PHYS5251P: Exercise 1, Spring 2024, USTC 'Introduction to Quantum Information'

Nuo-Ya Yang, Jun-Hao Wei and Kai Chen
Hefei National Research Center for Physical Sciences at the Microscale and School of Physical Sciences, Hefei 230026, China

1. Express each of the Pauli operators in the outer product notation with respect to the $\{|0\rangle,|1\rangle\}$ basis. Write down the commutation relations and anti-commutation relations for the Pauli operators.
2. Let \vec{v} be any real, three-dimensional unit vector and θ be a real number. Prove that

$$
\exp (\mathrm{i} \theta \vec{v} \cdot \vec{\sigma})=\cos (\theta) I+\mathrm{i} \sin (\theta) \vec{v} \cdot \vec{\sigma}
$$

where $\vec{v} \cdot \vec{\sigma}=\sum_{i=1}^{3} v_{i} \sigma_{i}$ and σ_{i} are Pauli matrices.
3. Prove that for any 2 -dimension linear operator A,

$$
A=\frac{1}{2} \operatorname{Tr}(A) I+\frac{1}{2} \sum_{k=1}^{3} \operatorname{Tr}\left(A \sigma_{k}\right) \sigma_{k},
$$

in which σ_{k} are Pauli matrices.
4. Prove that an operator ρ is the density operator associated to some ensemble $\left\{p_{i},\left|\psi_{i}\right\rangle\right\}$ if and only if it satisfies the conditions:
(1). (Trace condition) ρ has trace equal to one,
(2). (Positive condition) ρ is a positive operator.
5. Consider an experiment in which we prepare the state $|0\rangle$ with the probability $\left|C_{0}\right|^{2}$, and the state $|1\rangle$ with the probability $\left|C_{1}\right|^{2}$. How to describe this type of quantum state? Compare the differences and similarities between it with the state $C_{0}|0\rangle+C_{1} e^{i \theta}|1\rangle$.
6. Let ρ be a density operator.
(1). Show that ρ can be written as

$$
\rho=\frac{I+\boldsymbol{r} \cdot \boldsymbol{\sigma}}{2}
$$

where \boldsymbol{r} is a real three-dimensional vector and $\|\boldsymbol{r}\| \leq 1$.
(2). Show that $\operatorname{Tr}\left(\rho^{2}\right) \leq 1$, with equality if and only if ρ is a pure state.
(3). Show that a state ρ is a pure state if and only if $\|\boldsymbol{r}\|=1$.
7. Suppose a 2-qubit pure state is of the form $|\Phi\rangle=\sum_{i j} a_{i j}|i\rangle|j\rangle$. By defining $A_{i j}=a_{i j}$ where $A_{i j}$ are elements of a matrix A, calculate the reduced density matrices ρ_{A} and ρ_{B}.
8. Suppose a 2-qubit pure state is of the form $|\Phi\rangle_{A B}=\frac{1}{\sqrt{2}}|0\rangle\left(\frac{1}{2}|0\rangle+\frac{\sqrt{3}}{2}|1\rangle\right)+$ $\frac{1}{\sqrt{2}}|1\rangle\left(\frac{\sqrt{3}}{2}|0\rangle+\frac{1}{2}|1\rangle\right)$.
(1). Calculate the reduced density matrices ρ_{A} and ρ_{B}.
(2). Perform Schmidt decomposition of $|\Phi\rangle_{A B}$.
9. Suppose $|\psi\rangle$ and $|\phi\rangle$ are two pure states of a composite quantum system $A B$, with identical Schmidt coefficients. Show that there are unitary transformations U on system A and V on system B such that $|\psi\rangle=(U \otimes V)|\phi\rangle$.
10. Suppose $\left\{\left|\psi_{i}\right\rangle\right\},\left\{\left|\tilde{\psi}_{i}\right\rangle\right\}$ are two sets of normalized states in space H and they satisfy the conditions that $\left\langle\psi_{i} \mid \psi_{j}\right\rangle=\left\langle\tilde{\psi}_{i} \mid \tilde{\psi}_{j}\right\rangle$ for $\forall i, j$, prove that there exist a transformation U, such that $U\left|\psi_{i}\right\rangle=\left|\tilde{\psi}_{i}\right\rangle$, and construct the transformation U.
11. Suppose $A B C$ is a three component quantum system. Show by example that there are pure quantum states ψ of such systems which can not be written in the form

$$
|\psi\rangle=\sum_{i} \lambda_{i}\left|i_{A}\right\rangle\left|i_{B}\right\rangle\left|i_{C}\right\rangle
$$

where λ_{i} are real numbers, and $\left|i_{A}\right\rangle,\left|i_{B}\right\rangle,\left|i_{C}\right\rangle$ are orthonormal bases of the respective systems.
12. A symmetrical informationally-complete POVM (also known as a SIC POVM) on \mathbb{C}^{d} is a set of d^{2} rank- 1 projections

$$
\left\{\left|\psi_{1}\right\rangle\left\langle\psi_{1}\right|, \ldots,\left|\psi_{d^{2}}\right\rangle\left\langle\psi_{d^{2}}\right|\right\} \subset \operatorname{Proj}\left(\mathbb{C}^{d}\right)
$$

such that

$$
\left|\left\langle\psi_{i} \mid \psi_{j}\right\rangle\right|^{2}=\frac{d \delta_{i j}+1}{d+1}
$$

for any $i, j \in\left\{1, \ldots, d^{2}\right\}$. Construct a SIC POVM on \mathbb{C}^{2}. (Consider the vertices of a regular tetrahedron in the Bloch sphere.)

