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Quantum computation and quantum information by M.A.
Nielsen and |.L. Chuang, Cambridge University Press,
2010
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Course Description

This course Is open to all graduate students and
undergraduates. The final grades are based on:

final exam (60%),
nomework and attendance of the class (20%),

a report about quantum information (20%, the
subject can be arbitrary, which is preferably
related to your current research project, recent
progress or your own ideas along one specific
area on theoretical or experimental quantum .44
information) y N &
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It's a "mystery”. THE mystery. We
don’t understand It, but we can tell
you how It works.




“There’s plenty of
room at the bottom”
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Te|0)i= |1) o, exchanges (bit flip)
oz|l) = ‘U>

ay|0) = 2|1) o, exchanges and introduces the phase =+
ay|1) = —i|0)

o.|0) = +|0) o, introduces the phase 1 (phase flip).
o:|1) = —[1).




F % (Density Matrices)
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f % (Density Matrices)

(i) pis positive: (¢|p|le) > 0.7 |¢) € Hg (and thus Hermitian, f_;,"r = p)
(ii) trlp| =1

(iii) p* = p.
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It iIs Impossible to create identical copies of an arbitrary unknown quantum state!

Wootters and Zurek, Nature 299, 802 (1982)
Dieks, Phys. lett. A 92, 271 (1982)
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Bennett et al., PRL 73, 3801 (1993)
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(i) pis positive: (p|pl¢) > 0,¥ |@) € Hy (and thus Hermitian, p' = p)

(i) tr(p] =1







Schmidt decomposition
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55| &= (Projective measurements)

Pn'z, Pn — P'm 5?71.,?1

r

p(m) =tr(P,o)




55| &= (Projective measurements)

Uv-0 = 0 + U209 + U403
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“Entanglement is the characteristic trait of
quantum mechanics, the one that enforces its
entire departure from classical lines of thought".

Quantum computation

Quantum teleportation
Dense coding
Quantum cryptography

Quantum error correction

E. Schrodinger, Proc. Cambridge Philos. Soc. 31, 555 (1935) *“’":—"




“local operations and classical communication”

JRE{E: unitary dynamic actions, measurements, and all
other local manipulations

Z8 HLE {5« exchange information via classical communisgtion 22
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A pure or mixed quantum state which is not separable is

called entangled. An entangled quantum state thus contains

non-classical correlations, which are also called quantum
correlations or EPR correlations.
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This strange property, that the joint state of a system can be y
completely known, yet a subsystem be in mixed states"ts. N
another hallmark of qguantum entanglement. -
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superdense coding

\UU} +\1 1)
Alice

00:7 01: 7
10:X 11:iY

Figure 2.3. The mnital setup for superdense coding, with Alice and Bob each in possession of one half of an
entangled pair of qubits. Alice can use superdense coding to transmit two classical bits of information to Bob, using
only a single qubit of communication and this preshared entanglement.
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Decoherence

The separability problem:
one of the basic and emergent problem in present
and future quantum information processing

Is a quantum state entangled?
How entangled is it still after interacting

with a noisy environment?




Density matrix of quantum states

f




Separability

entangled?

Pure states




Mixed states




Separability criterion for
multipartite pure state

If and only if




A strong separability criterion
for mixed state

Positive partial transpositions(PPT) Rt tiEGasAteEs)

po= Z pip's @ pg = OFR™ = ) pilpl)" @ py 20
i 1

An example of 2x2 state:
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Horodeckl et al. (PLA, 1996)

Separable

Horodeckis, Phys. Lett. A 223,1 (1996)
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Necessary and Sufficient Condition for Separability

one should have [IA R AB](QAB) = ()

Aleg) -+ A@oa,-1)

Aoy A(Q (_)
[14 ® Apl(@ap) = (€10 1 fa=)

AQg,-10) - M@y, -14,-1)




MajorizationH| 4

If a state Is separable then the inequalities

Np) <AN(p4), AN(p) <A(pp)

Holds.

Here R¥2lis a vector of eigenvalues of PR
and PNeTy are defined similarly.




Reduction criterion

A"(0)=1Tr(Q)~

XA S A
[14© A5 (@45 =0

CATVEREC:

04®@1-045=0

JH;#IJTE%?PPT/E}”U 1HE9§?Major|zatlon#H’E
B UHEN], — 8 & nl R4l 2

Cerf et al., 1999; Horodecki and Horodecki, 1999




Entanglement witness (EW)
7 S

Tr(Woap) =0

WO R LI &, 3 2
2/0H PN ARIEHE
%: 1 A A AN A

Terhal, B. M., 2000, Phys. Lett. A 271, 319
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A Matrix Realignment Method
for Recognizing Entanglement

If Z is an mxm block matrix with block
Z Z

11 1m




The realignment criterion

Recognizing entangled states

necessary criterion for separability

Kai Chen, Ling-An Wu, Quantum
Information and Computation 3,
193-202 (2003)

Pl > 1

sufficient criterion for entanglement




Examples




Positive maps connected to entanglement witnesses (EW)

Wy=[I® AP, 70 = | PPy

d—-1

G ) = E|!>®|I> d=dimH 4

vd iz
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Good entanglement measures
F TRl A N0

No Increase under LOCC

. Continuity

— FE(o) —0 for |lo—o||—0 4




A

Good entanglement measures

Convexity
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Entropy of Entanglement

E(|))(@]) := S(tra|v)(¥]) = S(trp|v)(¥])

5 h

S(p) = —tr|plog, p

Jyvon-Neumann entropy




{pg ) ?ﬁf} ST O — Efpf‘ %)(;’bf‘ Uhlmann, 1998

ZU 2 55 55 FH 1) 2 &= Entanglement of
| Br(p) = inf(Y piB(90) (0l) = p =Y pilt) (Wl

SNuE




Two qubitsZ| E [ &

£ X 4iZS ffjconcurrence

-H1a,,a,9Schmidt A %1

Hill and Wootters 1997




Two qubitsZ| E [ &

NYE 4 A ffJconcurrence

C(p) — maX{O,)\l - )\2 - )\3 - )\4}

SR, Ay, Mgy A N ) DL Y8 > HE 51 1) 75 7 H
Il Entanglement of Formation (EoF) X

H( 1+41- cz(p))
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Woot’t”!‘lg ‘48
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HEMERE

Negativity
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— Convex roof measures

o AR i

E(g)=inf >, p,E(y), 2,p;=1, p;=0

Entanglement cannot
Increase under local operations and classical
communication.




Entanglement Witness Monotones

Entanglement Withess

Vpe SEP tr{Wp} >0
and

dp s.t. tr{Wp} < 0.
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HEJ fIConcurrence

Theorem.—For any m ® n(m = n) mixed quantum state
p, the concurrence C(p) satisfies

2

(max(llp™ L IR (p)ID) ~ 1)

m(m — 1)




Shannon entropy




Shannon entropy

HX)=H@i.....pa) =— Y pelogp,




Jied H) 2 2 42

%E X binary entropy

Hyn(p) = —plogp — (1 — p)log(1l — p)

concavity
H(gpu + (1 — q)pa) = qH(pu) + (1 — q)H (pa)




Joint entropy

H(X.,Y ——Zp y) log p(x,:

Conditional entropy
H(X|Y)= H(X.Y)— H(Y)




Mutual information

HX:Y)= HX)+ HY) - HX.Y)

Useful equality
H(X:Y)=HX) - HX|Y) -
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Von Neumann entropy

S(p) = —tr|plog, p|

Relative entropy

S(pllo) = tr(plog p) — tr(p log o)




Von Neumann entropy Al &

The system after the measurement is at least as great as the
original entropy

with equality if and only if p = p.




Entanglement distillation

W AHLOCCHEE (Juikfe /e & diff5)

A =X B 25 2 JE Bt IR
AAE — 0 2 A BT
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Entangled
source

purified
entanglement

5

Noisy channel




Entanglement distillation

A certain number of maximally entangled EPR pairs is

manipulated by local operations and classical communication
and converted into pairs in some state. The asymptotlc

conversion rate is known as the

oo
S S »

o—o

DISTILLATION Vlatko Vedral, Introduction

to Quantum Information
Science, Oxford University

Maximally Non Maximally Press, 2006
Entangled Pairs Entangled Pairs

The converse of formation is the distillation of entanglement
The asymptotic rate of conversion of pairs in the state Inft
maximally entangled states is known as the
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One-way hashing distillation protocol

Bell diagonal states B;,, are naturally parametrized
by the probability distribution of mixing p.

ED(deiag) =] — H({p}

The n copies of the two-qubit Bell diagonal state Bdiag
can be viewed as a classical mixture of strings of n Bell
states. Typically, there are only about 2"\ such strings
that are likely to occur (Cover and Thomas, 1991).
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Two-way recurrence distillation protocol

In the first step Alice and Bob take two pairs, and apply
locally a controlled NOT gate. Then they measure the
target pair in a bit basis. If the outcomes are different

they discard the source pair failure, otherwise they
keep it.

In the latter case, a second step can be applied: they
twirl the source pair to the Werner state.

F3+%(1—F,)3 F=Tr p|¢* )"

F(F)z=—————————— If only F>1/2, the above,_»
| 2 S recursive map converges ‘éﬁ

F + EF( 1 — )4 5(1 = F to 1 for a sufficiently Iarge
- ' number of copies.

I
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_ nonoptimal

witness
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\ & . optimal

witness
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One-way and two-way

% /copies




[E(Ay,By) + E(A1,B,) + E(A3,By) - E(A5,By)| <2

E(A; ,B;) Is the expectation value of the correlation
experiment A;,B;.

Bepsn=A1 @ (B + By + A, ®@ (B, - B))

A,=a, -0, A,=a, o (similarly for B, and B,)

Quantum formalism predicts the Cirel son inequality
(Cirel son, 1980)

(E('HSH)QM| - |TI‘(H("H5HP)‘ = 2\*‘2




Bell /"2 =

1. Each measurement reveals an objective physical property of
the system. This means that the particle had some value of
this property before the measurement was made, just asin
classical physics. This value may be unknown to us (just as it

(1 G 8y = an'a'aakmin a al alla alaigal
C C y C.

. A measurement made by Alice has no effect on a
measurement made by Bob and vice versa. This comes from
the theory of relativity, which requires that any signal hasto
propagate at the (finite) speed of light.
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Mixed states may not violate Bell’s inequalities

where the degree of mixing is determined by a
parameter F (which really stands for “fidelity”):

1—F |
ow = F[I) (| WOTF| + (@) (DT + | &) (@)

where 0 < F < 1. When F = 1/2, we can write It as

g (7P| + ) (o)) + (TN~ + |t){(®F|)

| 1 o L
E (=T~ |+ |27 ) (D)
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Mixed states may not violate Bell’s inequalities

An equal mixture of any two maximally entangled states
IS a separable state.

(1/2)(|2)(PT| 4+ |27) (D7)

IS equivalent to

(1/2)(|00){00|+|11)(11])

The Werner states are entangled for F > 1,
The Werner states violates Bell’s inegualitieswhen F > 0.78.




Bel I A 55 =0 56 two-quibit

An 2-qubit state can be written as

=%(!@I+r-a‘®!+f®s'ﬂ'+ Y tumOn ® O
n,m=1

24/M(9) = (Biax)o = g}% |{Bensi) ol

M(): = max (T8l + IToc'I) = u + 3

Here u and # are the two largest eigenvaluesof TT, T

Horodecki, R.; Horodecki, P; Horodecki, M

Violating Bell inequality by mixed spin-1/2 States necessary and sufficient Condltlonﬂffiﬁ -
Physics Letters A, Volume 200, Issue 5, May 1995, Pages 340-344 -




Bell’s theorem without inequalities
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Correlation functions

For a maximally entangled state

With appropriate angles




One verifies that the CHSH inequality is violated!




Bohr-Einstein debates

Einsteln:

can't believe God plays %’ Q %

dice with the universe.

-

Bohr:
Albert, stop telling God
what to do.
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What i1s QKD?

IS sSimultaneous

generation of identical bit sequences in
two distinct locations with quantum
physical methods

Quantum technology guarantees

QKD enables the implementation of a
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Quantum key distribution

A protocol that enables Alice and Bob to set up a

secure secret key, provided that they have:
A , Where Eve can read and
modify messages

EVe can read messages, but cannot tamper
with them (the authenticated classical channel
can be ssmulated by Alice and Bob having a

very short classical secret key)




BB84TMN I TR

The BB84 QKD protocol

: Alice chooses (4 + 0)n random data bats.
. Alice chooses a random (4 + d)n-bit string b. She encodes each data bit as

{]0),|1)} if the corresponding bit of bis 0 or {|+), |—)} if b is 1.

: Alice sends the resulting state to Bob.

Bob receives the (4 + 0)n qubits, announces this fact, and measures each
qubit in the X or Z basis at random.

. Alice announces b.
: Alice and Bob discard any bits where Bob measured a different basis than

Alice prepared. With high probability, there are at least 2n bits left (if not,
abort the protocol). They keep 2n bits.

: Alice selects a subset of n bits that will to serve as a check on Eve’s

interference, and tells Bob which bits she selected.

: Alice and Bob announce and compare the values of the n check bits. If

more than an acceptable number disagree, they abort the protocol.

: Alice and Bob perform information reconciliation and privacy amplifica-

tion on the remaining n bits to obtain m shared key bits.
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Distillation procedure of secure keys




NIST QKD Protocol Stack

“ms e
Applic atmtl

checks
Correct
& Ihscard

o

|

Operating System @

s Quantum Key Stream
Hardware

Sifting

Initial Sifting

%




Correspondence between EDP and
BB84 (Gottesman-Lo’s proof)




Quantum Distribution of Keys




GLLP Formula for key generation rate

Error correction Privacy amplification

To prove security, one needs to lower bound Q, and
upper bound e,.




Combining Decoy with GLLP

.+ With the knowledge of yields{Y }, Alice can
choose a much higher average photon

number(l=0(1) .

. Key generation rate R=0(N)

n : transmittance ~ 103




QKD Protocols

- —Unmatched Bases; “stray” or

“lost” qubits

— Noise & Eaves-
dropping detected — Uses “cascade”
protocol — Reveals information to Eve

0 heed to track thi

— reduces Eve’s
knowledge obtained by previous EC

— Continuous to avoid

to initiate using shared keys



BOUNDS ON THE BIT ERROR RATE
FOR BB84 AND THE SIX-STATE SCHEME

TABLE 1
BOUNDS ON THE BIT ERROR RATE FOR BBR34 AND THE SIX-STATE SCHEME
USING ONE-WAY AND TWO-WAY CLASSICAL POST-PROCESSING. THE | ONER
BOUNDS FOR TWO-WAY POST-PROCESSING. 13.9% FOR BB34 AND 26.4% FOR
THE SIX-STATE SCHEME. COME FROM THE CURRENT WORK

BB84
one-way two-way

Upperbound  14.6% 1/4
Lowerbound 11.0% 18.9%

Six-state Scheme
one-way two-way

Upper bound 1/6 1/3
Lowerbound 12.7% 26.4%

Daniel Gottesman and Hoil-Kwong Lo, Proof of Security of Quantum Key Dlstrlb ee;
With Two-Way Classical Communications, IEEE TRANSACTIONS ON INFORMAT
THEORY, VOL. 49, 457-475 (2003) **"?:w:




Decoy-state quantum key distribution with
both source errors and statistical fluctuations

Xiang-Bin Wang, C.-Z. Peng, J. Zhang, L. Yang, Jian-Wei Pan
General theory of decoy-state quantum cryptography with source errors
Phys. Rev. A 77, 042311 (2008)

Xiang-Bin Wang, Lin Yang, Cheng-Zhi Peng, Jian-Wei Pan, Decoy-state
guantum key distribution with both source errors and statistical
fluctuations, New. J. Phys., 11, 075006 (2009)







QUANTUM TELEPORTATION

Teleportation of unknown guantum state

Information from one particle to another

Unknown quantum state EPR source

Total state




QUANTUM TELEPORTATION

The joint state of three particles

can be rephrased as follows:

Therefore Bell measurements on the first two particles would project the state of Bob's

particle into a variant of |y ;fiof the state |yn= a|Ofi+ b|1i where
ly,> = either |[y> or o,Jy> or s,ly> or s.s,|ly>

The unknown state |y ican therefore be obtained from |y ;iby applying one of the four
operations

I1S)(1 Sv1 Sz1

and the result of the Bell measurement provides two bits specifying which
of the above four operations should be applied.

Alice can send to Bob these two bits of classical information using a classical c
(by phone, email for example). -




Entanglement Swapping: Entangling
Photons That Never Interacted

\ Bell State

Measurement

1 2 3 4

EPR-source I

FIG. 1. Prnciple of entanglement swapping. Two EPR
sources produce two pairs of entangled photons, pair 1-2
and pair 3-4. One photon from each pair (photons 2 and
3) 1s subjected to a Bell-state measurement. This results in
projecting the other two outgoing photons 1 and 4 onto an
entangled state. Change of the shading of the lines indicates
the change 1n the set of possible predictions that can be made.

Jian-Wei Pan et al., Phys. Rev. Lett. 80, 3891-3894 (1998)




Entanglement Swapping: Entangling Photons That
Never Interacted

Bell Measurement

Tl

Beam Splitter

A,

UV-pulse

E
\-FL Pol@®
Dy

Polarizing

M2 Beam Splitter

EPR-source
4 1&TI

g

FIG. 2. Experimental setup. A UV pulse passing through a
nonlinear crystal creates pair 1-2 of entangled photons. Photon
2 is directed to the beam splitter. After reflection, during its
second passage through the crystal the UV pulse creates a
second pair 3-4 of entangled photons. Photon 3 will also be
directed to the beam splitter. When photons 2 and 3 vield a
coincidence click at the two detectors belund the beam splitter.
they are projected into the |W™ ),; state. As a consequence
of thiz Bell-state measurement the two remaining photons 1
and 4 will also be projected into an entangled state. To
analyze their entanglement we look at coincidences between
detectors D] and D,. and between detectors D; and D,. for
different polarization angles ®. By rotating the A/2 plate in
front of the two-channel polarizer we can analyze photon 1
in any linear polarization basis. Note that. since the detection
of coincidences between detectors D]' and Dy, and D; and
D, are conditioned on the detection of the W~ state. we are
looking at fourfold coincidences. Narrow bandwidth filters (F)
are positioned in front of each detector.

100-

|
L
L

2

-
th
1

four-fold coincidences per 4000 sec.

0 45 90 135 180
© (degrees)

FIG. 3. Entanglement verification. Fourfold coincidences.
resulting from twofold coincidence D17D4 and D1 D4
conditioned on the twofold coincidences of the Bell-state
measurement. when varying the polarizer angle . The two
complementary sine curves with a visibility of 0.65 = 0.02
demonstrate that photons 1 and 4 are polarization entangled.

Visibility 0.65 I

f

Jian-Wei Pan et al., Phys. Rev. Lett. 80, 38913894 (1998)



EPR-source I | EPR-source 1T

FIG. 1. Prnciple of entanglement swapping. Two EPR
sources produce two pairs of entangled photons, pair 1-2
and pair 3-4. One photon from each pair (photons 2 and
3) 1s subjected to a Bell-state measurement. This results in
projecting the other two outgoing photons 1 and 4 onto an
entangled state. Change of the shading of the lines indicates
the change in the set of possible predictions that can be made.
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Quantum error correction  Singlebitflip
correction circuit

«|000) + §|111

Coherent version
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Bit Flip X:

Phase Flip Z:

Complete dephasing:

Depolarizing channel :

(decoherence)

Rotation:




Correcting All Single-Qubit Errors

If @ quantum error-correcting code (QECC) corrects errors A and B, it
also corrects aA + bB.

al + bX + gy + dz

Any OECC that corrects the single-qubit errors X, Y, and Z (plus I) corrects every
singie-qubit error.

Correcting all t-qubit X, Y, Z on t qubits (plus I) corrects all t-qubit errors.
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Discretization of the errors

Any QECC that corrects the smgle qublt errors X,

Correcting all t-qubit X, Y, Z on t qubits (plus I)
corrects all t-qubit errors.

This Is a fundamental and deep fact about quantum
error-correction, that by correcting just a discrete set
of errors — the bit flip, phase flip, and combined bit—
D1ASE

Correctlng code Is able to automatlcally corregt an g
apparently much larger (continuous!) class of é’rmr




[[n.k]] qguantum error correcting code
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bits codeword c using a [n by k]
generator matrix G as follows:

rror correction for linear codes is done
using a [(n-K) by n] parity matrix.




Parity Check i £

Parity check matrix H Is such that:
Hc=0 and HG=0

The receiver gets the codeword r, which
Incorporates an error e:

r=c+e
Then, the syndrome s Is given by:
S=Hr=He




Error Correction & Recovery

Once we detect the syndrome s, we can
find the error that occurred e.

Now we can correct the error as:

C=r-—e
And finally one can recover the original
message
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Ouantun or Correction Codes are

characterized by the triplet [n,k,d], where:

nist

dist

ne length of the resulting codeword.

ne minimum distance.

Data redundancy implies n>k

A Code with minimal distance d=Z1+1 IS

able to correct errors on up to t bits. .7

2z

o i
RN F g
,;;41:. =
e >
-~

=4

<



RS RT UN

[[n.k]] qguantum error correcting code
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After encoding the code | [E subjected to noise, following which a

SYI'IUT OIS 111ieasSul errich | nerformed to diagnose the typ u|
error which occurred, that is, the error syndrome. Once this has
been determined, a recovery operation is performed, to return
the guantum system to the original state of the code. The basic
pictureisillustrated in Figure 10.5: different error syndromes

correspond to undefor med and orthogonal subspaces of the total
Hilbert space. The subspaces must be orthogonal, otherwise they
couldnt be reliably distinguished by the syndrome measurement.
Furthermore, the different subspaces must be undeformed

versions of the original code space, in the sense that the errors
mapping to the different subspaces must take the (orthogonal) y
codewords to orthogonal states, in order to be able to recovel, 7
fromthe error. J.ﬁ\l iz

”“":-c




\WWe have learned about the error without learning about

the data, so quantum superpositions are still alive! """”




The Pauli Group

For a single quantum bit

Gy = {£I, +il, £ X, +iX, 1Y, +iY, +Z, +iZ}

that G, Is closed under multiplication, and thus forms a legitimate
group.

Any pair M, N of Pauli operators either commutes (MN = NM) or
anticommutes (MN = -NM).




Stablilizer

vector space stabilized




Properties of a Stablilizer

The stabilizer Is a group:




Stabilizer 15l-F

The EPR state of two qubits

o _ [00) +]11)
|3*> _ \/E

stabilized




In
=
O
e
=
S
0




Stabilizer 15l-F

first two bits have even parity

correctly-
encoded state 000 or 111

odd parity
for the first two bits.

a codeword is a

+1 eigenvector of ZAZAI




T AR

Measuring ZAZ detects bit flip (X) errors, and
measuring XAX detects phase (Z) errors.




Error Correction Conditions

Theorem: Let S be the stabilizer of the
stabilizer code C(S). Suppose {E;} Is a set of
operators in Gn such that:

for all | and k. Then, {E;} Is a correctable set

The normalizer of S, denoted N(S), which is defined togc?bﬁs

of all elements E of G, such that EQET& Sforallg € S.£ 2




Error Detection

L]
DpPOSE U] 1€ SCL Ol (Jellc U U (1€
. . J .Y A Ci

stabilizer of an [n,K] stabilizer code, and that {E;}
IS the set of correctable errors for the code.

Error detection Is performed )Y, measuring the

error syndrome, which consists of the results of
the measurements b,,...,b. .

If the error E occurred then the error syndrome is




Recovery (1)

In the case where E Is the unigue error
operator having this syndrome, recovery
IS done by applying E.

distinct errors E and E’ giving rise to the
same error syndrome, it follows that:

EPE!= EPE" andthen EEPE'E =P

and therefore E'E’ Is part of S. - L

i il
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Recovery (2)

Thus applying E! after the error E’ has
occurred results in a successful recovery.

[hus, for each possible error syndrome we
simply pick out a single error E with that
syndrome, and apply E! to achieve




The three qubit bit flip code

Consider the familiar three qubit bit flip code spanned by the states |000) and |111), with
stabilizer generated by Z,2, and Z, /3. By inspection we see that every possible product
of two elements from the error set {I, X1, X», X3} — I, X;, X», X5, X1X5, X X5, XX
— anti-commutes with at least one of the generators of the stabilizer (except for I, which
is in S), and thus by Theorem 10.8 the set {I, X, X, X5} forms a correctable set of
errors for the three qubit bit flip code with stabilizer (£,2,, Z,73).

getecton ana correctuon

Error type Action

no crror no ElCtiDI]
bit 3 flipped | flip bit 3
bit 1 flipped | flip bit 1
bit 2 flipped | flip bit 2




The three qubit bit flip code




The nine qubit Shor code

Operator
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TZZIT L1111
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The nine qubit Shor code

Operator

AR P
TZZIT L1111
P IV AALT &L T
IR RE Y EEY
IITT T TIAZ]
ITITTITET LI ZZ

VAR

stabilizer




More about Stabilizer

The stabilizer is a group:

The stabilizer i1s Abelian:

T(S) = {zyns.t. M=y n==yn
' M1 S} Then T(S) encodes kloglcal gubits In




Stabilizer Elements Detect Errors

=y nhas eigenvalue -1 for vV

E=y nhas eigenvalue +1 for all M In the stabilizer.

The eigenvalue of an operator M from the stabilizer dgﬁgt%f
errors which anticommute with M.

From Go&esmén




Error Syndromes and Stablilizers

____errc ndrome is the i
the generators of S




Stabilizer Codes Summary

stabilizer

K = n-r encoded qubits
ETFI N(S)\S

distance d

From Go&esmén




Summary: Stabilizer Codes




Summary of QECCs

Quantum error-correcting codes exist which can

correct very general types of errors on quantum
systems.

A systematic theory of QECCs allows us to build
many interesting quantum codes.

Quantum error correction can be formalized in term
of guantum states and projectors, stabilizer
subspaces or the stabilizer group.

All these formalizations are equivalent.

- The theory of guantum error correction Is qui
elegant and simple.
.

ne implementation is really a nontrivial task.




DiVincenzo’s Criteria

DiVincenzo, Fortschr. Phys. 48, 771 (2000)




Qubitology. States
) = cos(0/2)]0) 4 e*?sin(6/2)|1) = |n)

Direction of spin

(1) —11))/vV2

(1) +11))/v?2

From Caves
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2 representation




Qubitology. Gates and quantum circuits
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Qubitology. Gates and gquantum circuits




Qubitology. Gates and quantum circults

[1){(1] ® X




Qubitology. Gates and quantum circuits




Qubitology. Gates and gquantum circuits

C-PHASE

N
FromGaves—<.




Qubitology. Gates and gquantum circuits

C-NOT as parity check

«|00) 4+ 5(11)

From Caves




Qubitology. Gates and guantum circuits

Making Bell states using C-NOT

.

(]00Y + |11)) T
Nz 75(100) + 1))
1
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Qubitology. Gates and guantum circuits

Making cat states using C-NOT

GHZ (cat) state

—5(]000) + |111))

(|0 + [1))]00)
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Decomposing single qubit operations

AlDIU c X

decomposed as

] {COS% — sin 2

y3/2 - -
B/ sin+  cos <




Swap gate

s

d an equivalent schematic symbol notation for this common and useful

Ing two

a,a @ b)
a®(adb),adb) =|badb)
b,(a & b) & b) = |b,a),




Control-U gate

=Ei=

Figure 1.8. Controlled-U gate.

D X

Figure 1.9. Two different representations for the controlled-NOT.




Circult for measurement

)

Figure 1.10. Quantum circuit symbol for measurement.

This operation converts a single gubit state
|L/J> = g|0> +p|1> into a probabilistic classical bit
M (distinguished from a qubit by drawing it as a

double-line wire), which is 0 with probablllty |c7|2 y
or 1 with probability |5|?.




Bell =4

In Out

00) | (00) + [11))/v2 = |Bw)

01) | (jo1) + |10Y)/v2Z = | Bor) T—H

10) | (]00) — |11))/v2 = |B) 1 ‘/8$y>
11) | (j01) — [10})/v2 = |81 J i

Figure 1.12. Quantum circuit to create Bell states, and its input—ouput quantum ‘truth table’.

_ [0,y) +(=1)*[1,9)

V2

Bry) =




Quantum teleportation

) H A= o
i A = n

X Me—

— )

) T T T
|%0) 1) |a)  |t3)

A
2y

Figure 1.13. Quantum circuit for teleporting a qubit. The two top lines represent Alice’s system, while the bottom

line 1s Bob’s system. The meters represent measurement, and the double lines coming out of them carry classical

bits (recall that single lines denote qubits).

the Bell states
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