
An improved wav2vec 2.0 pre-training approach using enhanced local
dependency modeling for speech recognition

Qiu-shi Zhu1, Jie Zhang1, Ming-hui Wu2, Xin Fang1,2, Li-rong Dai1

1NEL-SLIP, University of Science and Technology of China (USTC), Hefei, China
2iFlytek Research, iFlytek Co., Ltd., Hefei, China

qszhu@mail.ustc.edu.cn, {mhwu,xinfang}@iflytek.com, {jzhang6,lrdai}@ustc.edu.cn

Abstract
Wav2vec 2.0 is a recently proposed self-supervised pre-training
framework for learning speech representation. It utilizes a trans-
former to learn global contextual representation, which is ef-
fective especially in low-resource scenarios. Besides, it was
shown that combining convolution neural network and trans-
former to model both local and global dependencies is benefi-
cial for e.g., automatic speech recognition (ASR), natural lan-
guage processing (NLP). However, how to model the local and
global dependence in pre-training models is still an open ques-
tion in the speech domain. In this paper, we therefore propose a
new transformer encoder for enhancing the local dependency by
combining convolution and self-attention modules. The trans-
former encoder first parallels the convolution and self-attention
modules, and then serialized with another convolution module,
sandwiched by a pair of feed forward modules. Experimen-
tal results show that the pre-trained model using the proposed
method can reduce the word error rate (WER) compared to the
reproduced wav2vec 2.0 at the cost of slightly increasing the
size of training parameters.
Index Terms: Speech recognition, pre-training, wav2vec 2.0,
transformer, low-resource, local and global dependence.

1. Introduction
There are nearly 7000 languages in the world [1], while current-
ly only a few of them (e.g., English, Chinese) have sufficient
annotation data, and most of them are scarce in data resource,
i.e., low resource. For the automatic speech recognition (ASR)
of these low-resource languages, it is thus difficult to directly
train models with an acceptable performance due to the lack of
data resource. The unsupervised or self-supervised pre-training
can be leveraged to solve this problem. Unsupervised or self-
supervised objects are particularly attractive for learning repre-
sentations, because they can take advantage of unlabeled data,
which is much cheaper and scalable compared to the datasets
that require annotation.

It was shown in [2] that the unsupervised representation
learning is effective in case the labeled data is scarce. In order
to make high-level speech information more accessible, speech
representation learning [3–8] is dedicated to modeling a trans-
formation from the surface features, e.g., waveforms, spectro-
grams, to downstream tasks. Through feature-based speech rep-
resentation extraction or fine-tuning as a part of the downstream
model, the learned model can then be applied to the subsequen-
t ASR. Recently, many unsupervised learning approaches have

This work is supported by the Fundamental Research Funds for
the Central Universities (WK2100000016), National Key R&D Pro-
gram of China (2017YFB1002202) and the Leading Plan of CAS (XD-
C08010200).

been proposed for speech representation. For example, an au-
toregressive predictive coding (APC) method was proposed to
reconstruct the future frames conditioned on the past frames [5].
The deep contextualized acoustic representation can be learned
using the features that are constructed from the masked input
speech frames [9–13]. The contrastive predictive coding (CPC)
[2] and wav2vec [6] extracts the representation from data by uti-
lizing the next step prediction and performs different ASR tasks.
It was shown in [14, 15] that bi-directional and modified CPC
transfers well across domains and languages. The vq-wav2vec
approach discretizes the input speech to a quantized latent s-
pace [7]. The wav2vec 2.0 model masks the input speech in the
latent space and solves a contrastive task defined over a quanti-
zation of the latent representations [8].

Among various speech representation learning framework-
s, wav2vec 2.0 obtains the best performance [8], e.g., by only
using 10 minutes of transcribed speech, it achieves a word er-
ror rate (WER) of 5.7/10.1 on the clean/noisy test sets of Lib-
riSpeech [16]. In [17], it was further extended to a multilin-
gual setting and the phoneme error rate can also be reduced
significantly. However, the wav2vec 2.0 model is based on a
transformer [18], which is effective for modeling the long-term
global context, but less capable of extracting fine-grained lo-
cal feature patterns [19]. As acoustic events often happen in
the short-term sense, both long-term global context and fine-
grained local dependency are necessary. For this, in [20] a con-
textNet method was proposed, which uses the convolution and
squeeze-and-excitation modules [21] to capture the long-term
context. In [19], a conformer was proposed by combining the
convolution and transformer to model both local and global de-
pendencies of speech sequences, and can thus improve the ASR
performance. The lite transformer splits the input into a self-
attention module and a convolution module, and concatenates
the corresponding outputs [22]. Indeed, the convolution cap-
tures the local context and the attention reveals the global con-
text, respectively. It was shown that the lite transformer can
obtain a performance gain for machine translation in mobile
applications [22]. Furthermore, the convBERT model [23] is
based on the use of a span-based dynamic convolution, which is
involved to replace redundant self-attention heads and directly
model local dependencies in the BERT [24] model. Compared
to BERT, convBERT can thus improve the performance in nat-
ural language processing (NLP) tasks, and more importantly re-
quires less pre-training computations.

In general, there are two methods that can enhance the local
dependency modeling in the transformer model: 1) convolution-
augmented transformer [19], where the self-attention layer is
followed by a convolutional layer, sandwiched between a pair of
feed forward modules; and 2) local attention-augmented trans-
former [22], where the self-attention and convolutional layers

Copyright © 2021 ISCA

INTERSPEECH 2021

30 August – 3 September, 2021, Brno, Czechia

http://dx.doi.org/10.21437/Interspeech.2021-674334

Transformer

Masked

CNN

q q q q q

L Contrastive loss

Raw wavform X

Latent speech

representations Z

Quantized

representations Q

Context

representations C

Figure 1: An illustration of the wav2vec 2.0 model.

are in parallel. Due to the fact that convolution captures the
local context and attention reflects the global context to some
extent, it was shown that enhancing local dependency enables a
performance gain for many tasks beyond speech, which, how-
ever, is still an open research topic in the context of ASR.

In this work, we therefore investigate whether enhancing
local dependency modeling can improve the pre-training ef-
ficiency and the transfer performance of wav2vec 2.0. We
pre-train ASR models on the unlabeled 960h LibriSpeech da-
ta and follow the Libri-light [25] limited resource supervised
training sets of 100/10/1 hours. For the local dependency en-
hancement, we propose four encoders: 1) conformer encoder
(similar to the conformer in [19]); 2) transformer encoder 1
(similar to the lite transformer in [22]); 3) two combination-
s of the convolution-augmented and local attention-augmented
transformers (i.e., transformer encoder 2 and transformer en-
coder 3). By increasing the local dependency, the average WER
is decreased by 16.1% relatively on the standard LibriSpeech
test set compared to the reproduced wav2vec 2.0 model at the
cost of adding 5M parameters. In addition, the pre-training
phase converges faster and the pre-trained models can be more
easily transferred to the subsequent ASR task with fewer fine-
tune epochs. For example, the proposed model only requires
200 epochs to reach the best performance of wav2vec 2.0.

2. Methodology
2.1. Wav2vec 2.0

In order to guide the reader, we briefly review the wav2vec 2.0
model in this section, which is shown in Figure 1, consisting of
a CNN-based feature encoder f : X 7→ Z and a transformer
encoder g : Z 7→ C. Specifically, the feature encoder down-
samples the input raw waveform X to the latent speech repre-
sentation Z. The transformer encoder then models the contex-
tualized representation C and captures high-level content from
the input Z. The output of the feature encoder is discretized to
qt with a quantization module Z 7→ Q as targets in the con-
trastive objective. The quantization module first maps the latent
speech representation Z to logits l ∈ RG×V , given G code-
books with V entries. The Gumbel Softmax operation [26] is
then used to select discrete codebook entries in a fully differen-
tiable way. As a result, for a given frame Zt, we can select one
entry from each codebook and concatenate the resulting vectors
e1, ..., eG and apply a linear transformation to obtain qt. The
loss function can therefore be given by

L = Lm + αLd + βLf , (1)

where

Lm = − log
exp(sim(ct,qt)/κ)∑

q̃∼Qt
exp(sim(ct, q̃)/κ)

, (2)

Ld =
1

GV

G∑
g=1

V∑
v=1

pg,v log pg,v, (3)

pg,v =
exp(lg,v + nv)/τ∑V
k=1 exp(lg,k + nk)/τ

. (4)

It is clear that the total loss function is the weighted summa-
tion over three terms depending on the parameters α and β. In
(2), Lm is the contrastive loss, which enables the model distin-
guishable between the true quantized latent speech representa-
tion qt and a set of K + 1 quantized candidate representations
q̃ ∈ Qt. The quantized candidate representation q̃ contains qt

and K distractors, and the latter are uniformly sampled from
other masked time steps of the same utterance. In (1), the di-
versity loss Ld aims to increase the use of quantized codebook
representation, and Lf is an `2 penalty over the outputs of the
feature encoder. In (2), sim stands for the cosine similarity be-
tween two vectors and κ is a temperature. In (3), pg,v represents
the probability of choosing the v-th codebook entry for group g
across a batch of utterances, where τ is a temperature. In (4),
lg,v stands for the average logits l across utterances in a batch.
For more details on the wav2vec 2.0 model, we refer to [8].

2.2. The proposed enhanced local dependency encoder

Based on the relationship between the convolution module and
the self-attention module, we propose four local dependency en-
coders in this section, including the conformer encoder, trans-
former encoder 1, transformer encoder 2, and transformer en-
coder 3, which are shown in Figure 2. The differences among
these encoders are marked with black dashed blocks in the fig-
ure. The conformer encoder cascades the self-attention module
and the convolutional module, sandwiched by a pair of half-step
feed forward modules. The two feed forward modules are inde-
pendent in the original conformer [19]. Slightly different from
that, in order to compare with wav2vec 2.0, the parameters in
two feed forward modules are shared in the proposed encoders,
i.e., without additional parameters. The proposed transformer
encoder 1 parallels the self-attention module and the convolu-
tion module. The left and right branches capture local and glob-
al contexts, respectively, and their outputs are simply summed.
This is different from the lite transformer in [22], where instead
of feeding the whole input to both branches, it is split into two
parts along the channel dimension, which will be mixed by the
following feed forward module.

In order to further enhance the local dependency model-
ing, in transformer encoder 2, the convolution module and self-
attention module are first paralleled, and the corresponding out-
puts are summed and then input to another convolution module.
In transformer encoder 3, the self-attention module is followed
by a convolution module, and then paralleled with another con-
volution module. Note that in the proposed transformer en-
coders 2 and 3, two convolution modules are independent with
different parameters. For all encoders, the convolution module
follow the structure as in [19]. The convolution module contain-
s a pointwise convolution and a gated linear (GLU), followed
by a 1-dimensional (1-D) depthwise convolution layer, which is
followed by a batchnorm and then a swish activation layer. In
the proposed transformer encoders 2 and 3, since there are two
convolution modules, in order to keep the amount of the mod-

4335

Figure 2: The proposed enhanced local dependency encoders with different combinations of the self-attention and convolution modules.

el parameters unchanged, the dimension of the 1-D depthwise
convolution layer in the convolution module is halved.

3. Experimental Setup
3.1. Data

In this work, all experiments are conducted on the LibriSpeech
corpus without transcriptions containing 100 hours (LS-100)
or 960 hours (LS-960) audio as unlabeled data. In detail, LS-
100 contains train-clean-100 subset, and LS-960 contains train-
clean-100, train-clean-360 and train-other-500 subsets. The
labeled data contains train-clean-100, train-10h (10 hours la-
beled), train-1h (1 hour labeled) subsets from LibriSpeech and
Libri-light corpora. In case of using LS-100 speech data as un-
labeled data for pre-training, we fine-tune on 10 hours of la-
beled data to compare the performance under different struc-
tures. In case of using LS-960 speech data as unlabeled data for
pre-training, we fine-tune on 1 hour, 10 hours, and 100 hours
of labeled data, respectively, and the results are compared with
wav2vec 2.0 on the standard LibriSpeech dev-clean/other and
test-clean/other sets.

3.2. Pre-training

In this work, the ASR models are implemented using the fairseq
toolkit [27]. The feature encoder contains seven blocks, where
each block has 512 temporal convolution channels with strides
(5,2,2,2,2,2,2) and kernel widths (10,3,3,3,3,3,2,2). Thus, the
interval between two sequential samples in the feature encoder
output Z is around 20 ms and the receptive audio field is 25 ms.

The models contain 12 transformer encoder blocks with a
dimension of 512, a feed forward module with a dimension of
2048 and 8 attention heads when pre-training on LS-100. In
case of pre-training on LS-960, the model dimension is 768, the
dimension of the feed forward module is 3072, and 8 attention
heads are exploited. The depthwise convolution kernel size of
the convolution module is 32, and the depthwise convolution
dimension is set to be 256. The size of total parameters of the
convolution module are 5M. For masking, we sample at a prob-
ability of p = 0.065 at all time steps and mask the subsequent
M = 10 time steps. The pre-training process is optimized with
Adam [28]. During the first 8% of the updates, the learning rate
warms up to 5 × 10−4 and then decays linearly. We set G = 2

and V = 320 for the quantization module and each entry with a
size of 128. The temperature κ is set to be 0.1 and τ is annealed
from 2 to 0.5 by a factor of 0.999995 over iterations. For the
contrastive loss, α and β are set to be 0.1 and 10, respectively.
We useK = 100 distractors and the total number of pre-training
updates is 400k, which keeps the same for wav2vec 2.0.

3.3. Fine-tuning

After pre-training, we add a randomly initialized linear projec-
tion layer on the top of the transformer encoder and then fine-
tune the learned representation on the labeled data. The repre-
sentation is classfied into 30 categories, which contain 29 char-
acter tokens and a word boundary token. The models are opti-
mized by minimizing a CTC loss [29]. We utilize three random
seeds to fine-tune the pre-trained models on all subsets without
any language models, and calculate the average WER.

For the original wav2vec 2.0, the feature encoder is not
trained during fine-tuning. Only the output classification layer
is trained during the first 10k updates, and then the transformer
encoder is updated. Slightly different from that, we only fix the
feature encoder when fine-tuning, and the transformer encoder
and randomly initialized layers are trained altogether. Other
configurations keep the same as in [8].

4. Results
4.1. Pre-training on the 100 hours unlabeled data

As the pre-training of wav2vec 2.0 is very time-consuming, we
perform pre-training on the 100 hours unlabeled data and fine-
tune on the 10 hours labeled data. The results of the considered
enhanced local dependency encoders are presented in Table 1.
The conformer encoder and transformer encoder 1 obtain a sim-
ilar performance, and achieve a performance improvement com-
pared to the baseline. Compared to the conformer encoder, the
proposed transformer encoders 2 and 3 can further improve the
performance, and the transformer encoder 2 obtains the best.
For comparison brevity, we will omit the proposed transformer
encoders 1 and 3 in the sequel.

4.2. Pre-training on the 960 hours unlabeled data

In order to observe the effect of the data amount on the pre-
training performance, we further pre-train on the 960 hours un-

Layernorm

Feed Forward Module

Convolution Module

Multi-Head Self-Attention

Module

Feed Forward Module

0.5 × Layernorm

Feed Forward Module

Convolution Module
Multi-Head Self Attention

Module

Feed Forward Module

Convolution Module Convolution Module

Layernorm

Feed Forward Module

Convolution Module

Multi-Head Self-Attention

Module

Feed Forward Module

Layernorm

Feed Forward Module

Convolution Module

Multi-Head Self-Attention

Module

Feed Forward Module

conformer encoder transformer encoder 1 transformer encoder 2 transformer encoder 3

0.5 ×

0.5 ×

0.5 × 0.5 ×

0.5 × 0.5 ×

0.5 ×

4336

Table 1: The WERs using the LibriSpeech test-clean/test-other
sets with pre-training on the 100 hours unlabeled data and fine-
tuning on the 10 hours labeled data.

model model size test

clean other

10h labeled
baseline 45M 20.4 37.9

conformer encoder 50M 19.3 36.3
transformer encoder 1 50M 19.2 36.2
transformer encoder 2 50M 17.0 33.4
transformer encoder 3 50M 17.8 34.5

Table 2: The WERs using the LibriSpeech test/dev sets with pre-
training on the 960 hours unlabeled data and fine-tuning on
different labeled dataset.

model model size test dev

clean other clean other

1h labeled
wav2vec 2.0 [8] 95M 24.5 29.7 24.1 29.6

baseline (reproduced) 95M 19.3 26.6 18.9 26.2
conformer encoder 100M 18.7 24.0 17.4 23.4

transformer encoder 2 100M 16.7 22.2 16.5 22.0

10h labeled
wav2vec 2.0 [8] 95M 11.1 17.6 10.9 17.4

baseline (reproduced) 95M 9.9 17.6 9.8 17.4
conformer encoder 100M 9.0 15.5 8.9 15.3

transformer encoder 2 100M 8.4 14.6 8.4 14.4

100h labeled
wav2vec 2.0 [8] 95M 6.1 13.3 6.1 13.5

baseline (reproduced) 95M 5.6 13.0 5.5 13.5
conformer encoder 100M 5.0 11.4 4.9 11.7

transformer encoder 2 100M 4.7 10.5 4.6 10.7

labeled data. The WERs of the baseline, conformer encoder,
and the proposed transformer encoder 2 are shown in Table 2.
The baseline model is reproduced following the configuration in
the original wav2vec 2.0 model. From Table 2, we find that the
conformer encoder (the transformer encoder 2) obtain a perfor-
mance improvement of around 10% (16%) relatively compared
to the baseline. This implies that enhancing local dependency
in wav2vec 2.0 can improve the ASR performance. It is worth
noting that for the reproduction of wav2vec 2.0, we fine-tune on
the labeled data, and the transformer encoder and the randomly
initialized output layer are jointly trained, which improves the
performance of the original wav2vec 2.0 model as shown in [8].

As the pre-trained model is obtained every 100 epochs and
then fine-tuned on the 100 hours labeled data, we further show
the WER in terms of pre-training epochs in Figure 3. Clearly,
the models using the enhanced local dependency encoders (e.g.,
conformer encoder, transformer encoder 2) converge faster than
the baseline at the pre-training stage, and can achieve the op-
timal performance of wav2vec 2.0 after 200 epochs. This re-
veals that enhancing the local dependency can improve the pre-
training efficiency without sacrificing the ASR accuracy.

In order to quantify the capability of being transferred to
downstream ASR tasks for the pre-trained models with en-
hanced local dependency, we utilize the conicity metric pro-
posed in [30] to analyze the divergence in the learned repre-
sentations of different time frames. To do so, we first cal-
culate the alignment to mean (ATM) for each vector vi con-

100 200 300 400 500
epoch

5.0
5.5
6.0
6.5
7.0
7.5
8.0

W
ER

(%
)

baseline
conformer encoder
transformer encoder 2

100 200 300 400 500
epoch

11
12
13
14
15
16
17
18
19

W
ER

(%
)

baseline
conformer encoder
transformer encoder 2

Figure 3: The WERs obtained using the test-clean set (top) and
the test-other set (bottom) in terms of epochs.

Table 3: The average conicity in the LibriSpeech dev-clean set.

model dev-clean conicity

before fine-tuning after fine-tuning

baseline (reproduced) 0.9052 0.5418
conformer encoder 0.6594 0.5063

transformer encoder 2 0.6921 0.5313

tained in the vector set V = {v1, ...,vm} as ATM(vi,V) =
cos(vi,

1
m

∑m
i=1 vj). Then, we calculate the mean of the

ATMs for vi ∈ V as conicity, i.e., conicity(V) =
1
m

∑m
i=1 ATM(vi,V). It is clear that the higher the conici-

ty, the more closely the vectors in V are aligned with respect
to the mean. Table 3 shows the average conicity of the pre-
trained models using the Librispeech dev-clean set before and
after fine-tuning. We can see that the representation learned by
the enhanced local dependency encoders (conformer encoder,
transformer encoder 2) have a much lower conicity before fine-
tuning compared to the baseline, indicating that the proposed
enhanced local dependency encoders can capture more fine-
grained information. Due to the fact that the fine-grained in-
formation helps models quickly capture the ASR-related infor-
mation, we can therefore conclude that the pre-trained model-
s using the proposed enhanced local dependency encoders are
more effective to be transferred to downstream ASR tasks.

5. Conclusions
In this paper, we investigated whether enhancing local depen-
dency can improve the pre-training efficiency and the transfer
capability of wav2vec 2.0. For this, we proposed four enhanced
local dependency encoders, which depends on the combination
of the convolution and self-attention modules. It was shown that
the proposed transformer encoder 2, which parallelizes a convo-
lution module and a self-attention mudule followed by another
convolution module, achieves the best performance among d-
ifferent combinations. The proposed method can improve the
pre-training efficiency and transfer performance of wav2vec 2.0
at the cost of adding a few more parameters. In addition, it was
shown that the proposed pre-trained models can be more effec-
tively transferred to downstream ASR tasks.

4337

6. References
[1] M. P. Lewis, G. F. Simon, and C. D. Fennig, “Ethnologue: lan-

guages of the world, nineteenth edition,” http://www. ethnologue.
com/, 2016.

[2] A. van den Oord, Y. Li, and O. Vinyals, “Representation learn-
ing with contrastive predictive coding,” arXiv preprint arX-
iv:1807.03748, 2018.

[3] J. Chorowski, R. J. Weiss, S. Bengio, and A. van den Oord,
“Unsupervised speech representation learning using wavenet au-
toencoders,” IEEE/ACM Tran. Audio, Speech, Language Process.,
vol. 27, no. 12, pp. 2041–2053, 2019.

[4] Y.-A. Chung and J. Glass, “Speech2vec: A sequence-to-sequence
framework for learning word embeddings from speech,” in Proc.
Interspeech, 2018, pp. 811–815.

[5] Y.-A. Chung, W.-N. Hsu, H. Tang, and J. Glass, “An unsupervised
autoregressive model for speech representation learning,” in Proc.
Interspeech, 2019, pp. 146–150.

[6] S. Schneider, A. Baevski, R. Collobert, and M. Auli, “Wav2vec:
unsupervised pre-training for speech recognition,” in Proc. Inter-
speech, 2019, pp. 3465–3469.

[7] A. Baevski, S. Schneider, and M. Auli, “vq-wav2vec: Self-
supervised learning of discrete speech representations,” arXiv
preprint arXiv:1910.05453, 2019.

[8] A. Baevski, Y. Zhou, A. Mohamed, and M. Auli, “Wav2vec 2.0:
A framework for self-supervised learning of speech representa-
tions,” in Advances in Neural Information Processing Systems,
vol. 33. Curran Associates, Inc., 2020, pp. 12 449–12 460.

[9] A. T. Liu, S.-W. Yang, P.-H. Chi, P.-C. Hsu, and H.-Y. Lee,
“Mockingjay: Unsupervised speech representation learning with
deep bidirectional transformer encoders,” in Proc. IEEE Int. Con-
f. Acoustics, Speech and Signal Processing (ICASSP), 2020, pp.
6419–6423.

[10] S. Ling, Y. Liu, J. Salazar, and K. Kirchhoff, “Deep contextualized
acoustic representations for semi-supervised speech recognition,”
in Proc. IEEE Int. Conf. Acoustics, Speech and Signal Processing
(ICASSP), 2020, pp. 6429–6433.

[11] A. T. Liu, S.-W. Li, and H.-y. Lee, “Tera: Self-supervised learning
of transformer encoder representation for speech,” arXiv preprint
arXiv:2007.06028, 2020.

[12] W. Wang, Q. Tang, and K. Livescu, “Unsupervised pre-training
of bidirectional speech encoders via masked reconstruction,” in
Proc. IEEE Int. Conf. Acoustics, Speech and Signal Processing
(ICASSP), 2020, pp. 6889–6893.

[13] D. Jiang, X. Lei, W. Li, N. Luo, Y. Hu, W. Zou, and X. Li, “Im-
proving transformer-based speech recognition using unsupervised
pre-training,” arXiv preprint arXiv:1910.09932, 2019.

[14] K. Kawakami, L. Wang, C. Dyer, P. Blunsom, and A. van den O-
ord, “Learning robust and multilingual speech representations,” in
Proc. Int. Conf. Empirical Methods in Natural Language Process-
ing: Findings, 2020, pp. 1182–1192.

[15] M. Rivière, A. Joulin, P.-E. Mazaré, and E. Dupoux, “Unsuper-
vised pretraining transfers well across languages,” in Proc. IEEE
Int. Conf. Acoustics, Speech and Signal Processing (ICASSP),
2020, pp. 7414–7418.

[16] V. Panayotov, G. Chen, D. Povey, and S. Khudanpur, “Lib-
rispeech: an asr corpus based on public domain audio books,”
in Proc. IEEE Int. Conf. Acoustics, Speech and Signal Processing
(ICASSP), 2015, pp. 5206–5210.

[17] A. Conneau, A. Baevski, R. Collobert, A. Mohamed, and M. Auli,
“Unsupervised cross-lingual representation learning for speech
recognition,” arXiv preprint arXiv:2006.13979, 2020.

[18] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, L. Kaiser, and I. Polosukhin, “Attention is all you need,”
arXiv preprint arXiv:1706.03762, 2017.

[19] A. Gulati, J. Qin, C.-C. Chiu, N. Parmar, Y. Zhang, J. Yu,
W. Han, S. Wang, Z. Zhang, Y. Wu, and R. Pang, “Conformer:
convolution-augmented transformer for speech recognition,” in
Proc. Interspeech, 2020, pp. 5036–5040.

[20] W. Han, Z. Zhang, Y. Zhang, J. Yu, C.-C. Chiu, J. Qin, A. Gulati,
R. Pang, and Y. Wu, “ContextNet: improving convolutional neural
networks for automatic speech recognition with global context,”
in Proc. Interspeech, 2020, pp. 3610–3614.

[21] J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,”
in Proc. IEEE Conf. Computer Vision and Pattern Recognition
(CVPR), 2018, pp. 7132–7141.

[22] Z. Wu, Z. Liu, J. Lin, Y. Lin, and S. Han, “Lite transformer with
long-short range attention,” arXiv preprint arXiv:2004.11886,
2020.

[23] Z. Jiang, W. Yu, D. Zhou, Y. Chen, J. Feng, and S. Yan, “Con-
vbert: Improving bert with span-based dynamic convolution,”
arXiv preprint arXiv:2008.02496, 2020.

[24] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-
training of deep bidirectional transformers for language under-
standing,” arXiv preprint arXiv:1810.04805, 2018.

[25] J. Kahn, M. Rivière, W. Zheng, E. Kharitonov, Q. Xu, P.-E.
Mazaré, J. Karadayi, V. Liptchinsky, R. Collobert, C. Fuegen
et al., “Libri-light: A benchmark for asr with limited or no su-
pervision,” in Proc. IEEE Int. Conf. Acoustics, Speech and Signal
Processing (ICASSP), 2020, pp. 7669–7673.

[26] E. Jang, S. Gu, and B. Poole, “Categorical reparameterization
with gumbel-softmax,” arXiv preprint arXiv:1611.01144, 2016.

[27] M. Ott, S. Edunov, A. Baevski, A. Fan, S. Gross, N. Ng, D. Grang-
ier, and M. Auli, “Fairseq: A fast, extensible toolkit for sequence
modeling,” in Proc. Conf. the North American Chapter of the As-
sociation for Computational Linguistics (Demonstrations), 2019,
pp. 48–53.

[28] D. P. Kingma and J. Ba, “Adam: A method for stochastic opti-
mization,” arXiv preprint arXiv:1412.6980, 2014.

[29] A. Graves, S. Fernández, F. Gomez, and J. Schmidhuber, “Con-
nectionist temporal classification: labelling unsegmented se-
quence data with recurrent neural networks,” in Proc. Int. Conf.
Machine Learning (ICML), 2006, pp. 369–376.

[30] A. Sharma, P. Talukdar et al., “Towards understanding the geom-
etry of knowledge graph embeddings,” in Proc. the 56th Annual
Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), 2018, pp. 122–131.

4338

