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1. (1) What conditions should a good entanglement measures meet?

(2) Describe the definition of distillable entanglement and entanglement cost
and their relationship.

(3) Write down the monogamy of entanglement and describe its physical mean-
ings.

2. (1) Calculate the amount of entanglement of the state ρ = λ |ϕ+⟩ ⟨ϕ+| + (1 −

λ) |ψ+⟩ ⟨ψ+| , (0 ≤ λ ≤ 1) with negativity measure, where |ϕ+⟩ = 1√
2
(|00⟩ +

|11⟩ , |ψ+⟩ = 1√
2
(|01⟩+ |10⟩).

(2) Derive the value scope for λ when the state ρ is entangled using negativity
measure.

3. Consider the density matrix ρw = r|ϕ+⟩⟨ϕ+|+ 1−r
4 I4, where |ϕ+⟩ = 1√

2
(|00⟩+|11⟩)

is Bell state and 0 ≤ r ≤ 1. Calculate the concurrence of ρw.

4. For the 2-qubit state ρ = p|Ψ−⟩⟨Ψ−|+(1−p) I4 , where 0 ≤ p ≤ 1, |Ψ−⟩ = |01⟩−|10⟩√
2

,
calculate the EOF (Entanglement of Formation) of ρ.

5. Calculate the von Neumann entropy of the following density matrix,

(1) ρ1 = 1
2

1 0

0 1

, (2) ρ2 =

1 0

0 0

, (3) ρ3 = 1
2

1 1

1 1

, (4) ρ4 = 1
3

2 1

1 1

.
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6. (1) Prove the subadditivity of the von Neumann entropy

|S(A)− S(B)| ≤ S(A,B) ≤ S(A) + S(B).

(2) Prove the concavity of the von Neumann entropy

S(
∑
i

piρi) ≥
∑
i

piS(ρi).

(3) Suppose ABC is a composite quantum system. Prove that

S(A|B,C) ≤ S(A|B).

7. Suppose {Pi} is a complete set of orthogonal projectors and ρ is a density
operator. Prove that the entropy of the state ρ′ ≡

∑
i PiρPi of the system after

the measurement is at least as great as the orignal entropy, S(ρ′) ≥ S(ρ), with
equality if and only if ρ = ρ′.

8. Let ρ be a single qubit density matrix, and recall the Bloch sphere represen-
tation

ρ =
I + r · σ

2
,

where r is a real three-dimensional vector and σ = (σx, σy, σz) . Express the
von Neumann entropy of ρ in terms of r and the binary entropy function
H(p) = −p log p− (1− p) log(1− p).

9. (1) For the singlet state

|ψ−⟩ = 1√
2
(|01⟩ − |10⟩),

prove that the correlation function E(Ai, Bj)quantum = ⟨ψ−|Ai ⊗ Bj |ψ−⟩ ≡

⟨ψ−| (⃗ai · σ⃗)⊗ (⃗bj · σ⃗) |ψ−⟩ is

E(Ai, Bj)quantum = −a⃗i · b⃗j .
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(2) Prove the CHSH inequality

|E(A1, B1) + E(A1, B2) + E(A2, B1)− E(A2, B2)| ≤ 2,

in which E(Ai, Bj) is the expectation value of the correlation experiment
Ai, Bj.

(3) What’s the maximal violation of the CHSH inequality allowed by quan-
tum mechanics? Give the corresponding quantum state and specify the
measurement operators.

10. (Tsirelson’s inequality) Suppose Q = q⃗ · σ⃗, R = r⃗ · σ⃗, S = s⃗ · σ⃗, T = t⃗ · σ⃗, where q⃗,
r⃗, s⃗ and t⃗ are real unit vectors in three dimensions and σ⃗ = (σx σy σz). Show
that

(Q⊗ S +R⊗ S +R⊗ T −Q⊗ T )2 = 4I + [Q,R]⊗ [S, T ].

Use this result to prove that

⟨Q⊗ S⟩+ ⟨R⊗ S⟩+ ⟨R⊗ T ⟩ − ⟨Q⊗ T ⟩ ≤ 2
√
2.

11. Consider the CHSH game with the following choices for Alice’s and Bob’s
observables:

P : σAz

Q : cos(
π

4
)σAz + sin(

π

4
)σAx

R : σBz

S : cos(
π

4
)σBz − sin(

π

4
)σBx ,

where σAz = σAz ⊗ IB is an observable on Alice’s qubit only, and so on. Let the
two-qubit state shared by Alice and Bob be an imperfect entangled state:

ρ = p
I

4
+ (1− p)|ψ−⟩⟨ψ−|,

where |ψ−⟩ = 1√
2
(|01⟩ − |10⟩). Calculate the CHSH quantity:

|CHSH| = |E(P,R) + E(Q,R) + E(P, S)− E(Q,S)|
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for this state, as a function of p. For what values of p is the CHSH inequality
violated?

12. Consider the CHSH game in which the referee chooses questions r, s ∈ {0, 1}

uniformly, and Alice and Bob must each answer a single bit: a for Alice, b for
Bob, in which a, b ∈ {0, 1} . They win if a⊕ b = r ∧ s and lose otherwise.

(1) Give the maximum probability of winning with the classical strategy.

(2) Suppose Alice and Bob share a maximum quantum entangled state |ψ⟩ =
1√
2
(|00⟩+ |11⟩), please derive the maximum probability of winning and give

the corresponding quantum strategy.

13. Consider the GHZ game in which the referee chooses questions rst ∈ {000, 011, 101, 110}

uniformly, and Alice, Bob and Charles must each answer a single bit: a

for Alice, b for Bob, c for Charles, in which a, b, c ∈ {0, 1} . They win if
a⊕ b⊕ c = r∨ s∨ t and lose otherwise. Suppose Alice, Bob and Charles share a
GHZ state |ψ⟩ = 1

2(|000⟩ − |011⟩ − |101⟩ − |110⟩), give a quantum strategy that
maximize probability of winning.

14. Two players, Alice and Bob, are required to independently fill a 3 × 3 magic
square. As shown in Fig. 1, the referee randomly sends two queries x, y ∈

{0, 1, 2} to Alice and Bob, respectively. Here, x labels rows and y labels
columns. Alice and Bob are required to reply with three numbers with specific
conditions. Denote Alice’s answers in a row as [ax0 , a

x
1 , a

x
2 ] and Bob’s answers

in a column as [by0, b
y
1, b

y
2], where axi , b

y
j ∈ {−1,+1} for any i, j ∈ {0, 1, 2}. Alice’s

answers must satisfy
∏

i a
x
i = +1, while Bob’s should satisfy

∏
j b

y
j = −1 for

any x and y. During the game, Alice and Bob are forbidden to communicate
with each other. They win the game if the overlapped entry of Alice’s row
and Bob’s column is always the same, i.e.,axy = byx for each x and y.

(1) Give the maximum probability of winning with the classical strategy.
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(2) Suppose Alice and Bob share a maximum quantum entangled state
|ϕ⟩A1A2B1B2

= |ψ⟩A1B1
⊗ |ψ⟩A2B2

with |ψ⟩ = (|00⟩ + |11⟩)/
√
2, and Alice

has systems A1A2 and Bob has B1B2. Please derive the maximum proba-
bility of winning and give the corresponding quantum strategy.

FIG. 1. The Mermin-Peres magic square game.


