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1. Express each of the Pauli operators in the outer product notation with respect to

the {|0⟩ , |1⟩} basis. Write down the commutation relations and anti-commutation

relations for the Pauli operators.

2. Let v⃗ be any real, three-dimensional unit vector and θ be a real number. Prove that

exp(iθv⃗ · σ⃗) = cos(θ)I + i sin(θ)v⃗ · σ⃗,

where v⃗ · σ⃗ =
∑3

i=1 viσi and σi are Pauli matrices.

3. Prove that for any 2-dimension linear operator A,

A =
1

2
Tr(A)I +

1

2

3∑
k=1

Tr(Aσk)σk,

in which σk are Pauli matrices.

4. Prove that an operator ρ is the density operator associated to some ensemble

{pi, |ψi⟩} if and only if it satisfies the conditions:

(1). (Trace condition) ρ has trace equal to one,

(2). (Positive condition) ρ is a positive operator.

5. Consider an experiment in which we prepare the state |0⟩ with the probability

|C0|2,and the state |1⟩ with the probability |C1|2. How to describe this type of

quantum state? Compare the differences and similarities between it with the state

C0 |0⟩+ C1e
iθ |1⟩.
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6. Let ρ be a density operator.

(1). Show that ρ can be written as

ρ =
I + r · σ

2

where r is a real three-dimensional vector and ||r|| ≤ 1.

(2). Show that Tr(ρ2) ≤ 1, with equality if and only if ρ is a pure state.

(3). Show that a state ρ is a pure state if and only if ||r|| = 1.

7. Suppose a 2-qubit pure state is of the form |Φ⟩ =
∑

ij aij |i⟩ |j⟩. By defining Aij = aij

where Aij are elements of a matrix A, calculate the reduced density matrices ρA and

ρB.

8. Suppose a 2-qubit pure state is of the form |Φ⟩AB = 1√
2
|0⟩ (12 |0⟩ +

√
3
2 |1⟩) +

1√
2
|1⟩ (

√
3
2 |0⟩+ 1

2 |1⟩).

(1). Calculate the reduced density matrices ρA and ρB.

(2). Perform Schmidt decomposition of |Φ⟩AB.

9. Suppose |ψ⟩ and |ϕ⟩ are two pure states of a composite quantum system AB, with

identical Schmidt coefficients. Show that there are unitary transformations U on

system A and V on system B such that |ψ⟩ = (U ⊗ V ) |ϕ⟩.

10. Suppose {|ψi⟩}, {|ψ̃i⟩} are two sets of normalized states in space H and they satisfy

the conditions that ⟨ψi|ψj⟩ = ⟨ψ̃i|ψ̃j⟩ for ∀i, j, prove that there exist a transformation

U , such that U |ψi⟩ = |ψ̃i⟩, and construct the transformation U .

11. Suppose ABC is a three component quantum system. Show by example that there

are pure quantum states ψ of such systems which can not be written in the form

|ψ⟩ =
∑
i

λi |iA⟩ |iB⟩ |iC⟩

where λi are real numbers, and |iA⟩ , |iB⟩ , |iC⟩ are orthonormal bases of the respective

systems.
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12. A symmetrical informationally-complete POVM (also known as a SIC POVM) on

Cd is a set of d2 rank-1 projections

{|ψ1⟩⟨ψ1|, . . . , |ψd2⟩⟨ψd2|} ⊂ Proj(Cd)

such that

|⟨ψi|ψj⟩|2 =
dδij + 1

d+ 1

for any i, j ∈ {1, . . . , d2}. Construct a SIC POVM on C2. (Consider the vertices of

a regular tetrahedron in the Bloch sphere.)


