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1. Consider two qubits A and B, and an arbitrary unknown quantum state |¥) =
a|0) + B|1) where |a|? + |B]? = 1. Can we use the operator Qap = I4 ® |0) 55 (0|

to remove the copy state of system B, i.e. |U) 4 |V)z — |¥),4|0)57

2. Derive the Bell’s theorem without inequalities from the GHZ state
1
V) arz = —2(|000> — |111)).

3. Consider a 2-qubit quantum state pap = %I + 2 ¢7) (7|, where 1)) = \/Lﬁ(|()1> -
110)).
(1) Give the spectral decomposition of p4p.

(2) Suppose one measures 7 - ¢4 and measures m - &g with 7 - m = cos 6, calculate

the probability that both outcomes are +1.

(3) Use the realignment criterion to find out whether p4p is entangled or not.

4. Suppose Alice and Bob share the two-qubit state [1ha5) = ¥%2[00) + £|11). Recall
that a quantum measurement is specified by a set of operators { My, M;} such that

S MM =1

(1) Suppose the quantum measurement { My, M1} acting on |)4p) output the out-
come corresponding to My = a|0)(0]+b|1) (1| with probability 1/4, give the values
of a and b such that My produces the post-measurement state (|00) 4 [11))/v/2.
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(2) Give an operator M; such that MgMo + MfMl = [ with My being the result of
the above question. With what probability does the outcome corresponding to

M occur, acting on [14p), and what is the post-measurement state?

. (1) Prove that S(p) < log D, where D is the number of the non-zero eigenvalues of

the density operator p.

(2) For two density operators p; and pg, prove the inequality
tr(p1log p1 + p2log p2) > tr(pi log pa2 + p2log p1).

. Quantum teleportation is a process by which quantum information can be transmit-

ted from one location to another, with the help of quantum entanglement.

(1) Suppose the initials states are |¢); = a|0); + B|1)1, |V )gg = %(|0)2 11)5 —
11)510)5). Show that particle 3 can be projected onto the same state as particle
1 by some local operators after Bell state measurement on particle 1 and 2.

(2) Suppose the initials states are |¢); = a|0);+6|1);,|GHZ) 3, = \%(|O>2 10)510),+
1) |1)5]1),). Show that particle 4 can be projected onto the same state as par-
ticle 1 by some local operators after Bell state measurement on particle 1 and 2

and local X measurement on particle 3.

(3) Explain why we can’t use quantum teleportation to achieve superluminal com-

munication.
. Consider the following 4-qubit state:

0)1234 = |[Y)1 ® %(12 ® U)[(|00)23 + [11)23) @ |$)4],

where |1))1 = a|0)1 + b|1)1 is an arbitrary qubit state and |¢)4 is another one, U is a
two-qubit unitary operator acting on qubit 3 and 4. After Bell state measurement on

qubit 1 and 2 of |#) 1234, how can we turn the state of qubit 3 and 4 to be U(|¢))®|¢))?

. Consider a noisy entangled pair with density matrix

pe= (1= ™) (67| + .
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where |[¢p7) = \/LE(|01) —110)). The fidelity between two density matrices o and 7 is

defined as F(o,7) = (Trv/\/o1/0)? = F(1,0).
(1) Calculate the fidelity between p and |¢p7) (¢»7|. (Recall that for pure state o,
we have /o = 0 = ¢2.)

(2) Give the lower bound of fidelity F'(pe, [t)™) (¢»7|) when the state p. is entangled

using PPT criterion.

(3) Suppose one uses p. instead of perfect EPR states to teleport a pure qubit state

p. Find the fidelity between the teleported qubit state and p.

. Suppose three EPR sources produce three pairs of entangled photons, pair 1-2, 3-4

and 5-6. The initial states are |¢p1)19 = %’ |67 )34 = Wa 07 )56 =
W. Then photons 2, 4, and 6 are projected to GHZ-state [000)+I11L) “yarpat

V2
is the state of the photons 1, 3 and 57

In quantum information theory, dense coding is a technique used to send two bits
of classical information using only one qubit. Suppose that Alice and Bob share an
EPR pair

1
V2

Show the detailed protocol to realize the dense coding.

[©F) = —(|0)4]0)B + [1) 4|1) B),

The polarization dependent beam splitter (PDBS), which has transmission rate T
for horizontal polarization mode and transmission rate T3, for vertical polarization
mode, can be used to construct controlled phase gate. In figure (a), a PDBS performs

the following transformation on input single photon with path mode a:

a|Hy) + B|Va) — a(y/Tr |Ha) +in/1 = Ty |He)) + B(V/Ty [Va) +iy/1 = Ty [Ve)),

where |Hy) denotes horizontal polarized photon on path mode d and similar for the
other terms. In figure (b), two input modes a and b are overlapped at PDBS, with

a PDBS; /5 on each of its output mode.



4

(1) Show that, conditioned on the coincidence detection of output modes ¢ and d,

the setup in figure (b) can implement the controlled phase gate perfectly,

cun |HoHy) + cav |HoVa) + cvi |VaHy) + cvv [VaVe)

— cpp |HaHe) + cav |HgVe) + cvm |VaHe) — cvy [VaVe) .

(2) Calculate the probability to obtain a coincidence in the outputs.

mode ¢ PDBS, /, mode d
T, =1,
mode ¢ mode d Ty =1/3
PDBS PDBS,
T, =1,
mode a T, = 1/3
mode a mode b

(a) PDBS (b) Setup for the controlled phase gate



