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Abstract— Sound source localization (SSL) is an essential
technique in many applications, such as robot audition, human-
robot interaction and speech capturing. However, SSL from
a binaural input is still a challenging problem, particularly
when multiple sources are active simultaneously. In this work,
we propose a multi-sources localization framework based on
the time-delay compensation (TDC) estimator and clustering
analysis. The TDC estimator is a simultaneous operator to
estimate binaural cues, which breaks the limitation of indepen-
dent processors for binaural cues extraction. The multi-sources
decision is realized by clustering analysis for the binaural
cues of multiple signal frames. In experiments, we demonstrate
that the localization performance is improved compared to the
methods that assume the number of spatial stationary sources
to be known. Results with both simulated and recorded impulse
responses show that robust performance can be achieved with
limited prior training, and our method is also adaptive to
different sound activities.

I. INTRODUCTION

Sound source localization (SSL) acts as an important role
to recognize the direction of a sound source for humanoid
robots, audio reproduction, scene analysis, etc. A significant
number of source localization methods are proposed such as
steered beamforming [1], high resolution spectral estimation
[2] and time difference of arrival (TDOA) [3], [4]. The
steered beamforming needs a priori knowledge of sound
source and environmental noise which is difficult to obtained
for realistic applications. High resolution spectral estimation
requires the source to be stationary signal. TDOA algorithm
has the characteristics of high computation efficiency and
easy implementation, but it can not directly deal with multi-
sources signals. Although SSL has been popular for the
past several decades, it is still quite challenging to localize
multiple sound sources, e.g., the cocktail scenarios [5].

For multiple sources localization, auditory scene analysis
(ASA) and blind signal separation (BSS) are the mainly
methods. BBS requires to be assumed statistical properties
of signal and hybrid approaches, which is difficult to meet
in actual acoustic environment. As human beings can accu-
rately evaluate the sound sources in complex environments
(including noise and reverberation), binaural SSL algorithm
is present to do the same work. Binaural auditory processing
based on human spatial hearing mechanism is a friendly and
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natural interaction technology. Since “Duplex Theory” [6]
and cochlear model [7] were proposed, a large amount
of binaural localization algorithms have been developed in
various experimental environments [8]–[10].

There are two significant binaural cues for binaural SSL
method [11] called interaural time difference (ITD) and
interaural level difference (ILD). However, most traditional
methods seldom consider the influence of binaural cues on
each other. Intuitively with the impact of ITD, the signals per-
ceived by two ears have different starting points with respect
to the sound source, which affects the extraction of ILD.
Furthermore, after binaural cues extraction, most previous
algorithms use them to match the lookup computed from the
head-related transfer functions (HRTFs). This would lead to
a large amount of redundant solutions and more matching
time. To solve the above problems, firstly, we present the
time-delay compensation (TDC) estimator to evaluate the
ITD and ILD simultaneously. The realization is simplified,
as it breaks the limitation of two independent processors for
binaural cues extraction. Secondly, a probabilistic strategy is
introduced for ITD and ILD to calculate the probabilities of
the direction of sound source.

In this paper, a multi-sources localization framework is
proposed based on TDC estimator and clustering analysis.
TDC estimator can estimate the binaural cues simultaneously.
It is demonstrated that the joint of ITD and ILD can
effectively overcome the overload selections of unwrapping
ITDs and larger variance of ILDs in the low frequency bands.
This single SSL, which consider both azimuth and elevation,
is testified under different signal-to-noise ratio (SNR) con-
ditions. Subsequently, this strategy is applied and extended
to multi-sources scenarios. Since it is difficult to localize
multi-sources only from one signal frame, we observe the
spatial distributions of binaural cues in a long period of
binaural audio. Through clustering the binaural cues, the
centers are obtained which indicate the actual information
on the sources, such that the multiple SSL achieved.

The rest of this paper is organized as follows: Sect.II
introduces and analyzes the TDC estimator for binaural cues
extraction. Sect.III shows the probabilistic strategy for single
SSL. Sect.IV gives the k-means clustering for multiple SSL.
Experiments and discussions are shown in Sect.V. At last,
the conclusions and feature works are drawn in Sect.VI.

II. BINAURAL CUES EXTRACTION

A. Time-delay Compensation Estimator

In this section, a new binaural localization cues estimation
method named time-delay compensation (TDC) [12] estima-
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tor will be introduced. The propagation paths from the sound
source to acoustic sensors are roughly parallel in the far-field
scenario. Let s(n) denote a sound source signal, we assume
that binaural signals are counterparts of the sound source
such that the differences among them lie in time-delay and
attenuation. For briefly, we formulate the binaural audio as:

xi(n) = ais(n− τi)+ vi(n), i ∈ {l,r}, (1)

where n is the time index, ai denotes the attenuation factor, τi
is the time consumption propagating from the sound source
to the two acoustic sensors, vi(n) represents the interference,
l and r mean the left and right channels, respectively.
Therefore, the interaural time-delay ∆τ can be defined as:

∆τ = τr− τl . (2)

Then, we expect to eliminate the differences of the
binaural signals as much as possible. A monaural audio
is compensated to match the other, i.e. passing through
time alignment and magnitude stretching. This procedure is
mathematically formulated as:

W � xl(n−∆τ) = λW � xr(n)+∆v, (3)

where W , λ and ∆v denote the window function, attenuation
difference and the disparity of noises received by ears,
respectively. In fact, ∆v is also the error of TDC, and our
goal is to minimize the error. From the standpoint of noises,
(3) can be replaced by:

∆v =W � xl(n−∆τ)−λW � xr(n).

In an office environment, ∆v is usually thought as zero-mean
Gaussian noise. Hereby the variance of ∆v is given by:

y = ||W � xl(n−∆τ)−λW � xr(n)||2. (4)

In this context, the parameters λ and ∆τ can be estimated
by maximum likelihood estimation as follows:

∂y
∂λ

=
∂

∂λ
||W � xl(n−∆τ)−λW � xr(n)||2. (5)

After setting this partial derivative to zero, namely, ILD λ

can easily be solved as:

λ̃ =
∑N W 2(n)xr(n)xl(n−∆τ)

∑N W 2(n)x2
r (n)

, (6)

where N denotes the length of window. For practical usage,
we represent the logarithmic λ̃ as ILD. As with time-delay
∆τ , it is difficult to compute from ∂y/∂∆τ directly, but
simplifies (4) in the frequency domain instead, that is:

Y (e jω) = ||XXX l(e jω)e− jω∆τ −λXXX r(e jω)||2, (7)

where Y (e jω) and XXX(e jω) are the Fourier Transforms of
variance and binaural signals processed by window function,
respectively, i.e. F{W � xr(n)} = XXX r(e jω), F{W � xl(n−
∆τ)}= XXX l(e jω)e− jω∆τ . Therefore, if

AAA(e jω) = XXX l(e jω)e− jω∆τ −λXXX r(e jω),

then ∂Y (e jω)/∂∆τ can be formulated as:

∂Y (e jω)

∂∆τ
=

∂

∂∆τ

(
AAA∗(e jω)AAA(e jω)

)
=

∂AAA(e jω)

∂∆τ
· ∂Y (e jω)

∂AAA(e jω)

=− j2ωXXX∗l (e
jω)AAA(e jω)e− jω∆τ .

(8)

Setting ∂Y (e jω)/∂∆τ to zero, for jω and e− jω∆τ are not
equal to zero. We obtain:

XXX∗l (e
jω)
(

XXX l(e jω)e− jω∆τ −λXXX r(e jω)
)
= 0, (9)

where ∗ indicates the complex conjugate. Then, taking (9)
back to the time domain using the inverse discrete Fourier
Transform, it can be shown as:

δ (n−∆τ) = R(n)

=
1

2π

∫
π

−π

λXXX∗l (e
jω)XXX r(e jω)

XXX∗l (e jω)XXX l(e jω)
· e jωndω,

(10)

where R(n) is the proposed GCC-TDC function, which rather
resembles the Roth weighting [13], [14] based on an optimal
filter with xl(n), xr(n) as the input and reference signals,
respectively. Thereout, ∆τ can be estimated by:

∆̃τ = argmaxnR(n). (11)

As a consequence, ∆̃τ is the optimal time-delay with the
meaning of Minimum Mean Square Error (MMSE) criterion.

B. Time-frequency Analysis for TDC

The two cues considered in this paper, namely, the ILD
and ITD, are based on the sliding short time fourier transform
(STFT) spectra of the two observations. The ILD (in dB) at
the κth frame is defined as:

ILD(κ,ω) = 20log10 F{λ (κ,n)}

= 20log10
|W (ω)2Xκ

r (ω)Xκ
l (ω)e jω∆τ |

|W 2(ω)Xκ
r (ω)Xκ

r (ω)|
,

(12)

where ω is angular frequency and Xκ
r and Xκ

l are the STFTs
of the right and left channel of the binaural signal at frame κ ,
respectively. Therefore, ILD is simply the ratio in dB of the
amplitudes of the right and left STFTs, i.e., the difference of
the amplitudes in dB between the right and left STFTs. When
one or both of the |Xκ | is null, we consider the interaural
differences as invalid, and discard the result. This holds for
the ITD also. Nevertheless, a voice activity detector (VAD)
is used to decide whether |Xκ | is null, like the interaural
coherence [15].

Based on the right and left spectra of the κth frame, we
define the ITD (in seconds) as:

IT D(κ,ω) =
1
ω

(
∠

Xκ
r (ω)Xκ

l (ω)

Xκ
l (ω)Xκ

l (ω)
+2π p

)
, (13)

where the integer p is the phase unwrapping factor, which
is a priori unknown. The use of this factor is necessary by
the fact that the angle of the ratio of the spectra is computed
modulo 2π . The fact is that an unknown priori makes the
phase become ambiguous above a certain frequency, which
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is mainly dependent on the size and shape of the head. This
frequency, herein called the ITD ambiguity threshold, can be
approximated more precisely with the following equation:

f0 =
c

rπ
, (14)

where c is the speed of sound in air (344 m/s) and r is the
average radius of the head. This threshold is however often
averaged to 1500Hz and in the remainder of the paper this
value will be used.

In order to retrieve the azimuth of a given frequency bin
of the STFT pair, matching the ILD and ITD measurements
of that bin to the measured ILD and ITD from the HRTF of
the subject.

Since the HRTFs are assumed to be time-invariant, there
is no dependency on the time index n. Instead, the HRTFs
depend on the directional angle (θ ,ϕ). By using the right
and left HRTFs as functions of azimuth and frequency,
HRT Fs

r (θ ,ϕ,ω) and HRT Fs
l (θ ,ϕ,ω), in place of the signal

spectra in (12) and (13). We obtain the HRTF data lookup
models of subject s for level difference ILDs(κ,ω) and
time difference IT Ds(κ,ω) as functions of directional angle
(θ ,ϕ) and frequency ω:

ILDs(κ,ω) = 20log10 F{λ s(κ,n)}

= 20log10
|HRT Fs

r (θ ,ϕ,ω)HRT Fs
l (θ ,ϕ,ω)e jω∆τ |

|HRT Fs
r (θ ,ϕ,ω)HRT Fs

r (θ ,ϕ,ω)|
(15)

IT Ds(κ,ω)=
1
ω

(
∠

HRT Fs
r (θ ,ϕ,ω)HRT Fs

l (θ ,ϕ,ω)

HRT Fs
l (θ ,ϕ,ω)HRT Fs

l (θ ,ϕ,ω)
+2π p

)
(16)

Here again, the time difference depends on an arbitrary un-
wrapping factor p. This ambiguity is resolved by unwrapping
the modulo 2π phase difference of the right and left HRTFs
along the azimuth. The assumption is that the actual phase
difference of the HRTFs does not show substantial hiatus
across azimuth. Moreover, the phase unwrapping factor is
assumed to be 0 at zero azimuth, where the phase difference
should be as small as possible.

Considering the KEMAR dummy head in the CIPIC
database [16], the HRTFs are measured for each azimuth
with 0◦ elevation. The ILD and ITD as functions of azimuth
and frequency for one particular head are illustrated in Fig. 1.
The panels in the upper row show the smoothed ILD and ITD
computed from the measured HRTFs. No processing across
frequency is performed. Besides, using the averaged ITD and
ILD estimates in (6) and (10), we can obtain the averaged
ITD and ILD across (θ ,ϕ), which are shown in the lower
panels of Fig. 1.

The ITD is usually a relatively smooth function of az-
imuth, as shown in Fig. 1. This means that the standard
deviation of the azimuth estimates based on ITD is relatively
small. However, there may be several possible azimuth
candidates due to the phase ambiguities in (13). The ILD is
a more complex function of azimuth and must be smoothed
across azimuth in order to become useful for azimuth lookup.
Consequently, the azimuth estimates based on ILDs have a
much larger standard deviation than those based on ITDs.

Fig. 1. Binaural cues estimation for KEMAR dummy head in CIPIC HRTF
database. Upper: Smoothed HRTF lookup across azimuth. Lower: Averaged
binaural cues across (θ ,ϕ).

In addition, the ILDs as functions of azimuth are not, in
general, monotonic for all frequencies. On this occasion,
the azimuth lookup is non-unique, yielding multiple possible
azimuth estimates. In this condition, we take the azimuth
closest to zero. This choice is made for analysis purposes
only, since the ambiguity is lifted with the use of ITD in the
estimation method shown in [17].

III. PROBABILISTIC SINGLE SOURCE LOCALIZATION

A. Azimuth Localization

As for the far field scenario of SSL, e.g., the works
in [18], [19], the relationship between the time difference
and azimuth is a sinusoidal function formulated as:

sinθ =
∆τc
2r fs

. (17)

Since the time delay ∆τ is in sampling number, the time
difference in millisecond is transformed by ∆τ/ fs. Fig. 2
shows an analysis for the time difference estimate using the
HRTF lookup. The red dot-line represents the theoretical
ITDs of horizontal azimuths, which are calculated by (17).
The boxplots denote the corresponding evaluated mean value
and variance of each azimuth that is obtained by Fig. 1(d).
It is concluded that in the two broad sides of a head,
the azimuths have larger variance, which result in more
ambiguities for azimuth localization. Given an azimuth θi,
we can view its ITD subjected to a normal probability density
function (PDF) with mean µθi,IT D and variance σθi,IT D. Thus,
when an ITD is evaluated, we can compute the probabilities
of all azimuths that the sound source locates using a Gaussian
distribution as:

p(θi|IT D) =
1√

2πσθi,IT D
exp
(
−
(IT D−µθi,IT D)

2

2σ2
θi,IT D

)
. (18)

At this point, the azimuth of the sound source can be
crudely evaluated by argmax p(θi|IT D). Yet to overcome the
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Fig. 2. Statistic analysis of time-delay estimate. The boxplot shows the
estimated mean values and variances of time difference. The red line shows
the theoretical time difference in millisecond.
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Fig. 3. Statistic analysis of level difference estimate. The boxplot shows
the estimated mean values and variances of level difference. The bold blue
line denotes the averaged ILD across elevations.

ambiguities of the two broad sides, it needs to consider the
influences of ILD. Similarly, we analyze the level difference
estimate for the HRTF dataset. The relationship between
the ILDs (in dB) and azimuths are drawn in Fig. 3, which
is counted from Fig. 1(c). The blue dot-line denotes the
averaged ILD, and the boxplot represents the distribution
of ILDs corresponding to each azimuth. Therefore, for the
azimuth θi, a normal PDF of ILDs is obtained with mean
µθi,ILD and variance σθi,ILD. It is observed that due to the
effects of pinna, the ILDs do not have a linear distribution
versus azimuth. On the left side of the head (i.e., θ < 0),
the ILDs attenuate slightly, while On the right side (i.e.,
θ > 0), they decrease rapidly. In the same way, when an
ILD is evaluated, the probabilities of azimuths of ILD-based
localization can be computed using a Gaussian function as:

p(θi|ILD) =
1√

2πσθi,ILD
exp
(
−
(ILD−µθi,ILD)

2

2σ2
θi,ILD

)
. (19)

In the context of the statistical analysis for conditional
probabilities of ITD and ILD, we can get the joint probability
of the sound source with given binaural cues, which is
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Fig. 4. The procedures of single sound source localization. The three
columns express different azimuths, e.g., −40◦, −5◦ and 40◦, respectively.
First row: The normalized probability of ITD-based localization. Second
row: The normalized probability of ILD-based localization. Third row: The
normalized probability of the joint of ITD and ILD based localization.

mathematically expressed as:

p(θi|IT D, ILD) = p(θi|IT D) · p(θi|ILD). (20)

Like probabilistic models in [20], [21], we can resolve the
joint azimuth localization by:

θ = argmax
θi

p(θi|IT D, ILD). (21)

Fig. 4 illustrates the conditional probabilistic distributions
of azimuth localization in terms of ITD or ILD. The single
sound source is located in θ ∈ {−40◦,−5◦,40◦} of the
horizontal plane, respectively. In the panel, the first row
denotes the results of ITD-based localization, i.e., p(θi|IT D).
The second row shows that of ILD-based, i.e., p(θi|ILD).
And the last row depicts that of the joint of ITD and
ILD, i.e., p(θi|IT D, ILD). It is concluded that the azimuth
determined by the ITD is quite accurate, although we have
not considered the different p for the phase unwrapping. That
is, the averaged ITD has a strong ability to describe the actual
azimuth. While observing the p(θi|ILD), we note that the
ILD-based results contain more ambiguous, since ILD has
larger variance as Fig. 3 shows. Generally, in the right ahead
areas, the ILD can make acceptable decisions. By the joint of
ILD and ITD, the results are improved. Although the visual
effects of ILD are dispersive, it is essential to select correct
p for the phase unwrapping, when we take the influences of
frequency on ITD into account.

B. Elevation Localization

The probabilistic idea is referred here. First, the azimuth θi
of the sound source is taken as a priori. Then, the exponential
distance of the level difference is utilized to measure the
probability of elevation, e.g.,

p(ϕ j|θi) = exp(λ̃ − ILD|θi), (22)

where λ̃ is obtain by (6), and ILD is looked up from the
HRTFs in subsection II-B, such that the elevation is evaluated
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Fig. 5. The upper panel is the spatial distribution of ILD in dB versus
elevation. The lower panel includes the probabilities exp(λ̃ − ILD|θi) when
the elevations of the sound source are −45◦, −5.625◦, 90◦, respectively.

by the argmax p(ϕ j|θi), i.e.,

ϕ j = argmax p(ϕ j|θi). (23)

In order to find out the performance of elevation local-
ization, some realistic localization examples are displayed
in Fig. 5. The upper panel is the spatial distribution of
ILD in dB versus elevation, in which the shallow lines
represent different azimuths, and the dark-triangle line is
the averaged ILD. It can be observed that ILD is mainly
affected by the azimuth and fluctuated slightly along with
the elevation. In the lower panel, the elevations of the sound
source are −45◦, −5.625◦, 90◦, respectively, and the subplots
give the probability exp(λ̃ − ILD|θi) of the three cases. We
deduce that this method is generally useful for the elevations.
Because the exp(λ̃ − ILD|θi) has an obvious peak when
the elevation are −45◦, −5.625◦, 90◦. Generally speaking,
elevation localization is much more difficult than that of
azimuth, because the ITD is only related by azimuth and
ILD is partially related by the elevation.

IV. MULTIPLE SOURCE LOCALIZATION

In practice, there are usually multiple sound sources need-
ed to be localized, such as the “multi-person conversations”
scenario. For the multi-sources localization, such as the HRI
systems and video conference, azimuth is more important
than the elevation in general. Therefore, the azimuth is the
main focus in this section. It is severely difficult to realize
merely by one frame of speech. Mostly, the azimuths of
the sources are evaluated statistically from a long period of
binaural audio. So we obtain a result (i.e., azimuth) from
each frame by the binaural cues, and the final outcomes are
regarded as the values that occur frequently.

We cluster the binaural cues obtained by the time-delay
compensation estimator for all the speech frames first. For
instance, Fig. 6 shows the binaural cues of four sources,
which are positioned at −40◦, −20◦, 0◦ and 40◦, respectively,

Fig. 6. The distributions of ITDs and ILDs for the binaural audio of 10s.
The sound sources are positioned at −40◦, −20◦, 0◦ and 40◦, respectively,
on the horizontal plane.

Fig. 7. The iterative errors of k-means for the ILDs and ITDs.

on the horizontal plane. The binaural audio is convolved by
the KEMAR HRTFs with a Gaussian white noise. In Fig. 6,
it can be obviously concluded that the ITDs are converged to
four values (i.e., 0.75 ms, 0.4 ms, 0 ms and -0.75 ms), and the
ILDs are also converged to four values (i.e., -1.75 dB, -2 dB,
-2.45 dB and -3.2 dB). Note that the largest amounts of ITDs
and ILDs are converged to 0 ms and -2 dB, respectively. That
is to say, the source coming from the direction right ahead
of a robot is easiest to be detected. Besides, when the sound
sources last beyond 2 s, the binaural cues can show the four
actual centers.

Consequently, we present an effective algorithm to manage
converging the binaural cues. Fig. 7 illustrates the iterative
errors of ITDs and ILDs using the popular k-means. For both
the binaural cues, k-means can find out the centers within
4 steps. After that, we can exploit the aforehand proposed
single SSL method to estimate the positions of the sources by
the centers of binaural cues. Our multiple source localization
strategy based on k-means is quite simple and high efficiency
for the applications.

V. EXPERIMENTS AND DISCUSSIONS

The CIPIC database [16] used in our experiments is mea-
sured by the U. C. Davis CIPIC Interface Laboratory, which
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Fig. 8. The azimuthal results of two different SNRs (Left panel: 40dB, Right panel:10dB, Upper panel: Absolute Error, Lower panel: Error variance).

includes the HRTFs for 45 different subjects (i.e., 27 males,
16 females, and KENAR with large and small pinna). The
HRTFs are tested at 1m distance with 25 different azimuths,
50 different elevations resulting in totally 1250 directions
for each subject. The sound sources used in experiments are
musical signals. The period of each sound for training and
localization is 2 seconds and the sampling frequency is 44.1
kHz. We compare our method with Hierarchical System [20],
Joint ITD ILD [17] and Matching Filter [18]. The first
algorithm is a three-layer framework, in which the ITD, ILD
and spectral cues are used in the three layers, respectively.
The second one puts forward a joint estimation of ILD and
ITD for both single and multiple source localization issue.
And the other one involves a new proposed binaural cue
named interaural matching filter (IMF) for a hierarchical
localization. We compare our method with them, since all
of them refer the probabilistic idea.

In this paper, the results for test sets are based on different
signal parts at 45× 1250× 100× 128× 5, which means 45
subjects, 1250 directions, 100 sound signals and 5 sound
activities processed over 256 sample points, which is also the
length of the window. Our method is validated in different
SNRs and with several different sound activities.

A. Azimuth Accuracy

We testify the performances of directional decision for
a single sound source depending on the subject #003
in the CIPIC HRTFs. Here the central azimuths belong
to [−80◦,−65◦,−55◦,−45◦ : 5◦ : 45◦,55◦,65◦,80◦] in the

frontal plane. The localization accuracy varies from the
azimuth for the several compared methods are in Fig. 8.
The left panel illustrates the azimuthal absolute errors and
the respective error variances when the environmental SNR
is 40dB, and the right panel shows the two norms as SNR
is 10dB. These two different scenarios represent the typical
office environments.

Our method (black-dot lines) gives much more consistent
results, mimicking the behavior of the human perceptual
behavior with more accuracy around frontal directions. The
error variance stays very quiet and stable between -30◦

and 30◦. As the SNR rising, our method still remains
the best performance. On the other hand, the values for
absolute error and error variance of others are generally
higher than our method. It is obvious that the hierarchical
system shows the widest fluctuations, both with respect to
the absolute errors and error variance. And the other two
algorithms also lag to ours. To seek the reasons, the proposed
time-delay compensation estimator can offer robust binaural
cues estimations, and the probabilistic localization strategy
provides accurate azimuthal matching results. While the
accurate binaural cues are hard to extract for the others,
especially for the matching filter, which compute relative
transfer functions as new localization cue and its design is
influenced by the noise severely.

B. Elevation Accuracy

The elevation accurately of the source is observed and
compared in this paper. In the database, the elevations vary
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Fig. 9. The elevation localization accuracy of two different SNRs (Upper
one: SNR=40dB, Lower one: SNR=10dB).

from −45◦ to 230.625◦ in step of 5.625◦. The azimuth is
fixed to 0◦. Here we have omitted the Joint ITD ILD for the
elevation is fixed to 0◦ in their works [17], [22].

While putting a sound source at each direction and local-
izing repeatedly, the accuracy of elevation is shown as Fig. 9.
In general, as the noise is slighter (SNR=40 dB), the results
are quite acceptable. However, the accuracy fades rapidly as
the noise rising. Most importantly, the overall results drop
behind that of azimuth much. It is because that the elevation
localization is much difficult than that of azimuth as proved
in the subsection III-B. Generally speaking, our method has
achieved the better result generally. Moreover, it is better to
localize the same elevations (i.e., the frontal plane of the
dummy head).

C. Performances of Sound Activities

We also test the dependence of the type of sound (in-
strument) on accuracy of the azimuth localization. In this
experiment, individual instrumental sounds taken from the
IOWA database [23] are panned to the azimuth angles using
each of the 45 HRIR measurements of the 45 subjects of the
CIPIC database. The mean absolute errors and the variances
of the error are computed over the 25 angles. Thus the
final results are averaged absolute errors and error variance
over all the CIPIC subjects and sounds for a given IOWA
instrumental sound class. Additionally, the environmental
SNR is set to be 40 dB.

In total, more than 3000 instrumental sounds are used.
Table I lists the results of this experiment. It can be seen
that our method outperforms the results of the others, both
for the absolute error and its variance generally. The errors
are usually less (mostly under 5 degree) except for the double
bass which could be explained by the fact that this instrument
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Fig. 10. The frequency of multiple sources localization for 500 times. The
sources are located at −40◦, 0◦, 40◦, respectively.

is low pitched and the tones have little energy in higher
harmonics, which implies large errors in the ILD. Among the
four algorithms, the matching filter obtains the suboptimal
solution due to its superior ability to represent the relative
transfer functions. The hierarchical system gets the worst
performance because its binaural cues cannot recognize the
influences by the frequency.

D. Accuracy of Multiple Sources Localization

To observe performances of multiple sources localization,
the KEMAR HRTFs are take in the reminder of this section,
the horizontal azimuth evenly divided into 32 directions with
the step of 5◦. We put three sound sources at −40◦, 0◦, 40◦,
respectively, and make the sources uttering continuously. By
running multiple sources localization algorithm repeatedly
for 500 times, the distribution of frequency of the sources
are drawn as Fig. 10 shows. Based on arg maximizing the
frequency functions, the locations of the sources are solved.
As a consequence, we can conclude that the sources are well
detected. Note that we achieve the best accuracy when the
source at 0◦, and the directions in the left or right side has
a few mistakes as localized to the adjacent azimuths.

VI. CONCLUSIONS AND FEATURE WORKS

In this work, a probabilistic binaural sound source local-
ization method based on time-delay compensation (TDC)
estimator and clustering analysis is proposed. The TDC
estimator operates the binaural cues (including ITD and
ILD) simultaneously, which is quite robust to work in noisy
environments. For the single sound localization, we propose
a probabilistic strategy for the azimuth as well as elevation
based on the Gaussian distributions to match the lookup of
the binaural cues. When multiple sources utter, the k-means
clustering is involved to analyze in terms of the binaural
audio containing multiple frames. Consequently, our method
improves the performance of the directional decisions, and it
also works for many sound activities localization task. In the
future, we will try to apply it to the realistic robotic systems.
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TABLE I
THE MEAN LOCALIZATION ERROR(VARIANCE) IN DEGREE OF THE FOUR COMPARED METHODS FOR DIFFERENT INSTRUMENTAL SOUND ACTIVITIES.

Sound index Our method (σ2) Joint ITD ILD (σ2) Hierarchical system (σ2) Matching filter (σ2)
D. Bass (arco) 289 10.93(32.89) 11.34(33.01) 11.48(42.77) 9.83(22.43)
D. Bass (pizz) 300 15.20(48.30) 15.24(52.58) 15.30(65.94) 15.23(49.54)

Bassoon 121 3.10(1.93) 3.24(2.01) 4.43(5.90) 3.28(2.59)
Cello (arco) 347 4.20(5.32) 4.23(6.00) 5.24(7.99) 4.34(5.90)
Cello (pizz) 330 4.92(8.50) 5.15(9.24) 6.17(14.87) 5.08(9.18)
Eb Clarinet 119 3.78(5.34) 4.74(6.84) 6.76(12.64) 4.10(5.92)
Bb Clarinet 139 5.10(7.12) 5.11(7.90) 6.95(12.67) 5.89(8.94)
Alto Flute 99 3.78(3.84) 4.29(4.48) 5.86(8.63) 4.19(4.21)

Flute 227 4.11(6.35) 4.57(6.67) 6.23(10.61) 4.75(6.82)
Bass Flute 102 3.79(2.67) 4.40(5.51) 5.81(9.76) 4.08(3.32)

Horn 96 2.89(1.99) 3.25(2.07) 4.43(6.44) 3.04(2.00)
Oboe 104 4.88(5.92) 5.13(6.68) 6.50(8.72) 4.89(6.05)
Piano 260 4.17(7.19) 4.58(7.76) 5.14(8.23) 4.23(7.65)

Soprano Sax 129 3.25(4.16) 4.33(4.36) 6.29(9.59) 3.97(4.29)
Alto Sax 192 2.93(3.22) 3.85(3.74) 5.86(11.70) 3.14(3.46)

Bass Trombone 131 2.87(1.03) 3.35(1.85) 4.04(3.89) 2.94(1.57)
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