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Jian Tang , Jie Zhang , Member, IEEE, Yan Song , Ian McLoughlin , Senior Member, IEEE,
and Li-Rong Dai, Member, IEEE

Abstract—Encoder-decoder based automatic speech recogni-
tion (ASR) methods are increasingly popular due to their sim-
plified processing stages and low reliance on prior knowledge.
Conventional encoder-decoder based approaches usually learn a
sequence-to-sequence mapping function from the source speech to
target units (e.g., subwords, characters) in an end-to-end manner.
However, it is still unclear how to choose the optimal target unit, or
granularity of multiple units. In general, as increasing the informa-
tion available for learning sequence-to-sequence mapping functions
can improve modeling effectiveness, we therefore propose a multi-
granularity sequence alignment (MGSA) approach. This aims to
enhance cross-sequence interactions between different granularity
units for both modeling and inference stages in the encoder-decoder
based ASR. Specifically, a decoder module is designed to gener-
ate multi-granularity sequence predictions. We then exploit the
latent alignment mapping among units having different levels of
granularity, by utilizing the decoded multi-level sequences as input
for model prediction. The cross-sequence interaction can also be
employed to re-calibrate output probabilities in the proposed post-
inference algorithm. Experimental results on both WSJ-80 hrs and
Switchboard-300 hrs datasets show the superiority of the proposed
method compared to traditional multi-task methods as well as to
single granularity baseline systems.

Index Terms—Multi-granularity, sequence alignment, end-to-
end ASR, encoder-decoder, post-inference, deep learning.

I. INTRODUCTION

AUTOMATIC speech recognition (ASR) has improved
tremendously in recent years thanks to advanced deep

learning (DL) techniques. Traditional DL-based methods are
mostly based on a hybrid architecture, which consists of several
separately trained components using conditional independent
approximations [1]. End-to-end based methods have been pro-
posed recently to learn sequence-to-sequence mappings from
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source speech to target units. For example, in connectionist
temporal classification (CTC) [2], recurrent neural network
(RNN) transducer [3], segmental conditional random fields
(SCRFs) [4], attention-based encoder decoder (AED) [5] and
transformer methods [6]. These have achieved comparable or
even better performance than traditional hybrid systems [7] due
to the reduced reliance on prior information and benefit from
simplified processing stages. Performance can be further im-
proved by fusing different architectures under a framework such
as multi-task learning (MTL) [8]. As a representative end-to-end
model [9], we will adopt the AED as the basis for the derivation
of the proposed multi-granularity sequence alignment method.

Sequence-to-sequence learning approaches involve mapping
input acoustic frames to target units. These units can have differ-
ent granularities, such as words [10], characters [5]. Intuitively,
word-based targets are more natural and have been shown to
be simpler and faster for decoding [11]. However, the large
number of possible words leads to a large model size and high
computational complexity in implementation. Moreover, the
word-level modeling requires a large amount of training data.
By contrast, character-level targets enjoy smaller model size
and less extensive training, yet fail to exploit long-term context
information effectively. Thus intermediate units (e.g., subwords)
were proposed [12] to trade-off between model complexity and
capability. However, the optimality of the target unit(s) size, and
the corresponding granularity for end-to-end based ASR is still
questionable.1

As more information is likely to be captured from multiple
targets of different granularity, this can potentially improve the
modeling capability. The MTL method was thus proposed to
learn multiple sequence-to-sequence mappings jointly in [13]–
[15]. Meanwhile, a multi-stage pre-training based method [16],
[17] was proposed to improve the training efficiency. To combine
results obtained from different granularities, we can simply use
score fusion [18]–[20]. Although this improves the ASR perfor-
mance compared to single-granularity approaches, few of them
take account of relationships between sequences of different
granularity. Actually, there exists a latent alignment mapping
between two sequences, as shown in Fig. 1. For instance, the
text “of course not” can be represented as a subword sequence

1Consider a simple example to illustrate the impact of different granularities.
Given the same input speech, a character-level hypothesis might give a recog-
nition result of “He adapt a dog” whereas word-level transcription yields “H E
<space > A D O P T E D < space> A”. In this case neither are correct, but
cross-verification would correctly yield “He adopted a dog.”
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Fig. 1. An example of the alignment mapping relationship between multi-
granularity sequences; subword unit “OUR” corresponds to the single character
sub-sequence “O,” “U” and “R”. The units in multi-granularity sequences (e.g.,
“OUR“ or “O”) are referred to as “tokens” in this work.

Fig. 2. The proposed MGSA approach for end-to-end ASR, where the align-
ment mapping information is applied for use in both architecture construction
(the red dashed line) and output re-scoring (the solid red line).

“_OF _C OUR SE _NOT,” or as “O F <space > C O U R S E <
space> N O T” at character-level. The mapping from subwords
to characters, termed the alignment mapping in this work, can
explicitly indicate the relationship between sequences.

Contributions: In this work, we propose a novel multi-
granularity sequence alignment (MGSA) approach for the AED
based ASR, which is based on the use of the alignment map-
ping information between multi-granularity (MG) units. The
end-to-end ASR can be divided into training and inference
stages, and the use of the alignment mapping is considered in
both stages. The general framework of the proposed MGSA
method is shown in Fig. 2(b). Compared to the commonly-used
MTL-based multi-granularity end-to-end approach in Fig. 2(a),
there are three main differences. Firstly, the alignment mapping
information is estimated based on the joint optimization of the
MG conditional posterior probabilities. Secondly, a new decoder
module is used to merge the historical contents of the alignment
mapping information. The resulting inherently MG information
can then be used by the decoder to generate multiple predictions
for MG units. As such, the interaction and fusion process of
the MG units are exploited in the model architecture (the red
dashed lines in Fig. 2). Finally, the MG information is also
adopted by the end-to-end post-inference algorithm (the solid
red lines in Fig. 2). For example, after the model M i generates

one token yit, we can transform it to a new expression yjt′ using
the obtained alignment mapping information. Using the model
M j to generate another sequence, the corresponding hypothesis
score Sk

t′ is then used to verify and rectify the output prediction
yit.

The proposed MGSA method is evaluated on two ASR bench-
mark corpora (WSJ [21] and Switchboard [22]) and yields a per-
formance improvement over both traditional single-granularity
baseline and MTL approaches. On the WSJ corpus, the pro-
posed method can reduce the word error rate (WER) by 2.2%
(from 11.1% baseline to 8.9%). For eval2000 test set of the
Switchboard corpus, the WER is reduced by 2.6% (from 17.3%
to 14.7%). Although the proposed MGSA method is built on
the original AED architecture, it is also compatible with other
modified frameworks, such as transformer.

The remainder of this paper is organized as follows. Sec-
tion II discusses related works. Section III explores the joint
probability optimization, which is the theoretical foundation
of the proposed MGSA model. In Section IV, the proposed
MGSA approach is detailed, including the sequence alignment
based encoder-decoder design and the post-inference algorithm.
Experimental results are presented in Section V, and finally
Section VI concludes this work.

II. RELATED WORKS

The end-to-end ASR makes use of a neural network to map
an acoustic sequence x = (x1, x2, . . . , xL) of length L to a
text sequence y = (yt ∈ U|t = 1, . . . , T ) of length T , where
U denotes the set of target units. Statistically, the objective
of end-to-end modeling is to learn the conditional posterior
probability distribution Pθ(y|x),

Pθ(y|x) = p(y1, y2, . . . , yT |x1, x2, . . . , xL), (1)

where θ contains the model parameters. In general, the text
sequence is categorized into basic units (e.g., phoneme, char-
acter, pinyin) [5], [23], [24], intermediate units (e.g., subword,
wordpiece, phone-based subwords) [12], [20], [25] or word-
level units [26]. Clearly, these three categories have different
granularities. Such different granularity targets have been used
in end-to-end ASR, e.g., phonemes, characters [2], [5], [27],
subwords [28] and words [17], [26], [29], [30], [30].

A. Single Target Encoder-Decoder Architecture

As a typical end-to-end model, we consider the encoder-
decoder architecture as an example to explain the training and
inference stages in the single target ASR system. Given an input
sequencex, the conditional probabilityPθ(y|x) in the AED can
be decomposed using the chain rule as,

Pθ(y|x) =
T∏

t=1

Pθ(yt|yt−1, st−1;x), (2)

where st−1 denotes the state of the decoder at the previous
step. In general, an AED encoder exploits input sequence x to
produce a high-level representation, which will be encoded into
the continuous vector x̄. Then the decoder iteratively generates
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the discrete target sequence y [27]. It is clear from (2) that,
at each output position, the decoder predicts an output discrete
token yt based on the encoder representation x̄, the historical
token yt−1 and the previous decoder state st−1. Note that the
historical token yt−1 is not the same during model training and
inference stages. During training, the decoder is conditioned on
the true, known, prefix token yt−1, whereas during inference, we
can only use an assumed surrogate, say ỹt−1. Thus, the posterior
probability at the inference stage should be slightly modified
based on (2). Given speechx, the model searches the most likely
token Ŷ using a beam-search algorithm at the inference stage,
e.g. in [31],

Ŷ = argmax
ỹ∈U

log p(ỹ|x), (3)

During beam-search, the model calculates the score of each
hypothesis, which is defined as the logarithmic probability of the
assumed token sequence. The number of remaining hypotheses
is limited by a predefined number, i.e., the beam size, which
dramatically affects the searching efficiency. The score for the
hypothesis Ŷ can be recursively computed as

Ŷ = argmax
ỹ∈U

log
∏

t

p(ỹt|ỹt−1;x)

= argmax
ỹ∈U

∑

t

log p(ỹt|ỹt−1;x). (4)

Instead of choosing a certain target unit, combining multiple
target sequences can improve the modeling capability. As more
multi-granularity units are considered, more information on the
true audio content can be leveraged. Therefore, a variety of
strategies to integrate multiple target units into such end-to-end
ASR have been investigated, e.g., multi-task learning strategy,
pre-training methods and output score fusion.

B. Multi-Granularity End-to-End Modeling

Existing multi-task methods can learn useful intermediate
representations among all inputs, and those target units might
be complementary to each other [13]–[15]. In [13], different
training strategies were explored for building char-to-subword
models one block at each time slot. In [14], an intermediate
representation was used as an auxiliary supervision at lower
levels to combine the advantages of end-to-end training and a
traditional pipeline strategy. In addition, some multi-task models
were presented in [15] for simultaneous signal-to-grapheme
and signal-to-phoneme conversions, while sharing the encoder
parameters.

The second integration category is to use the intermediate
target to initialize or to assist the training process for the word-
level target, which can reduce the dependence on the amount
of the transcribed data [16], [17]. As the detection of subwords
provides a robust starting point for detecting words, the subword-
based model was used as the initialization of word-based mod-
eling in [17]. In [16], a refined multi-stage multi-task training
strategy was presented to improve the AED modeling perfor-
mance. This used multiple encoder modules, corresponding to

multiple target units, with each module exploring a different pre-
training method for the encoder, including transfer learning from
a different-level encoder. Though differing in implementation,
the optimization objective functions in [16], [17] are similar.
Taking a target unit pair, yi and yj , as an example, the objective
function is

p(yi;yj |x) = p(yi|x)p(yj |x), (5)

under the assumption that the two target units are independent.
However, in practice this assumption on independence may
not hold, resulting in a rather limited performance gain when
applying such methods.

The third integration category is to use multi-level score
fusion to integrate the scores obtained from different target
units in end-to-end modeling [18]–[20]. Hori et al. suggested
combining the predictions of a word-based language model
(LM) with a character-based one at the inference stage, yield-
ing a significant performance improvement over character-only
methods [18]. Specifically, hypotheses are first scored using
the character-based LM until a word boundary is encountered.
Words that are already known are then re-scored using the
word-based LM, while the character-based LM provides for
the out-of-vocabulary score. This method can effectively exploit
the benefits of character-based open vocabulary recognition and
overcome the weak modeling of character-based LM using the
word-based LM. However, an additional LM and some post-
processing operations are required after building the end-to-end
model. Another attempt is to directly combine the outputs from
different targets. For instance, Wang et al. [20] developed a
one-pass beam-search algorithm to efficiently combine predic-
tions of both subword and phone-based targets. In this method,
when a word boundary in the phone-based subword prediction is
encountered, the token is decomposed into a subword sequence.
This is used by an auxiliary system to validate or rectify the pre-
diction. Clearly, this method only considered the correspondence
between special tokens (e.g., word boundaries). However we
note that much more correspondences may exist between other
tokens in multiple target sequences. The utilization of multiple
target sequences was thus not sufficient, since the information
contained in one granularity, but not in other granularities, was
not fully exploited. This might limit the ASR performance gain.

The MGSA framework proposed in this paper aims to better
exploit correspondence between multiple target sequences.

III. PROBABILITY OPTIMIZATION

Given three types of target sequence (e.g., basic units, inter-
mediate units, word labels), smaller scaled units can be clustered
to form larger scale units, which might correspond to one or more
tokens in the former. In Fig. 3, we show these three target units
in an example that illustrates how word token “COURSE” can
correspond to a subword sub-sequence “_C OUR SE,” while
the subword token “OUR” also uniquely maps to sub-sequence
“O U R”. We can also observe a latent mapping relationship
between the target sequences.

For two target sequences yi = (yi1, y
i
2, . . . , y

i
T ) and yj =

(yj1, y
j
2, . . . , y

j
N ), where T and N denote the length of the two
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Fig. 3. An illustration of the joint optimization probability in multi-granularity end-to-end modeling, where the sequences of character and subword are denoted
by yi and yj , respectively: (a) The original graphical model, (b) the simplified model using causality, (c) the simplified model using the first-order Markov process,
and (d) the final character subsequence unfolding based model.

sequences, respectively, each token yit in the target sequence
yi might correspond to one or more tokens in the other target
sequenceyj . Let yj(t,:) denote the sub-sequence corresponding to

the t-th token in yi. Let the number of tokens contained in yj(t,:)
be denoted by kt, and the u-th token in the sub-sequence yj(t,:) by

yjt,u, respectively. For example, yi2 and yj(2,:) in Fig. 1 represent
the subword token “OUR” and character sub-sequence “O U R,”
respectively. Based on these definitions, the target sequence yj

can be equivalently rewritten as

yj (a)
= (yj1, y

j
2, . . . , y

j
N ) = (yj(1,:), . . . , y

j
(t,:), . . . , y

j
(T,:))

(b)
= ([yj1,1 . . . , y

j
1,k1

], [yj2,1 . . . , y
j
2,k2

], . . . , [yjT,1 . . . , y
j
T,kT

]),

(6)

where (b) shows the latent alignment mapping relationship
between two target sequences (i.e., yi and yj).

Given an acoustic sequence x, our goal is to model the joint
conditional distribution Pθ(y

i;yj |x). For the target sequence
yj given in (6), each sub-sequence yj(t,:) maps to one token

in sequence yi. For simplicity, let the token-pair of yit and the
corresponding substring yj(t,:) be denoted by up

t . Thus, the joint
conditional distribution can be expressed as

Pθ(y
i;yj |x) = p(yi1, . . . , y

i
T ; y

j
1, . . . , y

j
N |x)

= p(yi1, y
j
(1,:), . . . , y

i
T , y

j
(T,:)|x)

= p(up
1, u

p
2, . . . , u

p
i , . . . , u

p
T |x). (7)

Due to the correlation between multiple target sequences, the
tokens in this joint conditional probability can influence each
other. Fig. 3(a) shows a graphic representation of (7).

Considering the causality between the target sequences yi

and yj , two types of interactions in Fig. 3(a) should be avoided.
One is that the current tokens in one granularity target sequence
should be independent on future tokens in the other sequence,
since yj(t,:) does not affect the prediction of yit−1. This is called
causality across tokens. The other is that for each token-pair
up
t = [yit, y

j
(t,:)], one token should have no effects on the predic-

tion of the other, e.g., token-pair, yj(2,:) and yi2 in Fig. 3 are of dif-
ferent granularities, but describe the same token “OUR”. As the
interaction between tokens inside a token-pair is directly related

to optimizing the probability p(yit|yj(t,:)), in case of modeling
the dependency inside the token pair, the neural network would
directly copy the output from other granularity in the training
process. The resulting model would totally depend on the text
information of other granularities, the encoder module and the
attention module will not be well-trained. Thus, the correlation
in token-pair, like [“OUR”–“O U R”], should not give any output
prediction for each token (e.g., “OUR”) within this token-pair,
and we can thus omit the dependency insider a token-pair. In
order to avoid such situations, we re-write Pθ(y

i;yj |x) as

Pθ = p(up
1) . . . p(u

p
T |up

1 . . . u
p
T−1)

= p(up
1) . . . p(y

i
T |up

1 . . . u
p
T−1)p(y

j
(T,:)|up

1 . . . u
p
T−1), (8)

where (yi;yj |x) is omitted for notational brevity. Considering
the causality and based on (8), we can thus simplify the graphical
model in Fig. 3(a) to Fig. 3(b).

Assuming that the output variables follow the first-order
Markov random process (i.e., the current prediction is only af-
fected by the latest token-pair), the joint conditional probability
in (8) can be further simplified as

Pθ = p(yi1)p(y
j
(1,:)) . . . p(y

j
(T,:)|up

T−1)p(y
i
T |up

T−1)

= p(yi1)

T∏

t=2

p(yit|yit−1; yj(t−1,:))p(yj(t−1,:)|yit−2; yj(t−2,:)),

(9)

where yj(t,:) consists of kt tokens. Similarly, (9) can be graphi-
cally illustrated using Fig. 3(c). Based on this, the prediction pro-
cess for sub-sequence p(yj(t−1,:)|yit−2; yj(t−2,:)) can be unfolded
via the chain rule as

Pθ =

T∏

t=1

{p(yit|yit−1; yj(t−1,−1))V (yj(t−1,:))}, (10)

where yj(t−1,−1) represents the last token in target subsequence

yj(t−1,:), and the transition function V (yj(t−1,:)) is given by

V (yj(t−1,:)) =
kt−1∏

u=1

p(yjt−1,u|yit−2; yjt−1,u−1). (11)

The unfolding process is graphically shown in Fig. 3(d). This
implies that the joint optimization of two target sequences should
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take both history information yit−1 and yj(t−1,:) into account. In
(10) and (11), in case t− 1 = 0 oru− 1 = 0, both ys0 and yc0 will
be set to be ‘sos’ as the traditional end-to-end ASR models. Note
that although (10) is built on the basis of two target sequences, the
extension to three or more categories is straightforward. From
the probability analysis above, we can conclude that there are
conditions that need to be satisfied to enable multi-granularity
end-to-end modeling:
� Mapping relation: A strict one-to-many mapping rela-

tionship between MG target sequences is the basis of the
joint optimization.

� Independence: For each item of history information
yvt−1, v ∈ {i, j}, its historical modeling ability should be
guaranteed, and the influence of history tokens from other
granularity targets should be avoided to ensure indepen-
dence between the historical states.

� Interaction prediction: For each target sequence, the
information from other granularities should directly affect
the output prediction.

In practice, it might be effective to ignore the information
transmission in one direction, namely from a subword to char-
acters. In this case, (11) can be simplified as

V (yj(t−1,:)) =
kt−1∏

u=1

p(yjt−1,u|yjt−1,u−1). (12)

Note that when applying (11), the alignment mapping infor-
mation is taken into account in the calculation of sub-sequences
yj(t−1,:), and the interaction between two different granularity
target sequences is bi-lateral (e.g., see Fig. 3(d)). However,
the simplification in (12) makes that interaction uni-lateral,
e.g., only from a lower granularity yj to a larger one yi Both
the bi-lateral and uni-lateral interactions are considered in this
work and experimentally compared in Section V-A. Note that
in principle there exists a potential interaction from a larger
granularity to a lower one, while it was shown that in general
for the large vocabulary continuous speech recognition, a larger
granularity unit is more robust than the lower one, and thus more
suitable for unit modeling [32]. Therefore, in the considered
uni-lateral interaction, we chose yi as the main granularity unit.

IV. THE PROPOSED MGSA FRAMEWORK

Based on the traditional AED architecture and the theoretical
analysis in Section III, we now present the proposed MGSA
framework, which consists of an alignment attention based
encoder-decoder design and a post-inference process.

A. Attention Based Encoder-Decoder Design

For brevity, we choose two categories, the subword yb and
the character yc, corresponding to the target sequences yi and
yj , respectively, to introduce the proposed MGSA method. For
a set of speech utterances parameterized into feature vector
x, we use yb and yc to represent the true subword and true
character label sequence, respectively. The proposed MGSA
framework is shown in Fig. 4. The encoder produces a high-level

Fig. 4. The proposed MGSA framework for predicting the word “_COURSE,”
showing the encoder module, two decoder modules (one for subwords, and
one for characters), and three attention mechanisms – where the interaction
attention αi

t is omitted for simplification. The decoder process for subwords
and characters is alternately performed. FC and

⊗
represent a fully connected

layer and element-wise multiplication respectively. Dash-dotted lines denote a
copy-and-paste operation.

representation encoded in the continuous vector x̄, and the de-
coder generates subword predictions ybt by choosing the relevant
elements of hidden state at the t-th time step. To explain this, we
take the generation of the subword token (e.g., “SE” in Fig. 4) at
the t-th step as an example. To calculate the subword prediction,
the character sub-sequences yc(t−1,:) = (yct−1,1, . . . , y

c
t−1,kt−1),

which correspond to the subword at the previous step, have to
be provided. In Fig. 4, the character predictions at step (t− 1)
consist of {“O,” “U,” “R”}.

For the u-th token in the character sub-sequence yc(t−1,:), first
we perform the state update and attention alignment. In detail,
the decoder updates the current state sct−1,u based on the output
from the previous character step using

sct−1,u ← RNN(sct−1,u−1, y
c
t−1,u−1), (13)

where RNN represents a recurrent neural network (RNN) layer.
The decoder state sct−1,u together with αc

t−1,u−1 are then pro-
vided for calculating the current alignment score αc

t−1,u. Due to
the monotonicity of alignment in ASR, we use location-based
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attention in this work [5],

(gct−1,u, α
c
t−1,u)← Attend(sct−1,u, α

c
t−1,u−1, x̄), (14)

where the Attend module returns the most generic attention.
For output character prediction, the decoder re-updates its

state based on the obtained glimpse vector gct−1,u using

sct−1,u ← RNN(sct−1,u, g
c
t−1,u). (15)

The obtained character state sct−1,u is then applied to produce
the prediction of yct−1,u, which is given by

p(yct−1,u|sct−1,u, sbt−2) = softmax(W c[sct−1,u; s
b
t−2]), (16)

when the transition function in (11) is used, or given by

p(yct−1,u|sct−1,u) = softmax(W c[sct−1,u]), (17)

when the simplified transition function in (12) is used. Note that
the matrix W c can be trained in practice, and the bias variable
in the fully connection (FC) layer is omitted for simplicity. This
iterative procedure will be terminated when the predictions for
all tokens in yc(t−1,:) are obtained.

Given the prediction yc(t−1,:), the subword decoder is therefore
triggered to predict the t-th subword. Let the decoder state of
the latest character be denoted by sct−1,kt−1 , which contains the
history token of the character sequence sct−1. For the subword
prediction, it consists of two steps: 1) updating the decoder state
following

sbt ← RNN(sbt−1, y
b
t−1), (18)

and 2) calculating the attention vector using

(gbt , α
b
t)← Attend(sbt , α

b
t−1, x̄). (19)

The difference from the character attention lies in that the
attention weight and glimpse vector included in the subword
attention are denoted by αb

t and gbt , respectively.
Unlike the traditional AED structure, in order to model the

effects of the character state sct−1 on the subword prediction,
we use an interaction module, which consists of one attention
mechanism and two RNN layers. With respect to the interaction
module, combining the previous subword token ybt−1 and the
character decoder state sct−1 results in the interactive state sit,
which is given by

sit ← RNN(sct−1, y
b
t−1), (20)

as the output of an RNN layer. The state sit is then used to
calculate the interaction attention as

(git, α
i
t)← Attend(sit, α

i
t−1, x̄). (21)

Using sit as a query vector, the interaction attention enables to
extract the interactive glimpse git, which might contain a certain
amount of complementary information with respect to gbt . By
including the interaction module, the proposed model contains
three attention mechanisms: character (14), subword (19) and
interaction (21) attention.

The subword state sbt is the combination of the previous
subword state sbt−1 and the history output token ybt−1, while the
character state sct is the integration of character state sct−1 and
ybt−1. Due to the fact that sbt and sct occur at the same time step,

the final prediction can be refined through state fusion, e.g., the
gated linear unit (GLU) [33] as

f i
t = σ(FC(sit)) + sbt , (22)

where σ(·) represents a sigmoid activation. Next, the interactive
state is updated by

sit ← RNN(f i
t , g

i
t), (23)

Given the fusion variables f i
t , we can further apply an RNN layer

to update the interdecoder state using the interactive glimpse
vector git.

Finally, the interactive decoder state sit is used to estimate the
primary subword output p(ỹ†t |sit) of the t-th time step, which is
given by

p(ỹ†t |sit) = softmax(W isit), (24)

Apart from the primary output, sbt can be applied to simulta-
neously obtain a secondary subword output p(ỹbt |sbt), which is
given by

p(ỹbt |sbt) = softmax(W bsbt). (25)

Note that both the matrices W i and W b can be trained in
practice. The operations in (18)–(25) constitute the complete
decoding process for the t-th subword token. In combination
with the calculation of character sub-sequences, which corre-
sponds to the subword at time step (t− 1), we can obtain the
whole decoding process for time step t. The proposed decoder
module i.e., (13)–(25), is named by interdecoder. When (16) is
used for character classification, the decoder module is called
bi-interdecoder; when the simplified version (17) is used, it
is termed by uni-interdecoder. In both cases, the interdecoder
can simultaneously generate three types of output: the character
sub-sequence ỹc(t−1,:), the primary subword ỹ†t and the secondary

subword ỹbt . Considering the prediction for one training se-
quence, the frame-level cross entropy (CE) based loss function
can therefore be formulated as a summation of three compo-
nents, i.e.,

Loss =

T∑

t=1

kt∑

u=1

LCE(y
c
t,u, ỹ

c
t,u)

+
T∑

t=1

LCE(y
b
t , ỹ

†
t) + λ

T∑

t=1

LCE(y
b
t , ỹ

b
t ), (26)

where λ ∈ [0, 1] is a balancing hyper parameter, and the first
two terms refer to the losses of character and subword targets,
respectively, while the third term guides subword attention.

In summary, the proposed MGSA approach for the subword
prediction at the t-th step can be structured into four parts:
(a) a char block for generating the prediction of the character
sub-sequence at step (t− 1), in which the character decoder state
sct−1 is estimated, (b) a subword state block to update the hidden
state sbt of the subword decoder and calculate the corresponding
attention vector αb

t , (c) an interaction block to fuse the decoding
states sbt and sct−1 by a GLU and to calculate attention score αi

t

and content vector git, and (d) a subword classification block for
predicting the subword under the utilization of the interactive
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Fig. 5. An example of the MGSA subword token prediction at time step t,
consisting of four blocks highlighted using different colours.

states sit. The complete structure, including interconnection
between blocks, is depicted in Fig. 5.

B. Post-Inference

From the description of the proposed MGSA framework, it
is clear that the interdecoder module can utilize both the sub-
word and character-level historical tokens for prediction, while
the traditional decoder only uses subword history information.
The proposed interdecoder is capable of alignment mapping,
which can also be exploited for the end-to-end inference stage.
Based on this alignment mapping information, we propose a
post-inference algorithm for the final inference. For the inference
at the t-th step, in case a candidate output ỹbt is obtained,
the corresponding sub-sequence ỹc(t,:) can be determined. For
instance, given a subword candidate output “SE,” the character
sub-sequence will be “S E”. The sub-sequence can then be used
to cross verify the candidate output.

The inference in the end-to-end ASR is performed by syn-
chronous output-label decoding using beam search [18]. The
decoder computes the score for each remaining hypothesis,
which is defined as the logarithmic probability, given by

Ŷ
i
= argmax

ỹi∈U
log p(ỹi|x)

= argmax
ỹi∈U

∑

t

log p(ỹit|ỹit−1,x) (27)

= argmax
ỹi∈U

1

2

∑

t

log p(ỹit|ỹit−1) + log p(ỹit|ỹit−1) (28)

= argmax
ỹi∈U

1

2

∑

t

log p(ỹit|ỹit−1) + log p(ỹj(t,:)|ỹj(t−1,:)) (29)

= argmax
ỹi∈U

1

2

∑

t

log p(ỹit|ỹit−1) + log
(∏

u

p(ỹjt,u|ỹjt,u−1)
)

(30)

where the variable x is omitted for clarity in (28, 29, 30). Note
that (28) is obtained by dividing each element in the summation

Fig. 6. The proposed post-inference algorithm, consisting of Predict, Verify
and Crop blocks.

of (27) into two equal parts, and (29) is obtained by introducing
the score of the character subsequence into the inference (if
two subword units obtain a comparable score, their character
subsequences are more likely to be different). Finally, (30) is
obtained by expanding the probability function p(ỹj(t,:)|ỹj(t−1,:)).

Moreover, the proposed post-inference algorithm can be eas-
ily generalized into other end-to-end models, since only multi-
granularity prediction probabilities are required. An illustrative
example of predicting the subword and character, ỹbt and ỹc(t,:)
is shown in Fig. 6, which consists of three blocks: Predict,
Verify and Crop. In the Predict block, the subword decoder
calculates the candidate output prediction ỹbt at time step t.
In Verify, the candidate subword ỹbt is uniquely matched to
one character sub-sequence ỹc(t,:) = (ỹct,1, . . . , ỹ

c
t,kt

), and the
probability of generating sub-sequence ỹc(t,:) is calculated. As
such, the candidate hypotheses of subwords can be verified and
rectified instead of generating new hypotheses. The Crop block
refines the likelihood score by excluding outliers that have a
much lower score.

Note that both post-inference and the interdecoder module
use the alignment mapping information, but at different phases.
The difference in the context of decoding yit is illustratively
explained in Fig. 7. For post-inference, the subsequence yj(t,:)
can be further applied to verify and rectify the predicted out-
put in Fig. 7(a), while the history output token of time step
(t− 1) is used in the interdecoder module in Fig. 7(b). It is
clear that the alignment mapping is exploited at different time
steps. Therefore, the proposed MGSA end-to-end model, by
using the post-inference algorithm during the inference stage,
exploits alignment mapping information from both the current
and previous time steps.

V. PERFORMANCE EVALUATION

In order to validate the effectiveness of the proposed inter-
decoder module and post-inference algorithm, we evaluate the
ASR performance in terms of the word error rate (WER) on
WSJ-80 hrs and Switchboard-300 hrs for various systems.
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Fig. 7. The use of multi-granularity target information in (a) post-inference
using ỹj

(t,:)
or inference (the yellow font). (b) the interdecoder, utilizing only

the past sub-sequence yj
(t−1,:) for modeling (green font).

The WSJ database contains 80 hours of transcribed speech.
In this work, we follow the standard division, i.e., si284 for
training, dev93 for validation and eval92 for evaluating the
WER. The Switchboard corpus consists of a large amount of
English language telephone speech. We choose the 300 h subset
LDC97S62 for training, reserving 10% for cross validation. The
Hub5 eval2000 (i.e., LDC2002S09) is chosen for performance
evaluation, consisting of two subsets: 1) Switchboard (similar in
style to the training set) and 2) CallHome, collected from conver-
sations between friends and within families. The complete Hub5
eval2000, the subsets Switchboard and CallHome are denoted
“Full,” “SWD” and “CHE,” respectively, For completeness, we
also evaluate the ASR performance on the RT03 Switchboard
test set (i.e., LDC2007S10).

The encoder used for both corpora has two convolutive layers,
which down-sample the sequence in time, with 3×3 filters
and 32 channels, followed by 6 layers of bi-directional long
short-term memory (LSTM) with a cell size of 800. The default
decoder is a two-layer uni-directional LSTM with 800 cells.
We use 80-dimensional log-mel filterbank coefficients, three
pitch coefficients and the normalized mean and variance as the
input features. The character target in experiments is a set of 51
characters, which contain English letters, numbers, punctuation
and special transcribed notations for WSJ, and 46 characters for
Switchboard. For the subword target, we perform segmentation
using SentencePiece,2 which is based on the byte pair encoder
algorithm. Based on [34] and the default setting in ESPnet,
we use a vocabulary of size around 500 and 2000 for WSJ
and Switchboard, respectively. ESPnet [35] and Pytorch [36]
are used throughout experiments. As spec-augmentation and
label-smoothing are included in ESPnet, they are applied in this
work. For fair comparison, language model re-scoring, auxiliary
output in the process of decoding or pre-training strategy is not
applied.

2[Online]. Available: https://github.com/google/sentencepiece

TABLE I
WSJ DATASET WER WHEN CONSIDERING SUBWORD, CHARACTER,

AND/OR BOTH AS LABELS

During model learning, the CE is optimized using
AdaDelta [37] with gradient clipping [38], where the hyper
parameter λ is set to be 0.2. We also apply a uni-gram label
smoothing technique [39] with a probability of p = 0.05 to avoid
over-confident predictions. For the beam search algorithm, the
beam size is set to be 20. We compare several variant systems,
including:
� Baseline: following the commonly-used training criteria,

which is the basis of all other extended systems.
� Baseline+: the baseline extended by cascading one addi-

tional bi-directional RNN layer for the encoder module to
eliminate the effects of model size.

� MultiTask: using the multi-task learning strategy for
multi-granularity modeling, which includes one shared
encoder module and two separate decoder modules. Note
that the MultiTask system ignores the interaction between
target sequences.

� MGSAbi: uses the bi-interdecoder based on (10) and (11)
to incorporate interaction between multi-granularity target
units. This considers multi-granularity information for both
character and subword predictions.

� MGSAuni: consists of a conventional encoder module
and a uni-interdecoder module. It thus only incorporates
multi-granularity information for subword prediction.

It is worth noting that in [32], by introducing multi-stage
pre-training, speed perturbation, RNN-transducer the ASR per-
formance is significantly improved, while it also requires more
training time and makes the model more complicated. In general,
the more strategies that are used, the more training time will
be consumed and the more complicated the model. In order
to focus on the impact of multi-granularity alignment mapping
on the ASR performance, we therefore ignore similar potential
strategies in the implementation of MultiTask and Baseline
for fair comparison.

A. Results and Discussions

1) Evaluation of the Model Structure: In order to analyze the
effect of the model structure on performance, we first consider
the traditional beam search algorithm at the inference stage for
all comparison methods. Table I lists WERs achieved on two
validation sets. The WER for character and subword baselines in
eval92 are 11.1% and 11.9%, respectively. Clearly, compared to
Baseline, theMultiTask approach can improve the performance
by 0.6%, and compared to Baseline+, a reduction in WER by
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TABLE II
SWITCHBOARD-300 HRS DATASET WER WHEN CONSIDERING SUBWORD,

CHARACTER, AND/OR BOTH AS LABELS

0.3% is obtained. This implies that using multiple target infor-
mation is more beneficial for improving the performance than
considering more model parameters. Comparing MGSAuni and
MGSAbi with MultiTask or the single-granularity baselines,
we see that the alignment mapping in the decoder module is
indeed helpful to improve the performance. As the performance
of MGSAbi is worse than that of MGSAuni (e.g., 10.2% vs
9.6%), the bi-lateral transmission over multi-granularity units
does not achieve a performance gain. Note that the major dif-
ference between these two models lies in the transition function
(e.g., (11) for MGSAbi and (12) for MGSAuni). The former has
to further load the subword state for the prediction of character
tokens, resulting in a more complicated structure. Due to the fact
that the bi-lateral interaction increases the correlation between
two sequences and reduces the fault tolerant ability during
inference, the exposure bias problem becomes more serious as
opposed to the uni-lateral counterpart or MTL. These lead to
that MGSAbi cannot outperform MGSAuni in general.

Similarly, we next evaluate the ASR performance on the
Switchboard-300 hrs corpus, which is much larger than WSJ.
The results are shown in Table II. Clearly, the proposed
MGSAuni reduces the WER by 1.4% and 1.9% compared to
MultiTask and Baseline on the eval2000 dataset, respectively.
For RT03, MGSAuni yields a reduction in WER of 1.0% and
1.7% compared to MultiTask and Baseline, respectively. In
line with the WSJ results, MGSAbi cannot work better than
MGSAuni. We see that, for both WSJ and Switchboard corpora,
MGSAuni outperforms its bi-lateral counterpart MGSAbi. We
will therefore only select the former for further comparisons. In
fact MGSAuni has another advantage in that the prediction for
all character sequences can be calculated simultaneously, and
the parameters characters need to provide for the corresponding
subword can be extracted all at once.

2) Evaluation of the Proposed Post-Inference: As the multi-
granularity target not only affects the model structure, but also
the inference, we therefore experimentally evaluate the impact of
applying the proposed post-inference algorithm at the inference
stage. For notational brevity, in the following the MGSAuni and
MultiTask plus post-inference will be denoted by MGSAuni+
and MultiTask+, respectively.

The performance on the WSJ dataset is shown in Table III. We
see that, compared to MGSAuni, MGSAuni+ reduces the WER
from 9.6% to 8.9% on eval92. MGSAuni+ performs better than
MultiTask+, so the proposed interdecoder is clearly beneficial.

TABLE III
THE WERS OF MGSAuni AND MultiTask WITH/WITHOUT POST-INFERENCE

ON THE WSJ DATASET

TABLE IV
THE WERS OF MGSAuni AND MultiTask WITH/WITHOUT POST-INFERENCE

ON THE SWITCHBOARD DATASET

Results on the Switchboard dataset are shown in Table IV. Sim-
ilarly, the proposed MGSAuni+ approach also further reduces
the WER by 0.7% on eval2000 and by 0.8% on RT03.

As the application of the proposed post-inference is not
restricted by the end-to-end structure, we therefore further
show the performance of MultiTask+ on the WSJ dataset in
Table III and on the Switchboard dataset in Table IV, respec-
tively. Due to the use of the post-inference algorithm, the WER
of MultiTask can be reduced by 0.5% on WSJ compared to
the original MultiTask method, and the average reduction in
WER turns out to be 1.2% on Switchboard. Hence, we conclude
that the proposed post-inference is able to further improve the
ASR performance. Notably, the improvement for MGSAuni

is higher than for MultiTask. This is due to the fact that the
alignment mapping information contained in the multiple gran-
ularities is taken into account in the former but not the latter.
Since MGSAuni+ achieves a performance gain with respect
to MGSAuni, which is sightly smaller than the improvement
obtained by MultiTask+ over MultiTask, we can conclude that
the performance gains obtained by separately using interdecoder
and post-inference may be partly complementary.

B. visualization and Complexity Analysis

In this section, we will visualize the results of the comparison
methods and compare the time complexity.

1) Visualization: The proposed MGSAuni method includes
three attention modules: subword αb

t , interaction αi
t and char-

acter αc
t′ . To analyze their functions, we visualize the alignment

variables using the WSJ and Switchboard datasets in Fig. 8. The
first three rows plot heatmaps of subword αb

t , the interaction αi
t

and the character alignmentsαc
t′ , with the plots in the left column

being from WSJ and from Switchboard in the right column. The
black dashed lines in Figs. 8(a) and (b) represent the estimated
central position of the subword attention αb

t , and similarly in
Figs. 8(e) and (f). As with the representation of yc(t,:), we convert
the attention vectorαc

t′ intoαc
(t,:), and plot the boundary position
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Fig. 8. Visualization and analysis of the attention for the AED-based approaches, where the subplots in the left column are obtained from the WSJ dataset and
those on the right from Switchboard: (a) and (e) plot the alignment attention score, (b) and (f) plot the subword attention score, (c) and (g) plot the character
attention score, and (d) and (h) plot the entropy of different attention weights across epochs. For simplicity, we use ‘tr’ and ‘dev’ to denote training and validation
datasets, respectively.

using red dashed lines in Figs. 8(c) and (g). Comparing Fig. 8(b)
to (c) (or Fig. 8(f) to (g)), it is obvious that the attention locations
of the character αc

(t,:) and the subword αb
t are different. In

Figs. 8(a) and (b) (or Figs. 8(e) and (f)), the central positions
are also different. As the attention distributions of character
and subword fluctuate around the ground truth boundary, the
subword attention score and character attention score are not
aligned in time domain3. Thus, it is reasonable to exploit more
abundant intermediate representations from the encoder module

3This misalignment might be caused by 1) the presented speech recognition
systems, which are based on the attention mechanism, are not strictly aligned,
and the alignment effect of the attention mechanism is different from real text
boundaries; 2) the context modeling ability in the encoder module weakens
the differences between adjacent frames, so a certain amount of effective
information can also be obtained even if the alignment position is different
from the ground truth; and 3) as the voicelessness or coarticulation is more
obvious on character than on subword, the requirements of acoustic information
for character classification and subword classification are different. Different
requirements in acoustic information between character and subword may result
in difference alignment distributions.

for the prediction and fuse the subword and character vectors,
say git, g

b
t and gc(t,:), to complement the alignment. In Figs. 8(a)

and (b), we can see that the entropy of the interaction alignment
αi
t is lower than that of the subword αb

t (e.g., 0.905 vs 1.311).
As a more comprehensive illustration, we plot the entropy in
terms of epochs for the subword alignment scores of Baseline,
MultiTask and MGSAuni in Fig. 8(d). We observe that the
entropy of the interaction alignment score αi

t is the lowest,
which decreases rapidly and converges after several epochs. This
is due to the fact that the interaction module contains history
information from both subword and character. The more history
information contained in αi

t, the more accurate the prediction
will be. Hence, we conclude that the combination of history
subword and character is indeed helpful for optimizing the align-
ment vectors. Similar results can be seen for the Switchboard
dataset in Fig. 8(h). Note that compared to WSJ, Switchboard
entropies converge faster, due to the fact that it contains more
training data, leading to more model updates possessed at each
epoch.
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TABLE V
THE NORMALIZED TRAINING AND INFERENCE TIME CONSUMPTION OF THE

COMPARISON METHODS ON THE WSJ AND SWITCHBOARD DATASETS WITH

RESPECT TO THE BASELINE METHOD

2) Time Complexity: The normalized processing time for
both training and inference stages of the MGSAuni and
MultiTask methods on the WSJ and Switchboard datasets with
respect to Baseline are shown in Table V. It is clear that for
both training and inference stages, both MultiTask and the
proposed MGSAuni method consume a longer time on both
datasets compared to the Baseline method. Incorporating the
post-inference algorithm for both MultiTask and MGSAuni

increases the time complexity. This is due to the fact that
the post-inference requires an extra mapping transformation
between multi-granularity units, resulting in more calculations
for character sub-sequences. The decoding time of MGSAuni

and MGSAuni+ is the same, because the information required
by the post-inference algorithm is already calculated by the in-
terdecoder. In other words, the sequence alignment information
and the corresponding character sub-sequence are the output
of the char block of the interdecoder module, and the former
can be directly applied to post-inference. The time consumption
of the post-inference algorithm is thus negligible, effectively
provided for free. In addition, the time complexity ofMGSAuni+
is only slightly higher than that of MultiTask+. Therefore,
we can conclude that the performance gain of the proposed
MGSAuni+ method is improved at the cost of a small increase
in time consumption. In Table V, we notice that for MGSAuni

and MultiTask+ methods, both the training time and inference
time are different for the two datasets. This is caused by the
segmentation fineness of subwords on the corpus. For analysis,
we also give the average character density of subword (CDS)
in the two corpora and use CDS to measure the segmentation
fineness of subwords in Table V. It is obvious that the CDS differs
significantly between the two datasets, and the time consumption
is strongly dependent on the CDS.

C. Comparison to State-of-The-Art Systems

Finally, we compare the proposed MGSA method to state-of-
the-art granularity-based end-to-end ASR systems. Note that in
order to focus on the attention-based model without introduc-
ing complicated training strategies, e.g., CTC, RNN-tranducer,
some results, such as [32], are excluded. Also, note that the
provided results can be further improved as using a more
complicated configuration in [32]. Table VI and Table VII
show the performance and the granularity unit (e.g., character,
subword, both) of different approaches using WSJ-80 hrs and

TABLE VI
COMPARISON TO OTHER END-TO-END CE-BASED ASR SYSTEMS (WITHOUT

LANGUAGE MODEL RE-SCORING) ON WSJ-80 HRS

TABLE VII
COMPARISON TO OTHER END-TO-END CE-BASED ASR SYSTEMS ON

SWITCHBOARD-300 HRS

Switchboard-300 hrs, respectively. Comparing with the optimal
completion distillation (OCD) based Sabour method [40] which
uses character units, or the Espresso baseline [41], we can
conclude that the utilization of multi-granularity units and the
proposed post-inference algorithm is more robust than optimiz-
ing exposure bias. For both datasets, the proposed MGSAuni+
method achieves the best performance. From both tables, it is ob-
vious that multi-granularity based approaches (i.e., MultiTask,
MultiTask+, MGSAuni and MGSAuni+) outperform single-
granularity based methods, implying that the utilization of multi-
ple granularity information can improve the performance of end-
to-end ASR systems. On the WSJ dataset, the character-based
methods in general outperform subword-based approaches,
while for Switchboard the latter work better. The choice of
optimal single granularity for the design of ASR systems is thus
dataset dependent.

VI. CONCLUSION

In this work, we proposed a multi-granularity sequence align-
ment approach for the AED-based ASR, which exploits the
alignment mapping between different granularity units for both
modeling and inference stages. By leveraging the dependency
and interaction between multi-granularity target sequences, the
interdecoder based framework can improve the ASR perfor-
mance. The proposed post-inference algorithm can improve the
performance significantly at the cost of a small increase in the
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time consumption. We found that the one-way interaction in
the interdecoder module works better than the bi-lateral coun-
terpart. In general, the utilization of more intermediate speech
representations and sequence alignment mapping information
is beneficial for ASR. As only two target units (e.g., character
and subword) are taken into account in this work, we will
consider more granularities in the future. We will also optimize
the combination of multiple granularities and explore the appli-
cation of the proposed MGSA method to other end-to-end ASR
frameworks, e.g., transformer. In the future, we will consider
the generalization capability of the proposed method using a
larger-scale dataset (e.g., with thousands hours of training data)
and the application to other languages, e.g., Chinese.

ACKNOWLEDGMENT

The authors would like to thank the Associate Editor and
anonymous reviewers for their constructive suggestions that
helped to improve the presentation of this article.

REFERENCES

[1] G. Hinton et al., “Deep neural networks for acoustic modeling in speech
recognition: The shared views of four research groups,” IEEE Signal
Process. Mag., vol. 29, no. 6, pp. 82–97, Nov. 2012.

[2] A. Graves, S. Fernández, F. Gomez, and J. Schmidhuber, “Connection-
ist temporal classification: Labelling unsegmented sequence data with
recurrent neural networks,” in Proc. Int. Conf. Mach. Learn., 2006,
pp. 369–376.

[3] K. Rao, H. Sak, and R. Prabhavalkar, “Exploring architectures, data and
units for streaming end-to-end speech recognition with RNN-transducer,”
in Proc. IEEE Autom. Speech Recognit. Understanding Workshop, 2017,
pp. 193–199.

[4] O. Abdel-Hamid, L. Deng, D. Yu, and H. Jiang, “Deep segmental neural
networks for speech recognition,” in Proc. Int. Speech. Community Assoc,
Interspeech, vol. 36, 2013, pp. 70–74.

[5] J. K. Chorowski, D. Bahdanau, D. Serdyuk, K. Cho, and Y. Bengio,
“Attention-based models for speech recognition,” in Proc. Adv. Neural
Inf. Process. Syst., 2015, pp. 577–585.

[6] S. Zhou, L. Dong, S. Xu, and B. Xu, “Syllable-based sequence-to-sequence
speech recognition with the transformer in mandarin chinese,” in Proc. Int.
Speech Community Assoc., Interspeech, 2018, pp. 791–795.

[7] C. Kim, M. Shin, A. Garg, and D. Gowda, “Improved vocal tract length
perturbation for a state-of-the-art end-to-end speech recognition system,”
in Proc. Int. Speech Community Assoc. Interspeech, 2019, pp. 739–743.

[8] S. Kim, T. Hori, and S. Watanabe, “Joint CTC-Attention based end-to-end
speech recognition using multi-task learning,” in Proc. IEEE Int. Conf.
Acoust., Speech, Signal Process., 2017, pp. 4835–4839.

[9] R. Masumura, T. Tanaka, T. Moriya, Y. Shinohara, T. Oba, and Y. Aono,
“Large context end-to-end automatic speech recognition via extension of
hierarchical recurrent encoder-decoder models,” in Proc. IEEE Int. Conf.
Acoust., Speech, Signal Process., 2019, pp. 5661–5665.

[10] H. Sak, A. Senior, K. Rao, and F. Beaufays, “Fast and accurate recurrent
neural network acoustic models for speech recognition,” in Proc. Int.
Speech Community Assoc., Interspeech, 2015, pp. 1468–1472.

[11] R. Sanabria and F. Metze, “Hierarchical multitask learning with CTC,” in
Proc. IEEE Spoken Lang. Technol. Workshop, 2018, pp. 485–490.

[12] R. Sennrich, B. Haddow, and A. Birch, “Neural machine translation of rare
words with subword units,” in Proc. 54th Annu. Meeting Assoc. Comput.
Linguistics, 2016, pp. 1715–1725.

[13] D. Gowda, A. Garg, K. Kim, M. Kumar, and C. Kim, “Multi-task multi-
resolution Char-to-BPE cross-attention decoder for end-to-end speech
recognition,” in Proc. Int. Speech Community Assoc., Interspeech, 2019,
pp. 2783–2787.

[14] S. Toshniwal, H. Tang, L. Lu, and K. Livescu, “Multitask learning with
low-level auxiliary tasks for encoder-decoder based speech recognition,”
in Proc. Int. Speech Community Assoc., Interspeech, 2017, pp. 3532–3536.

[15] Y. Kubo and M. Bacchiani, “Joint phoneme-grapheme model for end-to-
end speech recognition,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal
Process., 2020, pp. 6119–6123.

[16] A. Garg, D. Gowda, A. Kumar, K. Kim, M. Kumar, and C. Kim, “Improved
multi-stage training of online attention-based encoder-decoder models,”
in Proc. IEEE Autom. Speech Recognit. Understanding Workshop, 2019,
pp. 70–77.

[17] K. Audhkhasi, B. Ramabhadran, G. Saon, M. Picheny, and D. Nahamoo,
“Direct acoustics-to-word models for english conversational speech recog-
nition,” in Proc. Int. Speech Community Assoc., Interspeech, 2017,
pp. 959–963.

[18] T. Hori, S. Watanabe, and J. R. Hershey, “Multi-level language modeling
and decoding for open vocabulary end-to-end speech recognition,” in Proc.
IEEE Autom. Speech Recognit. Understanding Workshop, 2017, pp. 287–
293.

[19] T. Hori, J. Cho, and S. Watanabe, “End-to-end speech recognition with
word-based RNN language models,” in Proc. IEEE Spoken Lang. Technol.
Workshop, 2018, pp. 389–396.

[20] W. Wang, Y. Zhou, C. Xiong, and R. Socher, “An investigation of
phone-based subword units for end-to-end speech recognition,” in ISCA
Interspeech, 2020, pp. 1778–1782.

[21] D. B. Paul and J. Baker, “The design for the wall street journal-based CSR
corpus,” in Proc. Workshop Speech Nat. Lang., 1992, pp. 357–362.

[22] J. J. Godfrey, E. C. Holliman, and J. McDaniel, “Switchboard: Telephone
speech corpus for research and development,” in Proc. IEEE Int. Conf.
Acoust., Speech, Signal Process., 1992, pp. 517–520.

[23] W. Chan, N. Jaitly, Q. Le, and O. Vinyals, “Listen, attend and spell:
A neural network for large vocabulary conversational speech recogni-
tion,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process., 2016,
pp. 4960–4964.

[24] W. Chan and I. Lane, “On online attention-based speech recognition and
joint mandarin Character-Pinyin training,” in Proc. Int. Speech Community
Assoc., Interspeech, 2016, pp. 3404–3408.

[25] M. Schuster and K. Nakajima, “Japanese and korean voice search,” in Proc.
IEEE Int. Conf. Acoust., Speech, Signal Process., 2012, pp. 5149–5152.

[26] H. Soltau, H. Liao, and H. Sak, “Neural speech recognizer: Acoustic-to-
word LSTM model for large vocabulary speech recognition,” in Proc. Int.
Speech Community Assoc., Interspeech, 2016, pp. 3707–3711.

[27] D. Bahdanau, J. Chorowski, D. Serdyuk, P. Brakel, and Y. Bengio, “End-to-
end attention-based large vocabulary speech recognition,” in Proc. IEEE
Int. Conf. Acoust., Speech, Signal Process., 2016, pp. 4945–4949.

[28] A. Zeyer, K. Irie, R. Schlüter, and H. Ney, “Improved training of end-
to-end attention models for speech recognition,” in Proc. Int. Speech
Community Assoc., Interspeech, 2018, pp. 7–11.

[29] L. Lu, X. Zhang, and S. Renais, “On training the recurrent neural net-
work encoder-decoder for large vocabulary end-to-end speech recogni-
tion,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process., 2016,
pp. 5060–5064.

[30] K. Audhkhasi, B. Kingsbury, B. Ramabhadran, G. Saon, and M. Picheny,
“Building competitive direct acoustics-to-word models for english con-
versational speech recognition,” in Proc. IEEE Int. Conf. Acoust., Speech,
Signal Process., 2018, pp. 4759–4763.

[31] S. Abdou and M. S. Scordilis, “Beam search pruning in speech recog-
nition using a posterior probability-based confidence measure,” Speech
Commun., vol. 42, no. 3/4, pp. 409–428, 2004.

[32] M. Huang, Y. Lu, L. Wang, Y. Qian, and K. Yu, “Exploring model units
and training strategies for end-to-end speech recognition,” in Proc. IEEE
Autom. Speech Recognit. Understanding Workshop, 2019, pp. 524–531.

[33] Y. N. Dauphin, A. Fan, M. Auli, and D. Grangier, “Language modeling
with gated convolutional networks,” in Proc. Int. Conf. Mach. Learn., 2017,
pp. 933–941.

[34] J. Tang, J. Hou, Y. Song, L. Dai, and I. Mcloughlin, “Effective exploitation
of posterior information for attention-based speech recognition,” IEEE
Access, vol. 8, pp. 108988–108999, Jun. 2020.

[35] S. Watanabe et al., “ESPNet: End-to-end speech processing toolkit,” in
Proc. Int. Speech Community Assoc., Interspeech, 2018, pp. 2207–2211.

[36] A. Paszke et al., “Pytorch: An imperative style, high-performance deep
learning library,” in Adv. Neural Inf. Process. Syst., 2019, pp. 8026–8037.

[37] M. D. Zeiler, “Adadelta: An adaptive learning rate method,” 2012,
arXiv:1212.5701.

[38] R. Pascanu, T. Mikolov, and Y. Bengio, “On the difficulty of training
recurrent neural networks,” in Proc. Int. Conf. Mach. Learn., 2013,
pp. 1310–1318.

[39] J. Chorowski and N. Jaitly, “Towards better decoding and language model
integration in sequence to sequence models,” in Proc. Int. Speech Com-
munity Assoc., Interspeech, 2017, pp. 523–527.

[40] S. Sabour, W. Chan, and M. Norouzi, “Optimal completion distillation
for sequence learning,” in Int. Conf. Learn. Representations (ICLR), New
Orleans, LA, USA, May 2019.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on September 06,2021 at 01:02:39 UTC from IEEE Xplore.  Restrictions apply. 



2828 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 29, 2021

[41] Y. Wang et al., “Espresso: A fast end-to-end neural speech recognition
toolkit,” in Proc. IEEE Autom. Speech Recognit. Understanding Workshop,
2019, pp. 136–143.

[42] M. K. Baskar, L. Burget, S. Watanabe, M. Karafiat, T. Hori, and J. H.
Cernocky, “Promising accurate prefix boosting for sequence-to-sequence
ASR,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process., 2019,
pp. 5646–5650.

[43] W. Chan, Y. Zhang, Q. Le, and N. Jaitly, “Latent sequence decomposi-
tions,” 2016, arXiv:1610.03035.

[44] H. Xu, S. Ding, and S. Watanabe, “Improving end-to-end speech recogni-
tion with pronunciation-assisted sub-word modeling,” in Proc. IEEE Int.
Conf. Acoust., Speech, Signal Process., 2019, pp. 7110–7114.

[45] C. Weng et al., “Improving attention based sequence-to-sequence models
for end-to-end english conversational speech recognition.” in Proc. Int.
Speech Community Assoc., Interspeech, 2018, pp. 761–765.

[46] A. Zeyer, A. Merboldt, R. Schlüter, and H. Ney, “A comprehensive anal-
ysis on attention models,” in Proc. IRASL Workshop, NeurIPS, Montreal,
Canada, Dec. 2018.

[47] D. S. Park et al., “Specaugment: A simple data augmentation method for
automatic speech recognition,” in Proc. Int. Speech Community Assoc.,
Interspeech, 2019, pp. 2613–2617.

Jian Tang received the B.S. degree from the School
of Computer Science and Information Engineering,
Hefei University of Technology, Hefei, China, in
2014. He is currently working toward the Ph.D.
degree with the National Engineering Laboratory
for Speech and Language Information Processing,
University of Science and Technology of China,
Hefei, China. His current research interests include
deep learning for speech recognition and acoustic
modeling.

Jie Zhang (Member, IEEE) was born in Anhui
Province, China, in 1990. He received the B.Sc.
(Hons.) degree in electrical engineering from Yun-
nan University, Kunming, China, in 2012, the M.Sc.
(Hons.) degree in electrical engineering from Peking
University, Beijing, China, in 2015, and the Ph.D.
degree in electrical engineering from the Delft Uni-
versity of Technology, Delft, The Netherlands, in
2020. He is currently an Assistant Professor with
the National Engineering Laboratory for Speech and
Language Information Processing, Faculty of Infor-

mation Science and Technology, University of Science and Technology of China,
Hefei, China. His current research interests include multimicrophone speech
enhancement, sound source localization, binaural auditory, speech recognition,
and speech processing over wireless (acoustic) sensor networks. He was the
recipient of the Best Student Paper Award for his publication at the 10th IEEE
Sensor Array and Multichannel Signal Processing Workshop (SAM 2018) in
Sheffield, U.K.

Yan Song received the B.Sc degree in electronic
engineering from the University of Electronic Science
and Technology of China, Hefei, China, in 1994, and
the M.Sc. and Ph.D. degrees from the Department
of Electronic Engineering and Information Science,
University of Science and Technology of China,
in 1997 and 2006, respectively. He is currently an
Associate Professor with the National Engineering
Laboratory for Speech and Language Information
Processing, and has been a Faculty Member of the
Department of Electronic Engineering and Informa-

tion Science, University of Science and Technology of China since 2000.
His research interests include multimedia information processing, automatic
language identification, speaker diarization, and image classification.

Ian McLoughlin (Senior Member, IEEE) received
the Ph.D. degree in electronic and electrical engineer-
ing from the University of Birmingham, Birmingham,
U.K., in 1997. He worked for more than ten years in
the R&D industry and about 15 years in academia,
on three continents. He is currently a Professor with
the Singapore Institute of Technology, Singapore.
He has written many papers and several patents on
speech analysis and communications, and is author
of four books on speech processing and embedded
computation. He is a fellow of the IET, a Chartered

Engineer, was the recipient of the Chinese Academy of Sciences President’s
International Fellowship Award and Hundred Talent Program funding from
Anhui, Province, China.

Li-Rong Dai (Member, IEEE) was born in China,
in 1962. He received the B.S. degree in electrical
engineering from Xidian University, Xi’an, China,
in 1983, the M.S. degree from the Hefei University
of Technology, Hefei, China, in 1986, and the Ph.D.
degree in signal and information processing from
the University of Science and Technology of China
(USTC), Hefei, China, in 1997. In 1993, he joined
USTC. He is currently a Professor with the School of
Information Science and Technology, USTC. He has
authored or coauthored more than 50 papers in his re-

search field, which include speech synthesis, speaker and language recognition,
speech recognition, digital signal processing, voice search technology, machine
learning, and pattern recognition.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on September 06,2021 at 01:02:39 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


