 1} and
the unselected subset as Sex = {k|pk = 0}. The subscripts
“in” and “ex” represent inclusion and exclusion, respectively.
Further, we use K = |Sin| to represent the number of the
selected sensors, resulting in |Sex| = M−K. Throughout this
work, in order to simplify the sensor switching operations, we
will consider p as frequency-invariant, i.e., the selection status
of any sensor keeps the same across frequencies.

Given the selected sensors, we can design a spatial
frequency-dependent filter wp(ω) ∈ CK , e.g., MVDR, and
the target signal is then estimated via beamforming as

X̂1(ω) = wp(ω)Hyp(ω), (8)

where yp(ω) contains the sensor measurements of the selected
subset. The joint frequency and selection dependent narrow-
band output SNR can then be calculated as

oSNRp(ω) =
wp(ω)HΦxx,p(ω)wp(ω)

wp(ω)HΦnn,p(ω)wp(ω)
, (9)

where Φxx,p(ω) and Φnn,p(ω) denote the speech covariance
matrix and the noise covariance matrix of the selected sensor
measurements.

In a large-scale WASN, the energy consumption should be
taken into account for the design of data processing algorithms,
as it directly influences the network lifetime and the efficiency
of data aggregation. Let Ck, k ∈ M = {1, 2, . . . ,M} denote
the energy consumption of sensor k, which is composed of
two operations: 1) the power for keeping it active, and 2)
the power for transmitting its measurements to the FC, which
was shown to be proportional to the squared transmission
distance [33]–[35]. In order to improve the energy efficiency,
in this work we therefore intend to minimize the total energy
consumption over the WASN subject to a constraint on the
desired noise reduction performance, which can be formulated
as the following constrained optimization problem:

min
p∈{0,1}M ,wp

M∑
k=1

pkCk

s.t. oSNRp ≥ αoSNRmax

wp(ω)Hhp(ω) = 1, (10)

where oSNRmax denotes the maximum output broadband
SNR, which represents the case when all sensors are used1,
and 0 < α ≤ 1 controls the expected output SNR. In practice,
usually oSNRmax is unavailable, as the total number of sensors
might be even unknown in large-scale WASNs. In this case,
αoSNRmax can be assigned by users as an arbitrary desired
performance (e.g., 40 dB). In (10), oSNRp denotes the output
broadband SNR using the selected subset of sensors that is
determined by p, which is given by

oSNRp =
1

Ω

Ω∑
ω=1

wp(ω)HΦxx,p(ω)wp(ω)

wp(ω)HΦnn,p(ω)wp(ω)
, (11)

1For multi-microphone noise reduction approaches, the performance is
generally positively related to the number of microphones, as the more the
microphones, the better the performance. In case all sensors are involved, the
optimal noise reduction performance is then obtained.

with Ω the number of frequency bins. Note that the equality
wp(ω)Hhp(ω) = 1 is included as a distortionless constraint
on the target source, since

wp(ω)HΦxx,p(ω)wp(ω) = σ2
X1

(ω), ∀ω, (12)

where hp(ω) denotes the RTF with respect to the selected
sensors. It is clear that (10) is a non-convex combinatorial
optimization problem, because of the non-linear selection
operation and the Boolean constraints on p. The difference
between the proposed problem formulation in (10) and [23] is
twofold: 1) the noise reduction performance is constrained on
the broadband output SNR rather than the narrowband output
noise power, and 2) the selection variable p is frequency-
invariant rather than frequency-dependent.

III. BROADBAND SENSOR SELECTION

In this section, we will theoretically analyze the proposed
general sensor selection problem in (10) for noise reduction
in WASNs and propose two optimization-based approaches.

A. Dimensionality reduction for unknowns using MVDR

First of all, in order to observe the optimality of (10) on the
selection variable p and the spatial filter wp(ω), we consider
the Lagrangian function of (10), which is given by

L(p,wp(1), . . . ,wp(Ω), λ, µ1, . . . , µΩ) =

M∑
k=1

pkCk

+ λ

(
αoSNRmax −

1

Ω

Ω∑
ω=1

σ2
X1

(ω)

wp(ω)HΦnn,p(ω)wp(ω)

)

+

Ω∑
ω=1

µω
(
wp(ω)Hhp(ω)− 1

)
,

where λ ≥ 0 and µω ≥ 0, ω = 1, . . . ,Ω are the Lagrange mul-
tipliers associated with the inequality and equality constraints,
respectively. Note that both λ and µω are real. The gradient
with respect to the conjugate of wp(ω) is given by

∂L
∂w∗p(ω)

=
λσ2

X1
(ω)Φnn,p(ω)wp(ω)

Ω (wp(ω)HΦnn,p(ω)wp(ω))
2 + µωhp(ω).

(13)
Setting ∂L

∂w∗
p(ω) to zero, it can be seen that

wp(ω) =−
Ω
(
wp(ω)HΦnn,p(ω)wp(ω)

)2
µω

λσ2
X1

(ω)

×Φ−1
nn,p(ω)hp(ω),∀ω. (14)

Substituting wp(ω) from (14) into the equality constraint
wp(ω)Hhp(ω) = 1, we can obtain

µω
λ

=
−σ

2
X1

(ω)

Ω

(wp(ω)HΦnn,p(ω)wp(ω))
2
hp(ω)HΦ−1

nn,p(ω)hp(ω)
.

Plugging the expression of µω

λ back into (14), it holds that

wp(ω) =
Φ−1

nn,p(ω)hp(ω)

hp(ω)HΦ−1
nn,p(ω)hp(ω)

,∀ω, (15)
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Multi-sensor signals
…

Sensor selection

Beamformer design

MVDR beamforming

Figure 1. The system model of the considered FISS based MVDR beam-
forming for noise reduction in large-scale WASNs.

which is exactly the close-form solution of the well-known
MVDR optimization problem given by [36]–[38]

wp(ω) = arg min
wp(ω)

wp(ω)HΦnn,p(ω)wp(ω)

s.t. wp(ω)Hhp(ω) = 1.
(16)

Substituting the MVDR beamformer from (15) to the sensor
selection dependent broadband output SNR in (11), we obtain

oSNRp =
1

Ω

Ω∑
ω=1

σ2
X1

(ω)hp(ω)HΦ−1
nn,p(ω)hp(ω). (17)

Hence, in order to avoid optimizing the beamformer variable,
we can plug the MVDR beamformer from (15) into (10),
leading to a simplified sensor selection problem:

min
p∈{0,1}M

M∑
k=1

pkCk

s.t.
1

Ω

Ω∑
ω=1

σ2
X1

(ω)hp(ω)HΦ−1
nn,p(ω)hp(ω) ≥ β,

(18)

where β = αoSNRmax is defined for national conciseness.
As such, we can get rid of optimizing the sensor selection
variables and spatial filter jointly. The dimensionality reduc-
tion in this section will not cause any sub-optimality for
(10), as it follows the standard KKT conditions [39]. On
the other hand, it implies that the sensor selection based
MVDR beamforming can be optimally separated into two
steps: 1) sparse sensor selection, and 2) MVDR beamformer
design using the selected sensors. The system model of the
proposed FISS based MVDR beamforming for noise reduction
is shown in Fig. 1. Note that indeed (18) is still a non-convex
(combinatorial) optimization problem in nature. One simply
method to solve (18) is exhaustive search, i.e., evaluating the
performances of all

(
M
K

)
choices in case K sensors need to

be selected from M sensors, but evidently this is intractable
unless both M and K are small. Next, we will focus on
resolving the selection variable p from (18), which can then
be fed into (15) for the MVDR beamformer design.

B. Linearization

Second, in order to more clearly observe the dependence
of the broadband output SNR on sensor selection, we will
linearize oSNRp in terms of p in this section. Let diag(p)
denote a diagonal matrix, where the diagonal entries are given
by p, such that a selection matrix Σp ∈ {0, 1}K×M can
be defined by removing the all-zero rows of diag(p). By
definition, for the selection matrix two properties hold, i.e.,

ΣpΣT
p = IK , ΣT

pΣp = diag(p). (19)

Applying the selection matrix Σp, the selected sensor mea-
surements can be constructed by

yp(ω) = Σpy(ω) = Σpx(ω) + Σpn(ω) ∈ CK . (20)

Similarly, the RTF, the speech and noise covariance matrices
for the selection sensors are, respectively, given by

hp(ω) = Σph(ω) ∈ CK ,
Φxx,p(ω) = ΣpΦxx(ω)ΣT

p ∈ CK×K ,
Φnn,p(ω) = ΣpΦnn(ω)ΣT

p ∈ CK×K .

In [23], a linearization strategy was introduced for decom-
posing hp(ω)HΦ−1

nn,p(ω)hp(ω), where the noise covariance
matrix Φnn(ω) is decomposed as

Φnn(ω) = ηωIM + Gω, ω = 1, . . . ,Ω, (21)

where the constant ηω is positive and Gω is a positive definite
matrix. This trick is introduced for the calculation of the
inverse of Φnn(ω), which was similarly used in [18]–[20].
This decomposition can be easily found as long as ηω is
slightly smaller than the minimum eigenvalue of Φnn(ω),
which is always positive definite due to the presence of
coherence and incoherence noises. With ηω and Gω at hand,
we can re-write Φnn,p(ω) as

Φnn,p(ω) = ΣpΦnn(ω)ΣT
p = ηωIK + ΣpGωΣT

p . (22)

Consequently, hp(ω)HΦ−1
nn,p(ω)hp(ω) can be derived as

hp(ω)HΦ−1
nn,p(ω)hp(ω) = h(ω)HQ(ω)h(ω), (23)

where Q(ω) is given by

Q(ω) = ΣT
p

(
ηωIK + ΣpGωΣT

p

)−1

Σp (24)

Using the matrix inversion lemma [40]

C(B−1 + CTA−1C)−1CT = A−A(A + CBCT )−1A,

we can reformulate the matrix Q as

Q(ω) = G−1
ω −G−1

ω

(
G−1
ω + η−1

ω diag(p)
)−1

G−1
ω . (25)

As a result, the narrowband output SNR can be derived as

oSNRp(ω) = σ2
X1

(ω)h(ω)HG−1
ω h(ω)

− h(ω)HG−1
ω

(
G−1
ω + η−1

ω diag(p)
)−1

G−1
ω h(ω), (26)

where p appears only in one place instead of in three places
as in (18), and which is thus called linearization.
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C. Broadband optimization (BroadOpt)

From the previous analysis, it is clear that even though
the narrowband SNR can be linearized in terms of p, the
broadband output SNR as the averaged narrowband SNRs
across frequencies will still include p for Ω times explicitly,
which will still cause non-convexity. In order to satisfy the
global constraint in (18) on the broadband SNR, in this section
we will consider local constraints instead. Due to the fact that
in case it holds that

oSNRp(ω) ≥ βω, ω = 1, . . . ,Ω (27)

where βω = αoSNRmax(ω) with oSNRmax(ω) denoting the
maximum narrowband output SNR at frequency ω, it is for
sure that the global constraint in (18) is satisfied, i.e.,

oSNRp =
1

Ω

Ω∑
ω=1

oSNRp(ω) ≥ β. (28)

Using (26), the local constraints can then be re-written as

σ2
X1

(ω)h(ω)HG−1
ω h(ω)− βω ≥

h(ω)HG−1
ω

(
G−1
ω + η−1

ω diag(p)
)−1

G−1
ω h(ω), (29)

which is called local constraint for frequency ω and can be fur-
ther reformulated as an LMI using the Schur complement [39][

G−1
ω + η−1

ω diag(p) G−1
ω h(ω)

h(ω)HG−1
ω Zω − βω

]
� OM+1, (30)

where Zω = σ2
X1

(ω)h(ω)HG−1
ω h(ω) is introduced for nota-

tional brevity, and G−1
ω + η−1

ω diag(p) is positive definite.
In addition, for the Boolean constraint, we use continuous

surrogates for convex relaxation, i.e., relaxing pk ∈ {0, 1} to
0 ≤ pk ≤ 1,∀k. Altogether, the simplified MVDR sensor
selection problem in (18) can be relaxed as

min
p

M∑
k=1

pkCk

s.t.

[
G−1
ω + η−1

ω diag(p) G−1
ω h(ω)

h(ω)HG−1
ω Zω − βω

]
� OM+1,∀ω,

0 ≤ pk ≤ 1,∀k,
(31)

which is an SDP problem and can be efficiently solved using
the interior-point method [39]. The Boolean selection variable
can then be resolved by randomized rounding or deterministic
rounding techniques [23]. Note that (31) includes Ω LMI
constraints, which might cause a rather time-consuming prob-
lem for SDP solvers. The time-complexity of the proposed
BroadOpt method is thus O(ΩM3).

D. Narrowband voting approach using local constraints

In order to avoid the high computational complexity prob-
lem in the broadband local method in Sec. III-C, we propose
a narrowband voting approach in this section. Let p(ω) denote
the selection variable for frequency ω. Based on (18), we
consider the NSS problem for each frequency bin, e.g.,

min
p(ω)∈{0,1}M

M∑
k=1

pk(ω)Ck s.t. oSNRp(ω) ≥ βω, (32)

Algorithm 1: Proposed narrowband voting approach

1 Initialize: pmax = 1, pmin = 0;
2 For ω = 1, . . . ,Ω do
3 p(ω) = optimize(33);
4 Broadband averaging: p = 1

Ω

∑Ω
ω=1 p(ω);

5 Bisection based threshold determination:
6 For κ = 1, . . . ,K do
7 th = 0.5(pmin + pmax);
8 Sin = {k|pk ≥ th};
9 If oSNRp ≥ β, pmin = th;

10 else pmax = th;
11 Beamforming: X̂1(ω) = wp(ω)Hyp(ω);

12 Return X̂1(ω), Sin.

which is equivalent to the NSS formulation in [23], since it
can be shown that constraining the narrowband output SNR
reduces to bounding the output noise power in the context
of MVDR beamforming. Based on the analysis in previous
sections, (32) can be reformulated as an SDP problem, i.e.,

min
p(ω)

M∑
k=1

pk(ω)Ck

s.t.

[
G−1
ω + η−1

ω diag(p(ω)) G−1
ω h(ω)

h(ω)HG−1
ω Zω − βω

]
� OM+1,

0 ≤ pk(ω) ≤ 1,∀k.

(33)

As such, the global constraint on the broadband output SNR
is split over frequencies, and we obtain Ω narrowband SDP-
based sensor selection problems. However, at each frequency
we only need to solve a much lower-complexity SDP problem
as compared to (31). In principle, the selection status p(ω)
obtained by (33) might be different across frequencies.

In order to refine the narrowband selection results and obtain
a frequency-invariant solution, we design a narrowband voting
approach in this section. Let

p =
1

Ω

Ω∑
ω=1

p(ω) ∈ [0, 1], (34)

represent the normalized selection status that contains the
selection probabilities of sensors. Using the probabilities in
p, we can design a bisection algorithm to find a probability
threshold. The sensors whose probabilities are larger than the
threshold are considered to be selected; otherwise unselected.
Such a threshold can be easily determined within several
iterations based on the global performance constraint. There-
fore, this procedure functions as a deterministic rounding. The
proposed narrowband voting (NaVo) approach is summarized
in Algorithm 1. Note that for each frequency bin, the time
complexity of (33) is of the order of O(M3), so the time
complexity of NaVo is O(ΩM3), which is the same as the
broadband optimization method. It is clear that compared to
the NSS method in [23], the proposed NaVo approach is
extended by adding an extra normalization step, such that an
FISS solution can be obtained.
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IV. LOW-COMPLEXITY FREQUENCY-INVARIANT METHODS

In order to avoid the high computational complexity within
the SDP-based methods, in this section we will propose several
sub-optimal, but low-complexity FISS approaches.

A. Gradient removal method

In order to minimize the total power consumption subject to
a lower bound on the output broadband SNR in (18), we can
somehow maximize an unconstrained optimization problem as

max
p∈{0,1}M

g(p) =
1
Ω

∑Ω
ω=1 oSNRp(ω)∑M
k=1 pkCk

. (35)

The maximum can be obtained by increasing the numerator
and decreasing the denominator, which approach the lower
bound on the output SNR and the minimum of the objective
function of (18), respectively. Based on the results from
Section III-B, we can write the numerator as

oSNRp =
1

Ω

Ω∑
ω=1

(
σ2
X1

(ω)h(ω)HG−1
ω h(ω)− fω(p)

)
, (36)

where fω(p) is defined for notational brevity as

fω(p) = h(ω)HG−1
ω

(
G−1
ω + η−1

ω diag(p)
)−1

G−1
ω h(ω)

= Tr
((

G−1
ω + η−1

ω diag(p)
)−1

G−1
ω h(ω)h(ω)HG−1

ω

)
,

where Tr(·) denotes the trace operator for matrices. The
gradient of fω(p) with respect to pk can thus be calculated as

∂fω(p)

∂pk
= Tr

(∂ (G−1
ω + η−1

ω diag(p)
)−1

∂pk

×G−1
ω h(ω)h(ω)HG−1

ω

)
, (37)

Using the property of the gradient of inverse [40]

∂Y−1

∂x
= −Y−1 ∂Y

∂x
Y−1,

we can obtain

∂
(
G−1
ω + η−1

ω diag(p)
)−1

∂pk
=− η−1

ω

(
G−1
ω + η−1

ω diag(p)
)−1

× Ik
(
G−1
ω + η−1

ω diag(p)
)−1

,

where Ik is an indicator matrix with kth diagonal entry equal
to one and zeros elsewhere. ∂fω(p)

∂pk
can thus be derived as

∂fω(p)

∂pk
=− η−1

ω h(ω)HG−1
ω

(
G−1
ω + η−1

ω diag(p)
)−1

× Ik
(
G−1
ω + η−1

ω diag(p)
)−1

G−1
ω h(ω)

=− η−1
ω v(ω)HIkv(ω) = −η−1

ω |vk(ω)|2, (38)

where vk denotes the kth element of vector v(ω), given by

v(ω) =
(
G−1
ω + η−1

ω diag(p)
)−1

G−1
ω h(ω). (39)

As a consequence, the gradient of (35) with respect to pk can
then be calculated as

∂g(p)

∂pk
=
− 1

Ω

∑Ω
ω=1

∂fω(p)
∂pk

∑M
k=1 pkCk − CkoSNRp(∑M

k=1 pkCk

)2

=

(
M∑
k=1

pkCk

)−2(
1

Ω

Ω∑
ω=1

|vk(ω)|2

ηω

M∑
k=1

pkCk − CkoSNRp

)
(40)

The gradient measures how a function changes along a
direction, as the larger the gradient, the faster the function
changes in this direction. Motivated by this, we can design a
gradient-based sensor selection approach, which is an iterative
greedy method in nature. In detail, at the first iteration we ini-
tialize the selected subset as Sin = {1, . . . ,M}, set p = 1M ,
and intend to remove one sensor from Sin. By calculating the
gradient using (40), such a sensor can be determined by

m = arg min
∂g(p)

∂pk
, k ∈ Sin, (41)

due to the fact that the vector p with pm = 0 and ones else-
where represents the direction that the the objective function of
(35) approaches the maximum. In other words, the mth sensor
has the minimum contribution to increasing g(p). Therefore,
we can update the selected subset as

Sin ← Sin\m, pm = 0. (42)

Afterwards, the gradients for the remaining M − 1 sensors in
Sin need to be updated, and a new sensor will be removed sim-
ilarly. This procedure will be terminated until the performance
requirement is not satisfied any more, i.e.,

1

Ω

Ω∑
ω=1

oSNRp(ω) ≤ β. (43)

It is clear that the proposed gradient removal (GradR) method
handles one sensor at each iteration. The most computation-
ally complex operation is computing the gradient, which is
dominated by calculating the vector vk(ω) and of the order
of O(M2). The time complexity of searching the minimum
gradient is O(M) at each iteration. Suppose Q iterations are
required for the performance convergence, which is much
smaller than M , the total time complexity of GradR will be
O(Q(M2 +M)).

B. Weighted broadband input SNR-based approach

In [23], experimental results show that in the narrowband
case the sensors that are close to the target source and those
close to the FC are more likely to be selected, as they
are of high signal quality for improving the noise reduction
performance and of low transmission cost for reducing the
energy consumption, respectively. Since these two kinds of
sensors have a high input SNR and a low individual power
consumption, respectively, we can thus use the weighted input
SNR to approximately measure the contribution of each sensor
to the optimality of (18), which is defined as

Uk =
iSNRk

Ck
, k ∈ {1, . . . ,M}, (44)
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where the broadband input SNR is defined as

iSNRk =

∑Ω
ω=1

∑
l |Xk(ω, l)|2∑Ω

ω=1

∑
l |Nk(ω, l)|2

(45)

=

∑Ω
ω=1 eTkΦxxek∑Ω
ω=1 eTkΦnnek

, (46)

which can be calculated easily at each sensor locally. Based
on the weighted input SNR, we can then design an SNR-based
sensor removal (SnrR) approach similarly to the gradient-
based method. Due to the independence of complex matrix
operations, the proposed SnrR method will be computationally
much more efficient. Suppose Q iterations are required for the
performance convergence, the time complexity of SnrR is then
O(QM).

C. Weighted broadband energy-based approach

As the sensors around the target source are more likely to
be selected, which have a high input SNR and thus also a
high input energy, we can use the weighted broadband input
energy to approximate the contribution of each sensor to the
optimality of (18), which is defined as

Ek =
iEnergyk

Ck
, k ∈ {1, . . . ,M}, (47)

where the broadband input energy is defined as

iEnergyk =

Ω∑
ω=1

∑
l

|Yk(ω, l)|2 ∝
Ω∑
ω=1

eTkΦyyek, (48)

which can also be calculated easily at each sensor locally.
Based on the weighted input energy, we can then design
an energy-based sensor removal (EnergyR) approach in a
similar fashion. Clearly, SnrR and EnergyR have the same
computationally complexity. Intuitively, in case there is no
coherent interfering sources and the variances of uncorrelated
noise across microphone nodes are approximately equal, the
EnergyR method would be effective. However, the effec-
tiveness will decrease dramatically in presence of coherent
noise sources, particularly in very low SNR environments, as
many sensor around the interfering sources might be chosen.
Nevertheless, the EnergyR method is presented for compar-
ison. Suppose Q iterations are required for the performance
convergence, the time complexity of EnergyR is also O(QM).

D. Summary

To this end, we have introduced the proposed broadband
methods and three greedy sensor selection approaches. In
summary, the implementation details of the proposed low-
complexity broadband FISS methods are described in Algo-
rithm 2. The time complexities of the mentioned algorithms
are summarized in Table I, where the utility based removal
(UtilityR) method [30] is included for comparison. Regardless
of the value of α, both BroadOpt and NaVo have to solve
M -dimensional SDP problems, so their time complexities are
constant in terms of α. However, for the greedy methods in
case α becomes larger (i.e., the desired SNR is higher), less
sensors need to be removed from the network as Q = M−K,

Algorithm 2: Proposed low-complexity approaches

1 Initialize: Sin = {1, . . . ,M};
2 For k = 1, . . . ,M do
3 Case 1: Gradient Removal (GradR)
4

m = arg min
∂g(p)

∂pk
, k ∈ Sin;

5 Case 2: SNR Removal (SnrR)
6

m = arg min
iSNRk

Ck
, k ∈ Sin;

7 Case 3: Energy Removal (EnergyR)
8

m = arg min
iEnergyk

Ck
, k ∈ Sin;

9 Update: Sin ← Sin\m, pm = 0;
10 If 1

Ω

∑Ω
ω=1 oSNRp(ω) ≤ β, break;

11 End for
12 Beamforming: X̂1(ω) = wp(ω)Hyp(ω);

13 Return X̂1(ω), Sin.

Table I
THE SUMMARY OF THE TIME-COMPLEXITY OF FISS APPROACHES.

Method Time complexity α ↑

BroadOpt O(ΩM3) constant
NaVo O(ΩM3) constant
GradR O(Q(M2 +M)) decrease
SnrR O(QM) decrease
EnergyR O(QM) decrease
UtilityR [30] O(Q(M2 +M)) decrease

which leads to a decrease in the time complexity. Hence, the
superiority of the greedy methods in computational efficiency
will be more distinct for large α-values.

It is worth nothing that the proposed BroadOpt and NaVo
methods require the noise statistics of the complete network,
which thus belong to the model-based scheme. Compared to
the model-driven approaches, the proposed greedy methods
are data-driven, which can then be used for adaptive signal
estimation and beamforming applications. In practice, the
sensor signal statistics may change over time due to the
movement of sources or sensors. In such dynamic scenarios,
the model-based methods have to track the noise statistics
in an online fashion, while the greedy methods only need
to update the sensor utilities (i.e., gradient, weighted SNR,
weighted energy), which is much more time-efficient than
the former. Furthermore, another superiority of the greedy
algorithms is that the extension to a forward mode is rather
straightforward (i.e., at each iteration the sensor that has the
largest contribution to the energy-aware noise reduction can
be added to the selected subset), which, however is out the
scope of this work, e.g., see [41]. From this perspective, the
proposed greedy methods are designed in a backward mode.
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Figure 2. Sensor selection examples: (a) BroadOpt, (b) NaVo, (c) GradR, (d) SnrR, (e) EnergyR, and (f) UtilityR [30] for α = 0.6 (Circle: sensors, Blue
solid circle: selected sensors, Solid square: FC, Red solid dot: target source, Blue star: interfering source).

V. EXPERIMENTS

In this section, we will exploit a large-scale WASN to
evaluate the performance of proposed FISS based MVDR
beamforming approaches from several perspectives.

A. Experimental setup and benchmark

Experimental setup: Fig. 2 shows the typical experimental
setting that we use in the simulations, where 169 microphone
nodes are uniformly distributed in a 2D room with dimensions
(12×12) m2. One target source is placed at (3.6, 9.6) m,
and the FC is at (6, 6) m. One coherent interfering source
is located at (9.6, 3.6) m. The speech source is originated
from the TIMIT database [43], and the noise signal from
the NoiseX-92 database [44], respectively. The room impulse
responses (RIRs) of directional sources are generated using the
image method [42]. The time-domain microphone signals are
synthesized by summing: 1) the source component (convolving
the source speech signal and its RIR), 2) interference com-
ponent (convolving the interferer (i.e., a competing speaker)
and the corresponding RIR) and 3) the uncorrelated noise

2We employ such uniform sensor placement in a 2D configuration for the
clarity of illustration. The application to a 3D scenario is straightforward, as
the image method [42] can also generate RIRs in a 3D room. Note that the
wireless sensor nodes can also be distributed randomly.

component (i.e., microphone self noise). The uncorrelated
noise is modeled as a white Gaussian random process. The
signal to interferer ratio and the signal to uncorrelated noise
ratio are set to be 0 dB and 30 dB, respectively. All the signals
are sampled at 16 kHz. The reverberation time is set to be T60

= 200 ms. We assume that all sensors are homogeneous (i.e.,
the power for keeping active is the same for all sensors), such
that minimizing the power consumption reduces to minimizing
the transmission power, and we can thus initialize Ck,∀k using
the squared distance between sensor k and the FC.

Comparison method: In order to observe the validity of
the proposed methods, the most intuitive way is to compare
with the optimal sensor selection solution, which can only
be given by exhaustive searching. In large-scale WASNs
(e.g., the considered experimental setup), exhaustive search is
evidently intractable. Therefore, we employ the utility removal
(UtilityR) method in [30] as the benchmark. Specifically, the
UtilityR method can be designed similarly as the proposed
greedy methods, which takes the SNR decrease of removing a
sensor from the current selected sensor subset as the individual
sensor utility and removes the sensor that has the minimum
SNR decrease at each iteration. The most time consuming
operation at each iteration is the matrix inverse of the noise
covariance matrix, which is of the order of O(M2), so that
the time complexity of UtilityR is same as that of GradR.
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Figure 3. The relationship between the feasible sets of BroadOpt and NaVo.

B. Performance evaluation in a static scenario

First of all, we evaluate the proposed methods in a static
scenario, where we assume that the existing sources keep static
and the noise covariance matrix is estimated using sufficiently
long noise-only frames. Fig. 2 shows some sensor selection
examples using the proposed methods with α = 0.6. We can
see that the selected sensors of the proposed NaVo method are
included as a subset in the selected sensors obtained by Broad-
Opt. This can be roughly explained using Fig. 3. Suppose the
feasible set of the ωth frequency bin of (32) or (31) is denoted
by Sω , the feasible set of BroadOpt in (32) turns out to be the
union set of S1, · · · ,SΩ (e.g., S1 ∪ S2 ∪ S3 when Ω = 3), as
all LMI constraints have to be satisfied simultaneously. The
feasible set of NaVo in (31) will be the intersection region of
S1, · · · ,SΩ (e.g., S1∩S2∪S1∩S3∪S2∩S3 when Ω = 3), as
these subsets are more likely to be selected across frequencies.
As more sensors are selected, the BroadOpt method will cost
a larger transmission power compared to NaVo. On the other
hand, it is interesting that BroadOpt also selects some sensors
close to the interfering source, which is due to the fact that
these sensors are beneficial for suppressing the noise source,
even though they have a low SNR. Most selected sensors are
around the target source and the FC, as they are helpful for
enhancing the desired speech signal (with a high input SNR)
and for saving the transmission power, respectively.

In Fig. 2, it is clear that the proposed low-complexity
approaches are also able to select the sensors that are close to
the target source and the FC. The GradR and EnergyR meth-
ods additionally choose some sensors around the interfering
source, while SnrR fails to select these sensors. This is due to
the fact that the SnrR method only takes the input SNR and
transmission cost into account. It can be seen that there are
much more sensors around the interfering sources are selected
by EnergyR, which is due to the fact that in experiments the
signal-to-interference ratio is 0 dB. That is, the target source
and the interfering source are equally “important” in the sense
of energy, while the importances of the sensors around them
are very different. It is expected that in case the input SNR
increases, the selected sensors of the EnergyR method will
assemble around the target source; in case the input SNR is
very low, it is expected that the sensors around the interfering
source dominate the selected subset. In addition, intuitively the
NaVo and SnrR methods obtain the smallest cardinality of the
selected sensor subset. Compared to the proposed methods,
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Figure 4. The output SNR and normalized transmission cost in terms of α.

the UtilityR method fails to select the sensors around the FC,
as it does not take the power consumption into account, which
might cost a higher transmission power. Note that the results
in Fig. 2 could be further optimized, as the proposed BroadOpt
and NaVo involves convex relaxation and the low-complexity
methods follow a greedy selection procedure.

Further, we compare the broadband output SNR (which is
the average SNR over the frequency range) and the normalized
transmission power of the proposed methods in Fig. 4. The de-
sired noise reduction performance is controlled by scaling the
best performance oSNRmax, which is obtained by involving all
existing sensors. The obtained transmission cost is normalized
by
∑M
k=1 Ck, which represents the maximum value of the

objective function (i.e., when all sensors are involved). It is
clear that the output SNRs of all methods are above the desired
performance, meaning that the performance requirement is
satisfied. The performance gap of the low-complexity methods
with respect to the desired SNR is slightly larger than the
optimization based methods. The transmission cost increases
in terms of α, as more sensors have to be selected for perfor-
mance when increasing α. By taking the energy efficiency into
account, the proposed methods consume a lower transmission
power compared to UtilityR, yet achieve a comparable noise
reduction performance. The power consumption of BroadOpt
is generally larger than that of NaVo, as the former involves
more sensors, which was shown in Fig. 2. The NaVo and SnrR
methods obtain the comparable and smallest transmission cost
compared to the rest, because it was shown in Fig. 2 that they
have the smallest cardinality of the selected subsets. More
importantly, it can be seen that increasing α from 0.1 to 0.9,
the SNR gain is only 10 dB, while the power consumption
will be raised by 100 times as against when α = 0.1. For
example, when α = 0.6, the SNR loss is around 2 dB,
but the power consumption can be saved by 70% using the
proposed methods for the considered WASN. This reveals that
in practice many sensors are redundant for noise reduction,
particularly in large-scale WASNs. The proposed methods can
satisfy the performance constraint on the signal quality with
a significant saving in transmission cost. Note that in case
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Figure 5. The normalized cputime of comparison methods in terms of α.

α = 1, the performance of all selection methods will become
equivalent to the best case oSNRmax = 36.2 dB as all sensors
have to be deployed.

We compare the time complexity of the aforementioned
broadband sensor selection approaches in Fig. 5. The obtained
running times are normalized by the cputime of BroadOpt,
which is most time consuming. We can see that the cputimes
of BroadOpt and NaVo are almost equal, although the latter
is slightly smaller than the former. This is due to the fact that
for BroadOpt, there are Ω LMI constraints, and each is of
the order of O(M3); for NaVo there are Ω SDP optimization
problems, and each has an M -dimensional LMI constraint.
As such, they are generally of the same time complexity, i.e.,
of the order of O(ΩM3). It is clear that the cputimes of both
BroadOpt and NaVo are irrelevant to α, as for any α-value the
order of the SDP problem does not change. On the other hand,
the proposed low-complexity methods (i.e., GradR, SnrR and
EnergyR) have the same time complexity, which is shown to
be much smaller than the convex optimization based methods
(i.e., BroadOpt and NaVo). More importantly, the cputimes
(of GradR, SnrR and EnergyR) decrease with an increase in
α. This is due to the fact that increasing α means a higher
performance that has to be reached, i.e., more sensors have
to be included for performing MVDR beamforming. In this
case, a smaller amount of sensors has to be excluded from the
complete network for the proposed low-complexity methods,
i.e., less iterations are required for performance satisfaction.

C. Performance evaluation in dynamic scenarios
As the proposed methods depend on the use of the noise

covariance matrix, which has to be estimated using the sample
correlation matrix in practice. Given sufficiently long noise-
only frames, the sample correlation matrix can be viewed as an
unbiased estimator of the noise covariance matrix. However,
due to the limited amount of noise data, there exists an
estimation error in the noise covariance matrix. This often
happens in the case of online continuous speech enhancement,
as the microphone signals are received and processed frame by
frame. For this dynamic case, we estimate the noise covariance
matrix using the average smoothing technique as

Φnn(l) = µΦnn(l − 1) + (1− µ)n(l)n(l)H , (49)
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Figure 6. The output SNR in terms of the number of noise frames.

where µ is the forgetting factor and set to be 0.98 in exper-
iments. This smoothing technique is widely used in speech
processing algorithms to track the dynamics of background
noises (i.e., a competing sound source and Gaussian additive
noise). As in the considered experimental setup, the noise
component can be seen as short-time stationary, the forgetting
factor should be chosen close to 1. It can be found via
simulations that in case µ > 0.9, it has a negligible effect
on the performance. The inverse of Φnn(l) is given by

Φ−1
nn(l) = µ−1Φ−1

nn(l − 1)−
µ−2(1− µ)Φ−1

nn(l − 1)n(l)n(l)HΦ−1
nn(l − 1)

1 + µ−1(1− µ)n(l)HΦ−1
nn(l − 1)n(l)

. (50)

The time complexity of (50) is only O(M2) in each time
frame when Φ−1

nn(l − 1) in the previous frame is available.
We apply this recursive covariance estimation procedure

into the proposed methods, and the output SNRs in terms of
the number of noise frames are shown in Fig. 6. In order
to make Φnn(l) always invertible, we force the minimum
number of noise frames to be greater than the number of
microphones and initialize Φnn(1) = 10−6IM , which func-
tions as diagonal loading [45]. It can be seen that for all
methods, the performance increases when more noise frames
are available, as the estimate of the noise covariance matrix
becomes more accurate. Due to the fact that the proposed
GradR method selects more sensors than the rest (e.g., see
Fig. 2), it achieves the best performance. This observation
applies to other comparison methods. The proposed methods
obtain a better performance than UtilityR, which means that
using the proposed methods can achieve a better robustness
against the noise covariance matrix estimation error. Note
that although the number of noise frames affects the noise
covariance matrix estimation error as well as the selection
results of all methods, particularly at the beginning, it is clear
from Fig. 6 that the overall performance and sensor statuses
will converge with an increase in the number of noise frames.

As the proposed optimization based sensor selection meth-
ods (i.e., BroadOpt and NaVo) as well as the MVDR beam-
former depend on the RTF vector of the target source, we
further validate the effectiveness of the proposed methods
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Figure 7. The output SNR in terms of RTF estimation errors, where the
average variance of true RTF vectors across frequencies is around -5 dB.

against the RTF estimation error. First, we use the covariance
whitening method [32] for RTF estimation and then add an
error vector under the assumption that the RTF estimation
error is zero-mean Gaussian distributed. The obtained output
SNR in terms of the RTF estimation error (in dB) is shown
in Fig. 7. It is clear that for all methods the noise reduction
performance decreases with an increase in the RTF estimation
error. The proposed BroadOpt, GradR and EnergyR methods
exhibit a stronger robustness against the RTF estimation errors,
due to the fact that more sensors around the target source are
selected. The proposed NaVo method cannot work as robust as
the proposed BroadOpt approach when the RTF error becomes
large, which is due to the fact that NaVo fails to select the
sensors close to the interfering source (e.g., see Fig. 2) as
they are rather important for noise cancellation, particularly in
the RTF mismatch case. Note that the EnergyR method also
chooses many sensors around the noise source, which will cost
a higher transmission power and is thus less energy efficient.
Hence, in the large RTF mismatch case we recommend to
apply the proposed BroadOpt method to perform energy-aware
noise reduction in large-scale WASNs.

In addition, given the target source position, which can
be estimated using sound source localization algorithms, in
free sound field the steering vector can also be used for the
MVDR beamformer design instead of the RTF. Let the time
delay and the propagation distance from the target source to
microphone k be denoted by τk and dk, respectively, which can
be calculated using the source position in combination with
the microphone positions. The steering vector is thus given by
â =

[
d−1

1 exp(−jωτ1), . . . , d−1
M exp(−jωτM )

]T
. However, in

practice there exists an estimation error in the source position,
particularly in the presence of ambient noises. For this, we
show the output SNRs of comparison methods in terms of the
source positioning error in meter in Fig. 8. We assume that
the estimated source position is located randomly in the circle
centred by the true source position with a radius of the pre-
defined error. The results are averaged over 100 realizations.
It is clear that with an increase in the positioning error, the
noise reduction performance decreases. Compared to Fig. 7, it
is more clear that the proposed BroadOpt, GradR and EnergyR
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Figure 8. The output SNR in terms of signal position error.

approaches show a stronger robustness against the positioning
error. The proposed methods obtain a better performance than
UtilityR, as the selected sensor subsets are more concentrated
to the target source and the FC.

VI. CONCLUSIONS

In this work, we investigated the broadband FISS strategy
for MVDR beamforming based noise reduction in WASNs.
Motivated by the NSS problem formulation, we proposed to
minimize the transmission power over the network subject
to a constraint on the broadband output signal quality (e.g.,
SNR). Compared to the narrowband counterpart, the result-
ing broadband sensor selection method can thus resolve a
frequency-invariant network selection status, which avoids the
switching on/off operations for WASNs. For this, we proposed
two convex optimization based solvers (i.e., BroadOpt and
NaVo). Indeed, the proposed NaVo method divides a large-
scale SDP problem in BroadOpt into M sub-problems which
are of a much smaller size and uses a narrowband voting
strategy for decision making. In order to further reduce the
time complexity for the convex solvers, we proposed three
greedy approaches (i.e., GradR, SnrR and EnergyR), which
remove one sensor from the candidate set at each iteration
until the performance requirement is unsatisfied. It was shown
that all methods can reach the desired performance with a
much smaller amount of sensors compared to the complete
network, meaning that the power consumption can be saved
significantly. This also reveals that in practice many sensors are
non-informative for noise reduction, especially in large-scale
WASNs. The sensors around the target source and the FC, and
some close to the interfering source are beneficial for energy-
aware beamformer designs. In practice, the proposed sensor
selection strategies can be applied to effectively remove the
network redundancy and construct an energy-efficient WASN.
Given an unknown large WASN, one can initialize a small sen-
sor subset around the target source and then increase the subset
by gradually adding the sensors that have a larger contribution
to the energy-aware noise reduction to the selected subset
until the performance bound is satisfied. It was also shown
that the proposed low-complexity methods are computationally
much more efficient than the SDP-based methods. As in this
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work the sources keep static, in the future we will consider
broadband sensor selection for more dynamic WASNs, e.g.,
by sensor scheduling.
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