量子信息导论 PHYS5251P

中国科学技术大学
 物理学院／合肥微尺度物质科学国家研究中心

陈凯
2024.4

第三章 量子关联表现

1．局域实在论
2．Bell不等式
3．量子游戏（Quantum Games）
4．Bell不等式检验
5．无不等式的Bell定理
6．多体Bell不等式
7．无漏洞Bell 不等式检验

Press release：The Nobel Prize in Physics 2022

English
English（pdf）
Swedish
Swedish（pdf）
KUNGL．
VETENSKAPS
AKADEMIEN
permal swasmathere of creacs

4 October 2022

The Royal Swedish Academy of Sciences has decided to award the Nobel Prize in Physics 2022 to

Alain Aspect

Institut d＇Optique Graduate School－Université Paris－
Saclay and École Polytechnique，Palaisean，France

John F．Clauser
J．F．Clauser \＆Assoc．，Walnut Creek，CA，USA

Anton Zeilinger
University of Vienna，Austria
＂for experiments with entangled photons，establishing the violation of Rell inequalities and pioneering quantum information science＂

Entangled states－from theory to technology

Alain Aspect，John Clauser and Anton Zeilinger have each conducted groundbreaking experiments using entangled quantum states，where two particles behave like a single unit even when they are separated．Their results have cleared the way for new technology based upon quantum information．

From left: John Clauser, Anton Zeilinger and Alain Aspect won this year's physics Nobel prize.

Nature | Vol 610| 13 October 2022| 241

PHYSICS NOBELFOR 'SPOOKY' OUANTUM ENTANGLEMENT

Award goes to three physicists whose research laid the groundwork for quantum information science.

相对论定域性与量子非定域性

测量时间：Δt
类空间隔：$L>c \Delta t$

相对论定域性
对一个粒子的测量
不会对另一个粒子产生影响

量子非定域性

对一个粒子的测量
会瞬间改变另一个粒子的状态

EPR \＆Bohm

＂遥远地点之间的诡异互动＂- －爱因斯坦

Plausible Propositions of EPR

＂Perfect Correlation（Quantum Prediction）
，Locality
，Reality
Completeness
中国科学技术大学 陈凯

David Bohm

Boris Podolsky Nathan Rosen

Einstein，Podolsky，and Rosen，Phys．Rev．47， 777 （1935）

EPR

（i）Perfect correlation．If the spins of particle A and B are measured along the same direction，then with certainty the outcomes will be found to be opposite．
（ii）Locality．＂Since at the time of measurement the two systems no longer interact，no real change can take place in the second system in consequence of anything that may be done to the first system．＇
（iii）Reality．＂If，without in any way disturbing a system，we can predict with certainty（i．e．，with probability equal to unity）the value of a physical quantity，then there exists an element of physical reality corresponding to this physical quantity．＂
（iv）Completeness．＂Every element of the physical reality must have a counterpart in the physical theory．＇

第三章 量子关联表现

1．局域实在论
2．Bell不等式
3．量子游戏（Quantum Games）
4．Bell不等式检验
5．无不等式的Bell定理
6．多体Bell不等式
7．无漏洞Bell 不等式检验

Bell不等式

John Bell

Quantum－Mechanically Violation

$$
|C(\hat{a}, \hat{b})-C(\hat{a}, \hat{c})|-C(\hat{b}, \hat{c})-1=1 / 2)
$$

中国科学技术大学 陈凯

Bell不等式

$$
\left|E\left(A_{1}, B_{1}\right)+E\left(A_{1}, B_{2}\right)+E\left(A_{2}, B_{1}\right)-E\left(A_{2}, B_{2}\right)\right| \leqslant 2
$$

$E\left(A_{i}, B_{j}\right)$ is the expectation value of the correlation experiment $A_{i} B_{j}$ ．

$$
\begin{aligned}
& \left|\operatorname{Tr}\left(\mathcal{B}_{\mathrm{CHSH}} \rho\right)\right| \leqslant 2 \\
& \mathcal{B}_{\mathrm{CHSH}}=\mathbf{A}_{1} \otimes\left(\mathbf{B}_{1}+\mathbf{B}_{2}\right)+\mathbf{A}_{2} \otimes\left(\mathbf{B}_{1}-\mathbf{B}_{2}\right)
\end{aligned}
$$

$$
\mathbf{A}_{1}=\mathbf{a}_{1} \cdot \boldsymbol{\sigma}, \mathbf{A}_{2}=\mathbf{a}_{2} \cdot \boldsymbol{\sigma}\left(\text { similarly for } \mathbf{B}_{1} \text { and } \mathbf{B}_{2}\right)
$$

Quantum formalism predicts the Cirel＇son inequality （Cirel＇son，1980）

$$
\left|\left\langle\mathcal{B}_{\mathrm{CHSH}}\right\rangle_{Q M}\right|=\left|\operatorname{Tr}\left(\mathcal{B}_{\mathrm{CHSH}} \rho\right)\right| \leq 2 \sqrt{2}
$$

Bell不等式

Bell made two key assumptions：

1．Each measurement reveals an objective physical property of the system．This means that the particle had some value of this property before the measurement was made，just as in classical physics．This value may be unknown to us（just as it is in statistical mechanics），but it is certainly there．

2．A measurement made by Alice has no effect on a measurement made by Bob and vice versa．This comes from the theory of relativity，which requires that any signal has to propagate at the（finite）speed of light．

Bell不等式

$$
\begin{aligned}
& E\left(A_{1} B_{1}\right)+E\left(A_{1} B_{2}\right)+E\left(A_{2} B_{1}\right)-E\left(A_{2} B_{2}\right) \\
= & E\left(A_{1} B_{1}+A_{1} B_{2}+A_{2} B_{1}-A_{2} B_{2}\right) \\
= & E\left(A_{1}\left(B_{1}+B_{2}\right)+A_{2}\left(B_{1}-B_{2}\right)\right) .
\end{aligned}
$$

The outcome of each experiment is ± 1 ，which leads to two cases：
－$B_{1}=B_{2}$ ．In this case $B_{1}-B_{2}=0$ and $B_{1}+B_{2}= \pm 2$ ，so $A_{1}\left(B_{1}+B_{2}\right)+A_{2}\left(B_{1}-B_{2}\right)= \pm 2 A_{1}= \pm 2$ ．
$-B_{1}=-B_{2}$ ．In this case $B_{1}+B_{2}=0$ and $B_{1}-B_{2}= \pm 2$ ， so $A_{1}\left(B_{1}+B_{2}\right)+A_{2}\left(B_{1}-B_{2}\right)= \pm 2 A_{2}= \pm 2$ ．

Bell不等式

In either case， $\mathrm{A}_{1} \mathrm{~B}_{1}+\mathrm{A}_{1} \mathrm{~B}_{2}+\mathrm{A}_{2} \mathrm{~B}_{1}-\mathrm{A}_{2} \mathrm{~B}_{2}= \pm 2$ ．We therefore obtain the following Bell＇s inequality：

$$
\begin{aligned}
& E\left(A_{1} B_{1}\right)+E\left(A_{1} B_{2}\right)+E\left(A_{2} B_{1}\right)-E\left(A_{2} B_{2}\right) \\
= & E\left(A_{1} B_{1}+A_{1} B_{2}+A_{2} B_{1}-A_{2} B_{2}\right) \\
= & \sum_{a_{1}, a_{2}, b_{1}, b_{2}} p\left(a_{1}, a_{2}, b_{1}, b_{2}\right)\left(a_{1} b_{1}+a_{1} b_{2}+a_{2} b_{1}-a_{2} b_{2}\right) \\
\leq & 2
\end{aligned}
$$

纯态和Bell不等式

$$
\begin{aligned}
& \left|\psi^{A B}\right\rangle=a|00\rangle+b|11\rangle \\
& \left|\psi^{A B}\right\rangle=a(|00\rangle+|11\rangle)+(b-a)|11\rangle
\end{aligned}
$$

引入么正变换和辅助量子态

$$
\begin{aligned}
& \left|0^{A}\right\rangle\left|\psi^{A B}\right\rangle \\
& U^{A}|0\rangle|0\rangle=|0\rangle|0\rangle \\
& U^{A}|0\rangle|1\rangle=\alpha|0\rangle|1\rangle+\beta|1\rangle|0\rangle
\end{aligned}
$$

纯态和Bell不等式

When Alice applies the unitary operation locally to her qubits， we obtain

$$
\begin{aligned}
U^{A} \otimes I^{B}\left(\left|0^{A}\right\rangle\left|\psi^{A B}\right\rangle\right) & =a|000\rangle+b(\alpha|011\rangle+\beta|101\rangle) \\
& =|0\rangle(a|00\rangle+b \alpha|11\rangle)+b \beta|101\rangle
\end{aligned}
$$

Therefore，if we tailor the unitary transformation so that $\mathrm{a}=$ ba，then if Alice measures her ancillary qubit in the state $\mid 0>$ ，the state that she shares with Bob is maximally entangled．

So what we have shown is that by a local unitary transformation followed by a measurement，Alice can convert any nonmaximally entangled pure state into a maximally entangled pure state（with some nonzero probability）．

混合态和Bell不等式

Mixed states may not violate Bell＇s inequalities
The Werner states are defined as mixtures of Bell states， where the degree of mixing is determined by a parameter F （which really stands for＂fidelity＂）：

$$
\varrho_{\mathrm{W}}=F\left|\Psi^{-}\right\rangle\left\langle\Psi^{-}\right|+\frac{1-F}{3}\left(\left|\Psi^{+}\right\rangle\left\langle\Psi^{+}\right|+\left|\Phi^{+}\right\rangle\left\langle\Phi^{+}\right|+\left|\Phi^{-}\right\rangle\left\langle\Phi^{-}\right|\right)
$$

where $0 \leq \mathrm{F} \leq 1$ ．When $\mathrm{F}=1 / 2$ ，we can write it as

$$
\begin{aligned}
\varrho_{\mathrm{W}} & =\frac{1}{6}\left(\left|\Psi^{-}\right\rangle\left\langle\Psi^{-}\right|+\left|\Psi^{+}\right\rangle\left\langle\Psi^{+}\right|\right)+\frac{1}{6}\left(\left|\Psi^{-}\right\rangle\left\langle\Psi^{-}\right|+\left|\Phi^{+}\right\rangle\left\langle\Phi^{+}\right|\right) \\
& +\frac{1}{6}\left(\left|\Psi^{-}\right\rangle\left\langle\Psi^{-}\right|+\left|\Phi^{-}\right\rangle\left\langle\Phi^{-}\right|\right)
\end{aligned}
$$

混合态和Bell不等式

Mixed states may not violate Bell＇s inequalities
The Werner states for $\mathrm{F}=1 / 2$ is separable．
An equal mixture of any two maximally entangled states is a separable state．

$$
(1 / 2)\left(\left|\Phi^{+}\right\rangle\left\langle\Phi^{+}\right|+\left|\Phi^{-}\right\rangle\left\langle\Phi^{-}\right|\right)
$$

is equivalent to

$$
(1 / 2)(|00\rangle\langle 00|+|11\rangle\langle 11|)
$$

－The Werner states are entangled for $\mathrm{F}>1 / 2$ ；
－The Werner states violates Bell＇s inequalities when F＞ 0.78 ；
－The Werner states does not violate any Bell＇s inequalities when $\mathrm{F} \quad 5 / 8=0.625$ when the correlations result from projective measurements．

第三章 量子关联表现

1．局域实在论
2．Bell不等式
3．量子游戏（Quantum Games）
4．Bell不等式检验
5．无不等式的Bell定理
6．多体Bell不等式
7．无漏洞Bell 不等式检验

Nonlocal games

Here，the referee chooses a pair of questions（ r ；s） （according to some prespecied distribution），sends r to Alice and s to Bob，and Alice and Bob answer with a and b， respectively．The referee evaluates some predicate on（r；s； $a ; b)$ to determine if they win or lose．

[^0]
The GHZ game

$r s t$	$a \oplus b \oplus c$
000	0
011	1
101	1
110	1

They win if $\quad a \oplus b \oplus c=r \vee s \vee t \quad$ and lose otherwise．

GHZ game

The winning conditions can be expressed by the four equations

$$
\begin{aligned}
& a_{0} \oplus b_{0} \oplus c_{0}=0 \\
& a_{0} \oplus b_{1} \oplus c_{1}=1 \\
& a_{1} \oplus b_{0} \oplus c_{1}=1 \\
& a_{1} \oplus b_{1} \oplus c_{0}=1
\end{aligned}
$$

Adding the four equations modulo 2 gives $0=1, a$ contradiction．This means it is not possible for a deterministic strategy to win every time，so the probability of winning can be at most 3／4

GHZ game

Suppose that the three players share the entangled state

$$
|\psi\rangle=\frac{1}{2}|000\rangle-\frac{1}{2}|011\rangle-\frac{1}{2}|101\rangle-\frac{1}{2}|110\rangle
$$

Each player will use the same strategy：
1．If the question is $q=1$ ，then the player performs a Hadamard transform on their qubit of the above state．（If $q=0$ ，the player does not perform a Hadamard transform．）
2．The player measures their qubit in the standard basis and returns the answer to the referee．

GHZ game

There are two cases：
Case 1：rst＝000．In this case the players all just measure their qubit，and it is obvious that the results satisfy $a \oplus b \oplus c=0$ as required．
Case 2：r s $t \in\{011 ; 101 ; 110\}$ ．All three possibilities will work the same way by symmetry，so let us assume rst＝011．Notice that

$$
\begin{aligned}
& |\psi\rangle=\frac{1}{\sqrt{2}}|0\rangle\left(\frac{1}{\sqrt{2}}|00\rangle-\frac{1}{\sqrt{2}}|11\rangle\right)-\frac{1}{\sqrt{2}}|1\rangle\left(\frac{1}{\sqrt{2}}|01\rangle+\frac{1}{\sqrt{2}}|10\rangle\right) \\
& \quad=\frac{1}{\sqrt{2}}|0\rangle\left|\phi^{-}\right\rangle-\frac{1}{\sqrt{2}}|1\rangle\left|\psi^{+}\right\rangle . \\
& (H \otimes H)\left|\phi^{-}\right\rangle=\left|\psi^{+}\right\rangle \quad \text { and } \quad(H \otimes H)\left|\psi^{+}\right\rangle=\left|\phi^{-}\right\rangle \\
& (I \otimes H \otimes H)|\psi\rangle=\frac{1}{\sqrt{2}}|0\rangle\left|\psi^{+}\right\rangle-\frac{1}{\sqrt{2}}|1\rangle\left|\phi^{-}\right\rangle=\frac{1}{2}(|001\rangle+|010\rangle-|100\rangle+|111\rangle)
\end{aligned}
$$

When they measure，the results satisfy $a \oplus b \oplus c=1$ as required．We have therefore shown that there is a quantum strategy that wins every time．中国科学抜林大学 8 栋蚬

The CHSH game

The referee chooses questions r s $\in\{00 ; 01 ; 10 ; 11\}$ uniformly， and Alice and Bob must each answer a single bit：a for Alice，b for Bob．

$r s$	$a \oplus b$
00	0
01	0
10	0
11	1

They win if $\quad a \oplus b=r \wedge s \quad$ and lose otherwise．
By similar reasoning to the GHZ game，the maximum probability with which a classical strategy can win is $3 / 4$ ．

Andreas Winter，Quantum mechanics：The usefulness of

The CHSH game

The referee chooses questions $r s \in\{00 ; 01 ; 10 ; 11\}$ uniformly，and Alice and Bob must each answer a single bit：a for Alice，b for Bob．

$$
|\psi\rangle=(|00\rangle+|11\rangle) / \sqrt{2}
$$

Define

$$
\begin{aligned}
\left|\phi_{0}(\theta)\right\rangle & =\cos (\theta)|0\rangle+\sin (\theta)|1\rangle \\
\left|\phi_{1}(\theta)\right\rangle & =-\sin (\theta)|0\rangle+\cos (\theta)|1\rangle
\end{aligned} \quad \theta \in[0,2 \pi)
$$

If Alice receives the question 0 ，she will measure her qubit with respect to the basis

$$
\left\{\left|\phi_{0}(0)\right\rangle,\left|\phi_{1}(0)\right\rangle\right\}
$$

and if she receives the question 1，she will measure her qubit with respect to the basis

$$
\left\{\left|\phi_{0}(\pi / 4)\right\rangle,\left|\phi_{1}(\pi / 4)\right\rangle\right\}
$$

The CHSH game

The referee chooses questions $r s \in\{00 ; 01 ; 10 ; 11\}$ uniformly，and Alice and Bob must each answer a single bit：a for Alice，b for Bob．

$$
|\psi\rangle=(|00\rangle+|11\rangle) / \sqrt{2}
$$

Define

$$
\begin{aligned}
\left|\phi_{0}(\theta)\right\rangle & =\cos (\theta)|0\rangle+\sin (\theta)|1\rangle \\
\left|\phi_{1}(\theta)\right\rangle & =-\sin (\theta)|0\rangle+\cos (\theta)|1\rangle
\end{aligned} \quad \theta \in[0,2 \pi)
$$

Bob uses a similar strategy，except that he measures with respect to the basis：If Bob receives the question 0，he will measure her qubit with respect to the basis $\left\{\left|\phi_{0}(\pi / 8)\right\rangle,\left|\phi_{1}(\pi / 8)\right\rangle\right\}$
and if he receives the question 1，he will measure his qubit with respect to the basis $\left\{\left|\phi_{0}(-\pi / 8)\right\rangle,\left|\phi_{1}(-\pi / 8)\right\rangle\right\}$

The CHSH game

Then Alice＇s and Bob＇s observables are

$$
\begin{aligned}
A_{0} & =\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)=\sigma_{z} \quad \text { and } \quad A_{1}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)=\sigma_{x} \\
B_{0} & =\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)=H \quad \text { and } \quad B_{1}=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & -1 \\
-1 & -1
\end{array}\right)
\end{aligned}
$$

How well does the strategy？
Consider：

$$
\frac{1}{4}\langle\psi| A_{0} \otimes B_{0}+A_{0} \otimes B_{1}+A_{1} \otimes B_{0}-A_{1} \otimes B_{1}|\psi\rangle
$$

This is the probability that Alice and Bob win minus the probability they lose．

The CHSH game

From

$$
\langle\psi| A_{0} \otimes B_{0}|\psi\rangle=\langle\psi| A_{0} \otimes B_{1}|\psi\rangle=\langle\psi| A_{1} \otimes B_{0}|\psi\rangle=-\langle\psi| A_{1} \otimes B_{1}|\psi\rangle=\frac{1}{\sqrt{2}}
$$

we know that the probability of winning minus the probability of

This means the probability of winning is

$$
\frac{1}{2}+\frac{1}{2 \sqrt{2}}=\cos ^{2}(\pi / 8)
$$

Thus Alice and Bob will answer correctly with probability $\cos ^{2}(\pi / 8) \approx 0.85$ ，which is better than an optimal classical strategy that wins with probability $3 / 4$ ．
Is it possible to do better？

Tsirelson＇s bound

For any choice of observables A_{0}, A_{1}, B_{0} and B_{1} with eigenvalues in ［－1，1］and any state，

$$
\langle\psi| A_{0} \otimes B_{0}+A_{0} \otimes B_{1}+A_{1} \otimes B_{0}-A_{1} \otimes B_{1}|\psi\rangle \leq 2 \sqrt{2}
$$

Using the fact that

$$
\left\|A_{0}\right\|,\left\|A_{1}\right\|,\left\|B_{0}\right\|,\left\|B_{1}\right\| \leq 1
$$

$$
\begin{aligned}
\langle\psi| A_{0} \otimes B_{0}+A_{0} \otimes & B_{1}+A_{1} \otimes B_{0}-A_{1} \otimes B_{1}|\psi\rangle \\
& \leq \|\left(A_{0} \otimes B_{0}+A_{0} \otimes B_{1}+A_{1} \otimes B_{0}-A_{1} \otimes B_{1}\right)|\psi\rangle \| \\
& \leq \|\left(A_{0} \otimes\left(B_{0}+B_{1}\right)\right)|\psi\rangle\|+\|\left(A_{1} \otimes\left(B_{0}-B_{1}\right)\right)|\psi\rangle \| \\
& \leq \|\left(I \otimes B_{0}\right)|\psi\rangle+\left(I \otimes B_{1}\right)|\psi\rangle\|+\|\left(I \otimes B_{0}\right)|\psi\rangle-\left(I \otimes B_{1}\right)|\psi\rangle \| \\
& =\|\left|\phi_{0}\right\rangle+\left|\phi_{1}\right\rangle\|+\|\left|\phi_{0}\right\rangle-\left|\phi_{1}\right\rangle \|
\end{aligned}
$$

where

$$
\left|\phi_{b}\right\rangle=\left(I \otimes B_{b}\right)|\psi\rangle
$$

中国科学技术大学陈凯

Tsirelson＇s bound

By making use of

$$
\|\left|\phi_{b}\right\rangle \| \leq 1
$$

One has

$$
\|\left|\phi_{0}\right\rangle+\left|\phi_{1}\right\rangle\|+\|\left|\phi_{0}\right\rangle-\left|\phi_{1}\right\rangle \| \leq \sqrt{2+2 \Re\left\langle\phi_{0} \mid \phi_{1}\right\rangle}+\sqrt{2-2 \Re\left\langle\phi_{0} \mid \phi_{1}\right\rangle}=\sqrt{2+2 x}+\sqrt{2-2 x}
$$

for $x \in[-1,1]$ ．the maximum of this expression occurs at $x=0$ ，giving $2 \sqrt{2}$ as required．This lead 10 the best quantum strategy

Mermin-Peres magic square game

A Classical Mermin-P'ervs Magii- Square (MPMS) Game
The game involves two players, Alice and Bob, who place numbers in a
"magic square" (a three-by-three grid of numbers), with each grid element
being assigned the value +1 or -1 . "magic square" (a three-by-three grid
being assigned the value +1 or -1 .

Alice and Bob are separated and carnot communicate. A reteree, Charlie assigns a random row to Mlice and a randomt column to Bob

Alice and Bob insert a number, either +1 or -1 , in each of the three cells in their row or column such that the product of Alice's entries is +1 and that of liob's is -1 .

Both players win if they enter the same number in the

The Classical Conflict

It is impossible to complete the square and also adhere to the rules: All combinations have at least one conllict whare a person needs a +1 and the other needs a -1 . The best possitie outcome is to correctly fill eight of the nine cells.

Charlie assigns a random row to Alice and a random column to Bob. Alice and Bob assign qubit pairs to each cell in their assigned row or column.

How to Win Using "Pseudotelepathy"

Alice and Bob identify a strategy that allows them to correctly fill out all nine cells every time without the need for any communication once the game has begun. Using entangled qubits means that the information that allows them to coordinate their choices is already effectively encoded in the pairs of particles themselves.

The Particles
The strategy Alice and Bob take a qubit Alice measures her qubits and takes their utilizes two from each pair. Each qubit qubit pairs. in one pair is entangled with a quibit in the other.
product. The superpositions of +1 and -1 collapse, resulting in four possible states, each with equal probability.

Bob's result is set by Alice's measurement because of their qubit entanglement

The Entangulators
The players prepare many qubit quartets and store them in their "entangulators."

Alice's entangulator has Bob's buttons assign buttons that assign and and measure the measure the row inputs.

Now they are ready to play the gamel Charlie assigns a random row to Alice and a random column to Bob.
Alice pushes
her buttons to
assign qubit
pairs to her
row such that
their product
is +1

Magic Intersection

Now winning all of the nine rounds per magic square is 100 percent guaranteed. The qubit pairs' identical quantum state in the intersecting cell satisfies the rule that the entries of both players must match. Entanglement guarantees that their row or column product criterion will be satisfied.
 is +1
respective entries

Experimental demonstration of Mermin－Peres magic square game

PHYSICAI．REVIEW LETTERS 129， 050402 （2022）

Experimental Demonstration of Quantum Pseudotelepathy

Jia－Min Xue，${ }^{1.2}$ Yi－Zheng Zhene，${ }^{1,2}$ Yu－Xiang Yang，${ }^{3.4}$ Zi－Mo Cheng，${ }^{3,4}$ Zhi－Cheng Ren，${ }^{3.4}$ Kai Chen ${ }^{1,2^{*}}$ Xi－Lin Wang,3,4,1 and Hui－Tian Wang ${ }^{3,4 . t}$
${ }^{1}$ Hefei National Research Center for Physical Sciences at the Microscale and School of Physical Sciences， University of Science and Technology of China，Hefei 230026．China
CAS Centre for Excellence in Quantum Information and Quantum Physics，
University of Science and Technology of China，Hefei 230026，China
${ }^{3}$ National Laboratory of Solid State Microstructures，School of Physics，Nanjing University，Nanjing 210093，China ${ }^{4}$ Collaborative Innowation Center of Advanced Microstructures，Nanjing 210093，China
（1）（Received 8 February 2021；revised 29 April 2022；accepted 23 June 2022；published 26 July 2022）
Quantum pseudotelepathy is a strong form of nonlocality．Different from the conventional nonlocal games where quantum strategies win statistically，e．g．，the Clauser－Home－Shimony－Holt game，quantum pseudotelepathy in principle allows quantum players to with probability 1 ．In this Letter，we report a faithful experimental demonstration of quantum pseudotelepathy via playing the nonlocal version of Mermin－Peres magic square game，where Alice and Bob cooperatively fill in a 3×3 magic square．We adopt the hyperentanglement scheme and prepare photon pairs entangled in both the polarization and the orbital angular momentum degrees of freedom，such that the experiment is carried out in a resource－ efficient manner．Under the locality and fair－sampling assumption，our results show that quantum players can simultaneously win all the queries over any classical strategy．

DOI：10．1103／PhysRevLett． 129.050402

PHYSICAL REVIEW LETTLRS 129， 050102 （2022）

 az：l

TABLE II．Optimal quantum strategy．The X, Y ，and Z are three Pauli matrices．When receiving queries x and y ，Alice and Bob select the x th row（ y th column）of observables w measure their systems．They win all queries with probability 1 ．

Experimental demonstration of Mermin－Peres magic square game

Preparation of hyperentangled photon pairs （polarization vs．OAM）

Jia－Min Xu＊，Yi－Zheng Zhen＊，Yu－Xiang Yang，Zi－Mo Cheng，Zhi－ Cheng Ren，Kai Chen\＃，Xi－Lin Wang\＃，and Hui－Tian Wang\＃，Phys． Rev．Lett 129，050402（2022）．

1075930 rounds 1009610 Win！

All query pair is won with a probability higher than 8／9．

Researchers Use Quantum ＇Telepathy＇to Win an＇Impossible’ Game

A new playful demonstration of quantum pseudotelepathy could lead to advances in communication and computation

By Philip Ball on October 25， 2022

Cabello says the work shows a new wrinkle in what quantum rules make possible by mobilizing two sources of quantum advantage at the same time：one linked to nonlocality and the other linked to contextuality． Investigating the two effects simultaneously

https：／／www．science．org／content／article／reality－doesn－t－exist－until－you－measure－it－quantum－parlor－trick－confirms https：／／www．scientificamerican．com／article／researchers－use－quantum－telepathy－to－win－an－impossible－game／

Bell不等式检验

Experimental Realization of Einstein－Podolsky－Rosen－Bohm Gedankenexperiment： A New Violation of Bell＇s Inequalities

Alain Aspect，Philippe Grangier，and Gérard Roger
Institut d＇Optique Théorique et Appliquée，Laboratoire associé au Centre National de la Recherche Scientifique， Université Paris Sud，F－91406 Orsay，France
（Received 30 December 1981）

The linear－polarization correlation of pairs of photons emitted in a radiative cascade of calcium has been measured．The new experimental scheme，using two－channel polarizers （i．e．，optical analogs of Stern－Gerlach filters），is a straightforward transposition of Ein－ stein－Podolsky－Rosen－Bohm gedankenexperiment．The present results，in excellent agreement with the quantum mechanical predictions，lead to the greatest violation of gen－ eralized Bell＇s inequalities ever achieved．

FIG．1．Einstein－Podolsky－Rosen－Bohm gedankenex－ periment．Two－spin－$\frac{1}{2}$ particles（or photons）in a sing－ let state（or similar）separate．The spin components （or linear polarizations）of 1 and 2 are measured along $\overline{\mathrm{a}}$ and $\overline{\mathrm{b}}$ ．Quantum mechanics predicts strong correla－ tions between these measurements．

A．Aspect et al．，Experimental Realization of Einstein－Podolsky－Rosen－Bohm Gedankenexperiment：A New Violation of Bell＇s Inequalities，Phys．Rev．Lett．49， 91 （1982）．

第三章 量子关联表现

1．局域实在论
2．Bell不等式
3．量子游戏（Quantum Games）
4．Bell不等式检验
5．无不等式的Bell定理
6．多体Bell不等式
7．无漏洞Bell 不等式检验

Bell不等式检验

A typical CHSH experiment

FIG．2．Experimental setup．Two polarimeters I and II，in orientations $\overrightarrow{\mathrm{a}}$ and $\overrightarrow{\mathrm{b}}$ ，perform true dichotomic measurements of linear polarization on photons ν_{1} and ν_{2} ．Each polarimeter is rotatable around the axis of the incident beam．The counting electronics monitors the singles and the coincidences．

John Bell（1928－1990）

$$
S_{\text {expt }}=2.697 \pm 0.015
$$

A．Aspect et al．，Experimental Realization of Einstein－Podolsky－Rosen－Bohm Gedankenexperiment：A New Violation of Bell＇s Inequalities，Phys．Rev．Lett．49， 91 （1982）．

Bell不等式检验

Shimony：

Most of the dozens of experiments performed so far have favored Quantum Mechanics，but not decisively because of the＇detection loopholes＇or the＇communication loophole．＇The latter has been nearly decisively blocked by a recent experiment and there is a good prospect for blocking the former．

2004 Stanford Encyclopedia overview article

Bell不等式检验：two－qubit

An n－qubit state can be written as

$$
\rho=\frac{1}{2^{n}} \sum_{i_{1} \cdots i_{n}=0}^{3} t_{i_{1} \cdots i_{n}} \sigma_{i_{1}}^{1} \otimes \cdots \otimes \sigma_{i_{1}}^{n}
$$

The set of real coefficients forms a correlation tensor T_{ρ}
In particular，for the two－qubit system the 3x3－dimensional tensor is given by

$$
t_{i j}:=\operatorname{Tr}\left[\rho\left(\sigma_{i} \otimes \sigma_{j}\right)\right]
$$

Bell不等式检验：two－qubit

An 2－qubit state can be written as

$$
\begin{aligned}
& \varrho=\frac{1}{4}\left(I \otimes I+\boldsymbol{r} \cdot \boldsymbol{\sigma} \otimes I+I \otimes \boldsymbol{s} \cdot \boldsymbol{\sigma}+\sum_{n, m=1}^{3} t_{n m} \boldsymbol{\sigma}_{n} \otimes \sigma_{m}\right) \\
& \mathcal{B}_{\mathrm{CHSH}}=\hat{\boldsymbol{a}} \cdot \boldsymbol{\sigma} \otimes\left(\hat{\boldsymbol{b}}+\hat{\boldsymbol{b}}^{\prime}\right) \cdot \boldsymbol{\sigma}+\hat{\boldsymbol{a}}^{\prime} \cdot \boldsymbol{\sigma} \otimes\left(\hat{\boldsymbol{b}}-\hat{\boldsymbol{b}}^{\prime}\right) \cdot \boldsymbol{\sigma} \\
& \left|\left\langle\mathcal{B}_{\mathrm{CHSH}}\right\rangle_{\rho}\right| \leqslant 2
\end{aligned}
$$

One has

$$
\begin{aligned}
& 2 \sqrt{M(\varrho)}=\left\langle\mathcal{B}_{\text {max }}\right\rangle_{e}=\max _{\mathcal{B}_{\text {CHSK }}}\left|\left\langle\mathcal{B}_{\text {CHSH }}\right\rangle_{e}\right| \\
& M(\varrho):=\max _{\hat{\boldsymbol{\varepsilon}, \tilde{c}^{\prime}}}\left(\left\|T_{\hat{e}^{\hat{e}}}\right\|^{2}+\left\|T_{e} \hat{e}^{\prime}\right\|^{2}\right)=u+\tilde{u}
\end{aligned}
$$

Here u and \tilde{u} are the two largest eigenvalues of $T^{T}{ }_{\rho} T_{\rho}$
Horodecki，R．；Horodecki，P．；Horodecki，M．
Violating Bell inequality by mixed spin－1／2 states：necessary and sufficient condition，
Physics Letters A，Volume 200，Issue 5，May 1995，Pages 340－344
中国科学技术大学陈凯

Clauser－Horne－Shimony－Holt 不等式

Clauser et al．，
Phys．Rev．Lett．23， 880 （1969）

Without perfect correlation！

All entangled pure states violate the CHSH inequality！

$$
\text { N. Gisin, Phys. Lett. A 154, } 201 \text { (1991) }
$$

第三章 量子关联表现

1．局域实在论
2．Bell不等式
3．量子游戏（Quantum Games）
4．Bell不等式检验
5．无不等式的Bell定理
6．多体Bell不等式
7．无漏洞Bell 不等式检验

Greenberger-Horne-Zeilinger

Greenberger et al., Am. J. Phys. 58, 1131 (1990)

$$
\begin{gathered}
\text { LHV } \\
\\
A(\lambda, \hat{x}) B(\lambda, \hat{x}) C(\lambda, \hat{x})=-1 \\
A(\lambda, \hat{x}) B(\lambda, \hat{y}) C(\lambda, \hat{y})=+1 \\
A(\lambda, \hat{y}) B(\lambda, \hat{x}) C(\lambda, \hat{y})=+1 \\
A(\lambda, \hat{y}) B(\lambda, \hat{y}) C(\lambda, \hat{x})=+1
\end{gathered}
$$

D. Greenberger, M. Horne, and A. Zeilinger in front of the GHZ experimental design at Anton Zeilinger's lab in Vienna.

Bell＇s theorem without inequalities

$$
\begin{aligned}
& |\Psi\rangle_{\mathrm{GHZ}}=\frac{1}{\sqrt{2}}\left(|0\rangle_{A}|0\rangle_{B}|0\rangle_{E}-|1\rangle_{A}|1\rangle_{B}|1\rangle_{E}\right) \\
& X_{A} \otimes X_{B} \otimes X_{E}|\Psi\rangle_{\mathrm{GHZ}}=-|\Psi\rangle_{\mathrm{GHZ}} \\
& X_{A} \otimes Y_{B} \otimes Y_{E}|\Psi\rangle_{\mathrm{GHZ}}=|\Psi\rangle_{\mathrm{GHZ}} \\
& Y_{A} \otimes X_{B} \otimes Y_{E}|\Psi\rangle_{\mathrm{GHZ}}=|\Psi\rangle_{\mathrm{GHZ}} \\
& Y_{A} \otimes Y_{B} \otimes X_{E}|\Psi\rangle_{\mathrm{GHZ}}=|\Psi\rangle_{\mathrm{GHZ}} \\
& \\
& x_{A} x_{B} x_{E}=-1, \\
& x_{A} y_{B} y_{E}=+1, \\
& y_{A} x_{B} y_{E}=+1, \\
& y_{A} y_{B} x_{E}=+1
\end{aligned}
$$

But these relations are not mutually consistent！

Bell test

Correlation functions

$$
E\left(a_{i}, b_{j}\right)=\langle\psi| \vec{\sigma} \cdot \hat{n}_{a_{i}} \otimes \vec{\sigma} \cdot \hat{n}_{b_{j}}|\psi\rangle
$$

For a maximally entangled state $\quad|\psi\rangle=(|01\rangle-|10\rangle) / \sqrt{2}$

$$
E\left(a_{i}, b_{j}\right)=-\cos \theta_{a_{i} b_{j}}=-\cos \left(\theta_{i}^{a}-\theta_{j}^{b}\right)
$$

With appropriate angles

$$
\theta_{1}^{a}=\frac{\pi}{2}, \theta_{2}^{a}=0, \theta_{1}^{b}=\frac{\pi}{4}, \theta_{2}^{b}=\frac{3 \pi}{4}
$$

Bell test

$$
\begin{gathered}
E_{11}\left(\theta_{1}^{a}, \theta_{1}^{b}\right)=-\cos \left(\theta_{1}^{a}-\theta_{1}^{b}\right)=-\cos \frac{\pi}{4}=-\frac{1}{\sqrt{2}} \\
E_{12}\left(\theta_{1}^{a}, \theta_{2}^{b}\right)=-\cos \left(\theta_{1}^{a}-\theta_{2}^{b}\right)=-\cos \left(-\frac{\pi}{4}\right)=-\frac{1}{\sqrt{2}} \\
E_{21}\left(\theta_{2}^{a}, \theta_{1}^{b}\right)=-\cos \left(\theta_{2}^{a}-\theta_{1}^{b}\right)=-\cos \left(-\frac{\pi}{4}\right)=-\frac{1}{\sqrt{2}} \\
E_{22}\left(\theta_{2}^{a}, \theta_{2}^{b}\right)=-\cos \left(\theta_{2}^{a}-\theta_{2}^{b}\right)=-\cos \left(-\frac{3 \pi}{4}\right)=\frac{1}{\sqrt{2}} \\
E_{11}+E_{12}+E_{21}-E_{22}=-2 \sqrt{2}
\end{gathered}
$$

One verifies that the CHSH inequality is violated！

纯态的一般结果

Gisin＇s theorem：every pure bipartite entangled state in two dimensions violates the CHSH inequality．

N．Gisin，Phys．Lett．A 154， 201 （1991）；
N．Gisin and A．Peres，Phys．Lett．A 162， 15 （1992）．

```
Bell's inequality holds for all non-product states
N.Gisin
```



```
Received 4 Fetruary 199%; accepped for putication 7 Fetrary 1991
Cemmunicated by J.P. Vigiet
We prove that any not－prodect state of imo－particle syatems vidates a Bell inequality．
```

In 1964 Bell［1］surprised many physicists by proving that there are states of two－quantum－particle systems that do not satisfy a certain inequality which be derived from very plausible assumptions abou locality and realism in the spirit of Einstein．A bug literature has covered lots of aspects，ranging from philosophy to experimental physics，of the new field opened by Bell＇s 1964 paper．Sec，for instance，the valuable mark review of Clauser and Shimony［2］， and the more recent reviews by Greenberger and 00 workers［3］，and by Mermin（4）．The two latter re－ views also contain the more recent results on a ver－ sion of Bell＇s result without inequalities，but valid only for systems with more than two particles．
It is well known that not all states of two－particie systems violate the Bell inequality＂，the product states，for instance，do satisfy the inequality．In this brief note I prove that the product states are the only states that do not violate any Bell inequality．Whe I had the chance to discuss this equivaleace betwee states that viotate the inequality＂and＂entanele states＂（i．e．＂non－product states＂）with John Bell last September，just before his sudden tragic death，I was surprised that he did not know this result．This mo fivates me to present today this bitle note which have had on my shelves for many years and whic may be part of the＂foiklore＂，known to many people but（apparently）never published．I would like t dedicate this Letter to John Bell，not only as the pe

There are many Bellimanilime，we wal use cae due to Cla ste，Horse．Shimeny and Holr（ 5 ）．
son who discovered the inequality and thus opened the field of＂experimental methaphysics＂，but also as the man who taught me so much during our discus－ sions and who amazed me many times by his ca－ pability to immediately focus on the central poin under investigation．

Theorem．Let $\psi \in x_{1} \otimes x_{2}$ ，If ψ is entangled（i．e．ψ is not a product），then ψ violates the Bell inequality， that is there are projectiors $a, a^{\prime}, b, b^{\prime}$ ，such that

$$
\left|P(a, b)-P\left(a_{,}, b^{\prime}\right)\right|+P\left(a^{\prime}, b\right)+P\left(a^{\prime}, b^{\prime}\right)>2,
$$

where

$P(a, b)=\langle(2 a-1) \otimes(2 b-1)\rangle_{V}$.
Proof．Let $\left\{\varphi_{i}\right\}$ and $\left\{\theta_{1}\right\}$ be orthonormal bases of ψ_{1} and π ，respectively，such that
$\psi=\sum c_{1}, \phi_{1} \otimes \theta_{1}$,
for some real c_{n} with $c_{1} \neq 0 \neq c_{2}$ ．Notice that the above sum runs over only one index（polar or Schmidt de－ composition）：the existence of two non－zero c_{i}^{\prime} comes from the entanglement of ψ ．One has

$y=x+x_{1}$ ．

where
$\chi=c_{1} \varphi_{1} \otimes \theta_{1}+c_{2} \phi_{2} \otimes \theta_{2} \in \mathrm{C}^{2} \otimes \mathrm{C}^{3}$
and $x_{1} \perp x^{\prime}$

纯态的一般结果

Popescu and Rohrlich showed that any n－partite pure entangled state can always be projected onto a two－ partite pure entangled state by projecting $n-2$ parties onto appropriate local pure states．

Popescu，S．，and D．Rohrlich，1992，Phys．Lett．A 166， 293

Open problem：Whether the Gisin theorem can be generalized without postselection for an arbitrary n－partite pure entangled state？

Kai Chen，Sergio Albeverio，and Shao－Ming Fei，Phys．Rev．A 74， 050101 （2006）
Sixia Yu et al．，Phys．Rev．Lett．109， 120402 （2012）

第三章 量子关联表现

1．局域实在论
2．Bell不等式
3．量子游戏（Quantum Games）
4．Bell不等式检验
5．无不等式的Bell定理
6．多体Bell不等式
7．无漏洞Bell 不等式检验

Multi－partite Bell inequalities

－Mermin－Ardehali－Belinskii－Klyshko［MABK］type（1990～1993）

$$
\begin{aligned}
& F=\int d \lambda \rho(\lambda) \frac{1}{2 i}\left(\prod_{j=1}^{n}\left(E_{x}^{j}+i E_{y}^{j}\right)-\prod_{j=1}^{n}\left(E_{x}^{j}-i E_{y}^{j}\right)\right) \\
& F \leq 2^{n / 2}, n \text { even, } \\
& F \leq 2^{(n-1) / 2}, n \text { odd }
\end{aligned}
$$

－Werner，Wolf，Zukowski，Brukner［WWZB］（2001）

$$
\begin{aligned}
& B=\sum_{s} \beta(s) \prod_{k=1}^{n} A_{k}\left(s_{k}\right) \\
&=\frac{1}{2} B_{0}\left[A_{n}(0)+A_{n}(1)\right]+\frac{1}{2} B_{1}\left[A_{n}(0)-A_{n}(1)\right] \\
& \operatorname{tr}(\rho B):=\operatorname{tr}\left[\rho \sum_{s} \beta(s) \otimes_{k=1}^{n} A_{k}\left(s_{k}\right)\right] \leqslant 1
\end{aligned}
$$

Multi－partite Bell inequalities

The WWZB inequalities are given by linear combinations of the correlation expectation values

$$
\begin{gathered}
\sum_{k} f(k) E(k) \leqslant 2^{n} f(k)=\sum_{s} S(s)(-1)^{\langle k, s\rangle} \\
s=s_{1} \cdots s_{n} \in\{-1,1\}^{n} \\
S\left(s_{1} \cdots s_{n}\right)= \pm 1 ;\langle k, s\rangle=\sum_{j=1}^{n} k_{j} s_{j}
\end{gathered}
$$

Correlation function

$$
E(k)=\left\langle\prod_{j=1}^{n} A_{j}\left(k_{j}\right)\right\rangle_{\mathrm{av}}
$$

There are $2^{2^{n}}$ different functions $S(s)$ ，and correspondingly
$2^{2^{n}}$ inequalities．R．F．Werner and M．M．Wolf，Phys．Rev．A 64， 032112 （2001）．
中国科学技术大学 陈凯
M．Zukowski and C．Brukner，Phys．Rev．Lett．88， 210401 （2002）．

Multi－partite Bell inequalities

In particular putting

$$
S\left(s_{1} \cdots s_{n}\right)=\sqrt{2} \cos \left[-\pi / 4+\left(s_{1}+\cdots+s_{n}-n\right) \pi / 4\right]
$$

one recovers the Mermin－type inequalities，and for $n=2$ the CHSH inequality follows．

Fortunately，the set of linear inequalities is equivalent to a single nonlinear inequality

$$
\sum_{s}\left|\sum_{k}(-1)^{k(s, s)} E(k)\right| \leqslant 2^{\prime \prime}
$$

which characterizes the structure of the accessible classical region for the correlation function for n－partite systems，a hyperoctahedron in 2^{n} dimensions，as the unit sphere of the Banach space

The generalized GHZ states

$$
|\psi\rangle=\cos \alpha|0, \ldots, 0\rangle+\sin \alpha|1, \ldots, 1\rangle
$$

with

$$
0 \leq \alpha \leq \pi / 4
$$

When $\sin 2 \alpha \leq 1 / \sqrt{2^{N-1}}$ and N odd
these states are proved to satisfy all the standard inequalities． This is rather surprising as they are a generalization of the GHZ states which maximally violate the MABK inequalities．

Bell Inequalities for 3 qubits

3－qubit Zukowski－Brukner inequality

$$
Q\left(A_{1} B_{1} C_{2}\right)+Q\left(A_{1} B_{2} C_{1}\right)+Q\left(A_{2} B_{1} C_{1}\right)-Q\left(A_{2} B_{2} C_{2}\right) \leq 2
$$

3－qubit Bell inequality developed by Chen－Wu－Kwek－Oh

$$
\begin{aligned}
& Q\left(A_{1} B_{1} C_{1}\right)-Q\left(A_{1} B_{2} C_{2}\right)-Q\left(A_{2} B_{1} C_{2}\right)-Q\left(A_{2} B_{2} C_{1}\right)+2 Q\left(A_{2} B_{2} C_{2}\right) \\
& -Q\left(A_{1} B_{1}\right)-Q\left(A_{1} B_{2}\right)-Q\left(A_{2} B_{1}\right)-Q\left(A_{2} B_{2}\right)+Q\left(A_{1} C_{1}\right)+Q\left(A_{1} C_{2}\right) \\
& +Q\left(A_{2} C_{1}\right)+Q\left(A_{2} C_{2}\right)+Q\left(B_{1} C_{1}\right)+Q\left(B_{1} C_{2}\right)+Q\left(B_{2} C_{1}\right)+Q\left(B_{2} C_{2}\right) \leq 4
\end{aligned}
$$

where $Q\left(A_{i} B_{j} C_{k}\right)$ are three－particle correlation functions defined as $Q\left(A_{i} B_{j} C_{k}\right)=\left\langle A_{i} B_{j} C_{k}\right\rangle_{\text {avg }}$ after many runs of experiments． Similar definition for two－particle correlation functions

$$
Q\left(A_{i} B_{j}\right)=\left\langle A_{i} B_{j}\right\rangle_{\text {avg }} \quad Q\left(A_{i} C_{k}\right)=\left\langle A_{i} C_{k}\right\rangle_{\text {avg }} \quad Q\left(B_{j} C_{k}\right)=\left\langle B_{j} C_{k}\right\rangle_{\text {avg }}
$$

J．L．Chen，C．F．Wu，L．C．Kwek，and C．H．Oh，Phys．Rev．Lett．93， 140407 （2004）

Bell Inequalities for 3 qubits

All pure 2－entangled states of a three－qubit system violate a Bell inequality for probabilities．

Numerical evidence！

FIG．1．Numerical results for the generalized GHZ states $|\psi\rangle_{\mathrm{GHZ}}=\cos \xi|000\rangle+\sin \xi|111\rangle$ ，which violate a Bell inequal－ ity for probabilities（6）except $\xi=0$ and $\pi / 2$ ．For the GHZ state with $\xi=\pi / 4$ ，the Bell quantity reaches its maximum value $\frac{3}{8}(4+3 \sqrt{3})$ ．

J．L．Chen，C．F．Wu，L．C．Kwek，and C．H．Oh，Phys．Rev．Lett．93， 140407 （2004）中国科学技术大学陈凯

New Bell Inequalities for N qubits

$$
\begin{aligned}
& \mathcal{B}=\mathcal{B}_{N-1} \otimes \frac{1}{2}\left(A_{N}+A_{N}^{\prime}\right)+1_{N-1} \otimes \frac{1}{2}\left(A_{N}-A_{N}^{\prime}\right), \\
& \mathcal{B}_{N-1}= \frac{1}{2^{N-1}} \sum_{s_{1}, \ldots, s_{N-1}=-1,1} S\left(s_{1}, \ldots, s_{N-1}\right) \\
& \times \sum_{k_{1}} s_{1}^{k_{1}-1} \cdots s_{N-1}^{k_{N-1}-1} \otimes_{j=1}^{N-1} O_{j}\left(k_{j}\right), \\
&\left|\langle\mathcal{B}\rangle_{\mathrm{LHV}}\right|= \frac{1}{2}\left|\left\langle\mathcal{B}_{N-1}\left(A_{N}+A_{N}^{\prime}\right)+\left(A_{N}-A_{N}^{\prime}\right)\right\rangle_{\mathrm{LHV}}\right| \leq 1
\end{aligned}
$$

$$
O_{j}(1)=A_{j}
$$

$$
O_{j}(2)=A_{j}^{\prime} \text { with } k_{j}=1,2
$$

－They recover the standard Bell inequalities as a special case；
－They provide an exponentially increasing violation for GHZ states
－They essentially involve only two measurement settings per observer
－They yield violation for the generalized GHZ states in the whole region of for any number of qubits

Kai Chen，Sergio Albeverio，and Shao－Ming Fei，Phys．Rev．A 74，050101（R）（2006）中国科学技术大学 陈凯

Multipartite Bound Entangled States that Violate Bell＇s Inequality

$$
\begin{aligned}
& \rho_{N}=\frac{1}{N+1}\left(|\Psi\rangle\langle\Psi|+\frac{1}{2} \sum_{k=1}^{N}\left(P_{k}+\bar{P}_{k}\right)\right) \\
& |\Psi\rangle=\frac{1}{\sqrt{2}}\left(\left|0^{\otimes N}\right\rangle+e^{i \alpha_{N}}\left|1^{\otimes N}\right\rangle\right)
\end{aligned}
$$

Denoted by P_{k} a projector on the state

$$
\left|\phi_{k}\right\rangle=|0\rangle_{A_{1}}|0\rangle_{A_{2}} \ldots|1\rangle_{A_{k}} \ldots|0\rangle_{A_{N-1}}|0\rangle_{A_{N}}
$$

Fact：（i）the states are bound entangled，i．e．，nonseparable and nondistillable if the number of parties $N \geq 4$ ；（ii）the states violate the Mermin－Klyshko inequality if the number of parties $\mathrm{N} \geq 8$ and thus cannot be described by a LHV model．

This implies that（i）violation of Bell＇s inequality is not a sufficient condition for distillability and（ii）some bound entangled states cannot be described by a local hidden variable model．

Bipartite Bound Entangled States that Violate Bell＇s Inequality

Figure 1｜Relation between different fundamental manifestations of quantum entanglement．Bell nonlocality，non－positivity under partial transposition，and entanglement distillability represent three facets of the phenomenon of entanglement．Understanding the connection between these concepts is a longstanding problem．It is well known that entanglement distillability implies both nonlocality ${ }^{25}$ and non－positive partial transpose ${ }^{17}$ ．Peres ${ }^{21}$ conjectured that nonlocality implies non－ positivity under partial transposition and entanglement distillability；hence represented by the dashed arrows．The main result of the present work is to show that this conjecture is false，as indicated by the red crosses．To complete the diagram，it remains to be seen whether non－positive partial transpose implies distillability，one of the most important open questions in entanglement theory $y^{45,46}$ ．If this conjecture turns out to be false，it would remain to be seen whether non－positive partial transpose implies Bell nonlocality．
Vértesi，T．\＆Brunner，N．Disproving the Peres conjecture by showing Bell nonlocality from bound entanglement．Nat．Commun．5：5297 doi：10．1038／ncomms6297（2014）．
中国科学技术大学 陈凯

Quadratic Bell Inequalities as Tests for Multipartite Entanglement

Denote the spin observables on particle $\mathrm{j}, \mathrm{j}=1, \ldots, \mathrm{n}$ ，as $\mathrm{A}_{\mathrm{j}}, \mathrm{A}_{\mathrm{j}}^{\prime}$ ．Further， S_{n} stands for the set of all n－particle states，and $S_{n}{ }^{n-1}$ for its subset of those states which are at most n－1－partite entangled．

For arbitrary quantum states

$$
\forall \rho \in S_{n}: \quad\left\langle S_{n}^{+}\right\rangle_{\rho}^{2}+\left\langle S_{n}^{-}\right\rangle_{\rho}^{2} \leq 2^{2 n-1}
$$

Consider an n－particle state of the form $\rho_{1, \ldots, n-1} \otimes \rho_{n}$

$$
\begin{aligned}
\left\langle S_{n}^{+}\right\rangle^{2}+\left\langle S_{n}^{-}\right\rangle^{2} & =\left\langle S_{n-1}^{+} A_{n}-S_{n-1}^{-} A_{n}^{\prime}\right\rangle^{2}+\left\langle S_{n-1}^{-} A_{n}+S_{n-1}^{+} A_{n}^{\prime}\right\rangle^{2} \\
& =\left(\left\langle A_{n}\right\rangle\left\langle S_{n-1}^{+}\right\rangle-\left\langle A_{n}^{\prime}\right\rangle\left\langle S_{n-1}^{-}\right\rangle\right)^{2}+\left(\left\langle A_{n}\right\rangle\left\langle S_{n-1}^{-}\right\rangle+\left(\left\langle A_{n}^{\prime}\right\rangle\left\langle S_{n-1}^{+}\right\rangle\right)^{2}\right. \\
& =\left(\left\langle A_{n}\right\rangle^{2}+\left\langle A_{n}^{\prime}\right\rangle^{2}\right)\left(\left\langle S_{n-1}^{+}\right\rangle^{2}+\left\langle S_{n-1}^{-}\right\rangle^{2}\right) \leq 2 \sup _{\rho \in S_{n-1}}\left\langle S_{n-1}^{+}\right\rangle^{2}+\left\langle S_{n-1}^{-}\right\rangle^{2} \leq 2^{2 n-2}
\end{aligned}
$$

Jos Uffink，Phys．Rev．Lett．88， 230406 （2002）

Tight Multipartite Bell＇s Inequalities Involving Many Measurement Settings

$4 \times 4 \times 2$ inequalities

$$
\begin{aligned}
& \left\langle\left(C_{1}+C_{2}\right)\left[A_{1}\left(B_{1}+B_{2}\right)+A_{2}\left(B_{1}-B_{2}\right)\right]+\right. \\
& \left.\left(C_{1}-C_{2}\right)\left[A_{3}\left(B_{3}+B_{4}\right)+A_{4}\left(B_{3}-B_{4}\right)\right]\right\rangle_{\mathrm{avg}} \leq 4
\end{aligned}
$$

Let A_{i} with $i \in\{1 ; 2 ; 3 ; 4\}$ stand for the predetermined local realistic values for the first observer under the local setting B_{j} with $j \in\{1 ; 2 ; 3 ; 4\}$ for similar values for the second observer，and C_{k} with $k \in\{1 ; 2 ; 3 ; 4\}$ for the values for the third observer（for the given run of the experiment）．We assume that A_{i}, B_{j} ，and C_{k} can take values 1 or -1 ．

其推广的Bell不等式的一般构造可以被Generalized GHZ states破环！
W．Laskowski et al．，Phys．Rev．Lett．93， 200401 （2004）
中国科学技术大学陈凯

Bell－Klyshko Inequalities to Characterize Maximally Entangled States of n Qubits

$$
\mathcal{B}_{n}=\mathcal{B}_{n-1} \otimes \frac{1}{2}\left(A_{n}+A_{n}^{\prime}\right)+\mathcal{B}_{n-1}^{\prime} \otimes \frac{1}{2}\left(A_{n}-A_{n}^{\prime}\right)
$$

QM gives

$$
\mathcal{B}_{n}^{\prime}=\mathcal{B}_{n-1}^{\prime} \otimes \frac{1}{2}\left(A_{n}+A_{n}^{\prime}\right)-\mathcal{B}_{n-1} \otimes \frac{1}{2}\left(A_{n}-A_{n}^{\prime}\right)
$$

$$
\left\|\mathcal{B}_{n}\right\| \leq 2^{(n-1) / 2}
$$

Bell－Klyshko Inequalities $\left\langle\mathcal{B}_{n}\right\rangle \leq 1$
Theorem：A state $|\varphi\rangle$ of n qubits maximally violates Eq．（3），that is，

$$
\langle\varphi| \mathcal{B}_{n}|\varphi\rangle=2^{(n-1) / 2},
$$

if and only if it can be obtained by a local unitary transformation of the GHZ state $|\mathrm{GHZ}\rangle=\frac{1}{\sqrt{2}}(|0 \cdots 0\rangle+|1 \cdots 1\rangle)$ ，i．e．，

$$
|\varphi\rangle=U_{1} \otimes \cdots \otimes U_{n}|\mathrm{GHZ}\rangle
$$

Bell Inequalities for Hyperentangled States

Hyperentanglement has been demonstrated in recent experiments with two photons entangled in 2 degrees of freedom (polarization and path) and in 3 degrees of freedom (polarization, path, and time-energy)
Consider two particles 1 and 2 prepared in the state

$$
\begin{aligned}
& |\psi\rangle^{(j)}=\frac{1}{2}\left(|00\rangle_{1}^{(j)}|00\rangle_{2}^{(j)}+|01\rangle_{1}^{(j)}|01\rangle_{2}^{(j)}+|10\rangle_{1}^{(j)}|10\rangle_{2}^{(j)}\right. \\
& \left.-|11\rangle_{1}^{(j)}|11\rangle_{2}^{(j)}\right) . \\
& |\Psi\rangle=\bigotimes_{j=1}^{N}|\psi\rangle^{(j)} \\
& X_{k}^{(j)}=\sigma_{x}^{(j)} \otimes \mathbb{1}^{(j)}, \quad Y_{k}^{(j)}=\sigma_{y}^{(j)} \otimes \mathbb{1}^{(j)}, \\
& Z_{k}^{(j)}=\sigma_{z}^{(j)} \otimes \mathbb{1}^{(j)}, \\
& x_{1}^{(j)}=\mathbb{1}^{(j)} \otimes \sigma_{x}^{(j)}, \quad y_{2}^{(j)}=\mathbb{1}^{(j)} \otimes \sigma_{y}^{(j)}, \\
& z_{2}^{(j)}=\mathbb{1}^{(j)} \otimes \sigma_{z}^{(j)}, \\
& \text { For any EPR-type local realistic } \\
& \text { theory } \beta_{\mathrm{EPR}}=2^{N} \\
& \beta=\left\langle X_{1}^{(1)} X_{2}^{(1)} z_{2}^{(1)} \ldots X_{1}^{(N-1)} X_{2}^{(N-1)} z_{2}^{(N-1)} X_{1}^{(N)} X_{2}^{(N)} z_{2}^{(N)}\right\rangle \\
& -\left\langle X_{1}^{(1)} X_{2}^{(1)} z_{2}^{(1)} \ldots X_{1}^{(N-1)} X_{2}^{(N-1)} z_{2}^{(N-1)} Y_{1}^{(N)} Y_{2}^{(N)} z_{2}^{(N)}\right\rangle \\
& +\left\langle X_{1}^{(1)} X_{2}^{(1)} z_{2}^{(1)} \ldots X_{1}^{(N-1)} X_{2}^{(N-1)} z_{2}^{(N-1)} X_{1}^{(N)} x_{1}^{(N)} Y_{2}^{(N)} y_{2}^{(N)}\right\rangle \\
& +\left\langle X_{1}^{(1)} X_{2}^{(1)} z_{2}^{(1)} \ldots X_{1}^{(N-1)} X_{2}^{(N-1)} z_{2}^{(N-1)} Y_{1}^{(N)} x_{1}^{(N)} X_{2}^{(N)} y_{2}^{(N)}\right\rangle \\
& -\left\langle X_{1}^{(1)} X_{2}^{(1)} z_{2}^{(1)} \ldots Y_{1}^{(N-1)} Y_{2}^{(N-1)} z_{2}^{(N-1)} X_{1}^{(N)} X_{2}^{(N)} z_{2}^{(N)}\right\rangle+\ldots \\
& +\left\langle Y_{1}^{(1)} x_{1}^{(1)} X_{2}^{(1)} y_{2}^{(1)} \ldots Y_{1}^{(N)} x_{1}^{(N)} X_{2}^{(N)} y_{2}^{(N)}\right\rangle \text {, } \\
& { }_{4} \beta_{\mathrm{QM}}=4^{N} \\
& \text { A. Cabello, Phys. Rev. Lett. 97, } 140406 \text { (2006) }
\end{aligned}
$$

Bell Inequalities for Multipartite Arbitrary Dimensional Systems

$$
\begin{gathered}
\mathcal{B}=\frac{1}{2^{3}} \sum_{n=1}^{d-1}\left\langle\prod_{j=1}^{3}\left(A_{j}^{n}+\omega^{n / 2} B_{j}^{n}\right)\right\rangle+\text { c.c. } \\
\mathcal{B} \leq \frac{3 d}{4}-1, \quad \text { if } d \text { is even. }
\end{gathered}
$$

Consider three observers and allow each to independently choose one of two variables．The variables are denoted by A_{j} and B_{j} for the jth observer．Each variable takes，as its value，an element in the set $S=\left\{1, \omega, \omega^{2}, \ldots, \omega^{d-1}\right\}$ where the elements of S are the dth roots of unity over the complex field．
W．Son，Jinhyoung Lee，and M．S．Kim，Phys．Rev．Lett．96， 060406 （2006）

Asymptotic Violation of Bell Inequalities and Distillability

A bipartite state ρ is distillable if，and only if， there exists a positive integer m and a SLO map Ω such that $\Omega\left[\rho^{\otimes m}\right]$ violates CHSH．

Result 5．－Consider an N－partite state ρ ，an integer m ， and a SLO map Ω such that the WWZB inequality β is asymptotically violated by the amount $\beta\left[\Omega\left(\rho^{\otimes m}\right)\right]$ in the range

$$
\begin{equation*}
1<2^{(N-G-1) / 2}<\beta\left[\Omega\left(\rho^{\otimes m}\right)\right] \leq 2^{(N-G) / 2} \tag{8}
\end{equation*}
$$

Then，pure－state entanglement can be extracted from ρ when the parties join into groups of at most G people．

Stochastic local operations without communication（SLO）
entangled \Longleftrightarrow nonsimulable in general，
distillable \Longleftrightarrow nonsimulable in the asymptotic scenario．
The second equivalence is only proved for the case $K=M=2$ ．
Consider N separated parties，denoted by $n 1 ; \ldots$ ；N ，each having a physical system which can be measured with one among M observables with K outcomes each．
中国科学技术大学 陈凯

The BIG Bell Test－Global physics experiment challenges Einstein with the help of $\mathbf{1 0 0 , 0 0 0}$ volunteers

by ICFO

The BIG Bell Test Initiative，November 30th，2016．Credit：ICFO
On November 30th，2016，more than 100,000 people around the world contributed to a suite of first－of－a－kind quantum physics experiments known as The BIG Bell Test．Using smartphones and other internet－connected devices，participants contributed unpredictable bits，which determined how entangled atoms，photons， and superconducting devices were measured in 12 laboratories around the world． Scientists used the human input to close a stubborn loophole in tests of Einstein＇s principle of local realism．The results have now been analysed，and are reported in this week＇s Nature．
https：／／phys．org／news／2018－05－big－bell－testglobal－physics－einstein．html中国科学技术大学 陈凯

The setup of the experiment. Credit: Jian-Wei Pan's Group

The BIG Bell Test Initiative, November 30th 2016. Credit: ICFO
https://phys.org/news/ 2018-05-big-bell-testglobal-physicseinstein.html

Fig． 2 ｜Gevgraphy asd timing of the REIT．L．Locatioas of the 13 BBT
experiments．ardered frum east to west．The inder numbers label the

 in Wedfram Mathermatica ib，Temporal evolution of the project．The top graph shows the number of live seesseas vessus time for differens－ continent groups，which exhibits a large drop in the lotal early morning in exch region．The spike in the participution of the Asian group arcand
il：00 ure coincides with a live－sitramed everx in Harcelone，hosted by

Challenging local realism with human choices
 －The BIG Bell Test Collaboration
 Nature volume 557，pages 212－216（2018）

D．Jimenez and the CosmoCaixa stience muscum，re broustast tive in
Chinese by L．F Muan and die University e Sclence and Tectnookgy
of China（USTC）．The middle graph shows the number of connected

The dana flacu remains sacarly consiam despite ergionail variations，with
Asian Bellsters handing off to Bellsters from the Amerias in the critical

Table 1 ｜Experiments carried out as part of the BBT，ordered by longitude，from east to west

Experiment	Lead Institution	Location	Entangled system	Rate（bps）	Inequality	Result	Stat sig．
（1）	Griltith Urivers ty	Brisbane，Australia	Photon polarization	4	$S_{16} \leq 0.511$	$S_{16}=0.965+0.008$	576
（2）	University of Queensland \＆EQUS	Brisbane，Australia	Photon polarization	3	$\|S\| \leq 2$	$\begin{aligned} & S_{\mathrm{AD}}=2.75 \pm 0.05 \\ & S_{\mathrm{EO}}=2.79 \pm 0.05 \end{aligned}$	$\begin{aligned} & 15 v \\ & 16 \% \end{aligned}$
（3）	USTC	Shanghai，China	Photon polarization	10^{3}	PRBLC ${ }^{30}$	b 0．10＿0．05	N／A
（4）	100 Cl	Vienna，Austria	Photon polarization	1.61×10^{5}	$\|S\| \leq ?$	$\begin{array}{ll} S_{\text {IIN }} & 2.639 \quad 0.008 \\ S_{\mathrm{QHN}} & 2.643 \quad 0.006 \end{array}$	$\begin{aligned} & 81 \sigma \\ & 116 \sigma \end{aligned}$
（5）	Sapienza	Rome，Italy	Photon polarization	0.62	$B \leq 1$	$B=1.225+0.007$	320
（6）	LMU	Munich，Germany	Photon atom	1.7	$\|S\| \leq 2$	$\begin{aligned} & S_{\mathrm{HPN}}=2.427=0.0223 \\ & S_{\mathrm{QPV}}=2.413-0.0213 \end{aligned}$	$\begin{aligned} & 19 v \\ & 18.50 \end{aligned}$
（7）	ETHZ	Zurich，Switzerland	Transmon qubit	3×10^{3}	$\|S\| \leq 2$	$S=2.3066 \pm 0.0012$	$\mathrm{P}<10^{98}$
（8）	INPHYN｜	Nce，France	Photon time bin	2×10^{3}	$\|S\|<2$	S $2.431 \perp 0.003$	－40s
（9）	ICFO	Barcelona，Spain	Photon－atom ensemble	125	$\|S\|<2$	S $2.29+0.10$	2.9%
（10）	ICFO	Barcelona，Spain	Photon multi－frequency bin	20	$\|S\| \leq 2$	$S=2.25+0.08$	3.10
（11）	CITEDEF	Buenos Aires，Argentina	Photon polarization	1.02	$\|S\| \leq 2$	$S=2.55 \pm 0.07$	7.8%
（12）	UdeC	Concepcion．Chile	Photon time bin	5.2×10^{11}	$\|S\| \because 2$	$S=2.43 \pm 0.02$	20%
（13）	NIST	Boulder，USA	Photon polarization	10^{3}	$K \subset 0$	$K(1.65-0.20) \times 10^{-4}$	8.7σ

jescript ons of the arperimerts are given in Supplementary Information．Stat．sig．，statistical signitica ice：indicates the numoer of standard deviations assuming indeperdent and identica ily

 rI nirrump Potz Rosest Rarnes I iang Gisin ruestre of set ing chnices independenve，vernsistent with the otsesrved FIV

第三章 量子关联表现

1．局域实在论
2．Bell不等式
3．量子游戏（Quantum Games）
4．Bell不等式检验
5．无不等式的Bell定理
6．多体Bell不等式
7．无漏洞Bell 不等式检验

无漏洞Bell 不等式检验

Loophole－free Bell test－ 2015

In 1935，Einstein asked a profound question about our understanding of Nature：are objects only influenced by their nearby environment？Or could，as predicted by quantum theory， looking at one object sometimes instantaneously affect another far－away object？We tried to answer that question，by performing a loophole－free Bell test．

1．B．Hensen et al．，＂Loophole－free Bell Inequality Violation Using Electron Spins Separated by 1.3 Kilometres，＂Nature 526， 682 （2015）．
2．M．Giustina et al．，＂Significant－Loophole－Free Test of Bell＇s Theorem with Entangled Photons，＂Phys．Rev．Lett．115， 250401 （2015）．
3．L．K．Shalm et al．，＂Strong Loophole－Free Test of Local Realism，＂Phys．Rev．
Lett．115， 250402 （2015）．
中国科学技术大学陈凯

无漏洞Bell 不等式检验

Significant－Loophole－Free Test of Bell＇s Theorem with Entangled Photons

Marissa Giustina，${ }^{12}$ Manjin A．M．Versteeph，${ }^{1,2}$ Sören Wengerowsky，${ }^{1,2}$ Johannes Handsteiner，${ }^{12}$ Armin Hochrainer，${ }^{1,3}$ Kevin Phelan，${ }^{1}$ Fabian Steinlechner，${ }^{1}$ Johannes Kofler，${ }^{3}$ Jan－Ake Larsson．${ }^{4}$ Carlos Abellan，${ }^{5}$ Waldimar Amaya，${ }^{5}$ Valefio Pruneri，${ }^{5 / 6}$ Morgan W．Mitchell，${ }^{5 / 6}$ Jörn Beyer，${ }^{7}$ Thomas Gerrits，${ }^{4}$ Adriana E．Lita，${ }^{8}$ Lynden K．Shalm，${ }^{8}$ Sae Woo Nam，${ }^{2}$ Thomas Scheidf，${ }^{1.2}$ Rupert Ursin．${ }^{1}$ Bernhard Wittmann．${ }^{1,2}$ and Anton Zeilinger ${ }^{12}$

 measwerment and where physical influences cannot travel faster than the speed of light．Bell＇s theorem states that this worldview is incompatible with the predictions of quantum mechanice，as is expressed in Berl＇s inequalities．Previosas experiments convincingly supported the quantum predictions．Yet，every experimsent requires assumptions had provide loopholes for a hocal realis explanation．Here，we report a Bell tes that closes the mose stgnificant of these loopholes simultaneously．Using a weil－optimized soarte Of eotungled photons，rapid setting generathh，and highly efficient supercoumakting dection，we observe a violation of a Bell inequality with high statistical significance．The purely statistical probability of our results to occur under local realism does not exceed 3.74×10^{-13} ．corresponding to an 11.5 standard deviation effect
DOO：10．1103FhysRevLen． 115231401
Pacs numbers M3．．．S．U4， $42.50 \mathrm{Xe}_{2}$

FIG． 1 （colari．（a）Schematic of the setup，（b）Source：The soarce distribsted wo polarization－entangled photons betreen the twe identically constructed and sputially sepurated measurement stations Alice and Bob（distance $\approx 58 \mathrm{~m}$ ），where the polariation way pulsed diode liser（pulse length： 12 ns FWHM）at I MHz repetition rate．The lawer light was filtered spectrally by a volume Brage grating（VBG）（FWHM： 0.3 nm ）and spatally by a single－mode fiber．The ppKTP crystal was pumped from both sides in a Sagnah configuration to create polarization entanglement．Each puir was split at the polarizing beam splitter（PBS）and collected into two different single－mode fibers leading to the measarement stations．（c）Measurement stations：In each measurement station，one of twic
 generator（RNG）to trizger the switching of the EOM．The transmitted cutpat of the plate PBS was coupled into a fiter and delivered te the TES．The signal of the TES was amplified by a SQUID and abditional elvetronics，digitized，and recorded together with the setting choices on a local hand drive．The laser and all electronics relased to swiching or reconding were synchronized with chock inputs（CIk） Ableviations：APD，avalancte photodiode（see Fig 2）：BPF，bandpass fitter：DM，dictroic mirror：FC，fiber connector：HWP half－waw plate；L，lens，POL，polarizer，M，mirror；POLC，manual polarization controller，QWP，quarter－wave plane；SQUID superconducting quantum interference device：TES，trassition－edge schaor；TTM，time－lagging module．

Strong Loophole－Free Test of Local Realism

Lynden K．Shalm，${ }^{\text {L．t }}$ Evan Meyer－Scott，${ }^{2}$ Bradey G．Christensen，${ }^{3}$ Peter Bierhorst．${ }^{1}$ Michael A．Wayne，${ }^{3,4}$ Martin J．Stevens，${ }^{1}$ Thomas Gerrits，${ }^{1}$＇Seott Glancy，Deny R．Hamel，${ }^{5}$ Michael S．Allman，${ }^{1}$ Kevin J．Coakkey，${ }^{1}$ Shellee D．Dyer， Carson Hodge，＇Adriana E．Lita，＇Varun B．Verma，＇Camilla Lambrocco，${ }^{1}$ Edward Tortorici，＇Alan L．Migdall，${ }^{\text {，}}$ ， Yankao Zhang，${ }^{2}$ Daniel R．Kumor，${ }^{3}$ William H．Farr．${ }^{7}$ Francesco Marsili，${ }^{7}$ Matthew D．Shaw，${ }^{3}$ Jeffrey A．Sters，${ }^{7}$
 Joshua C．Bienfang．${ }^{46}$ Richand P．Mirin，${ }^{1}$ Emanuel Knill，${ }^{1}$ and Sae Woo Nam ${ }^{1, *}$
${ }^{1}$ Netional Institute of Standianit ond Tecthoiogy， 325 Brondvry，Boulder，Coterndo 80305 USA

Deparmums of Physics，University of Milinois at Urbana－Champaign，Uribma，Illinois 61801，USA ${ }^{4}$ National Institute of Standards and Techulabgy， 100 Buremu Drive，Gaithernixurg，Maryland 20899，USA
${ }^{5}$ Département de Physique el d＇Astranowie，Universite de Monctem，Monctom，New Bronswick EIA 3E9，Canada

，Cablifomia Inssiate of Technology， 4800 Oak Grove Drive．Pasudena，Calfomia 91109，USA
 （Received 10 Nowember 2015；published 16 Decesnber 2015）
We prexent a loophole－free violation of local realism using entangled photon pairs．We ensure that all derank events in our Bell tess are spacelike separnted by plaking the parties far enough apant and by using hast nodom number generators and high－speed polarization measurements．A high－quality polarization－ entangled soarce of pbotoses，combined with high－efficiency，low－noise，single－pboton desectors，allows u s make measmements without requiring any fairsampling assumptions．Using a hypothesis test，we op p vilues as smail as 39×10 for our bell volabon athile maintaining hie spictake separation coar events，We estimate the degree to which al local realistic system could prediet our measuremen be hypothesis that local realism governs our experiment

DOF：10．1103PhysRenLex． 115.260412
PACS numbens． $0.6 .6 . \mathrm{Ud}, 42.50 \mathrm{Xa}, 42051 \mathrm{~lm}$

FIG．I（colar oalinek．Schematic of the entangled photon soncee．A pulved 775 －ame－wavelength Tisapphire pisoseccoud mode－locked
 then acts as a spatial filter for the pump．After exiting the SMF，a polarizer med hall－wwe plate（HWP）set the pump polaizetion．To

 used．A HWP in path 2 rotacs the polarization of the pume from verical to horizecal A second HWP at 0° is inserted imo path 1 to
 1550 nm are geverated in either path I or 2 through the proesss of spoceaneous paraneric down－conversion．Atter the crystal，BD2
 ${ }^{0}$ provide temporal comperastion．BD3 then completes the interfermemeter by recombining paths 1 and 2 for the signal and idfer phocoms．The two drman－coeversian processes interfere with one anocher，creating the entingled state in Eq．（2）A high－purity stiocee wafer widh an antiertiection coating is used to filter out the remaining pump lighc．The idler（signal）pbocoms are coupled inlo a SMF and
sent to Alice（Bob）．

Bell 不等式的更多内涵

－Quantum Communication Complexity
－Classifying N－Qubit Entanglement
－Maximal Violation of Bell Inequalities for Mixed States
－Error Correcting Bell Inequalities
－Stronger Quantum Correlations with Loophole－Free Postselection
－Violation of Bell＇s Inequality beyond Tsirelson＇s Bound
－Bell＇s Inequalities in quantum network scenarios

Bell Inequalities的推广

Bell inequalities for M qubits（ $\mathrm{M}>3$ ）

Bell inequalities for M qudits（ $\mathrm{M}>3$ ）
（ M－qudit：M particles in d－dimensional Hilbert space
－M particles，arbitrary dimension， multiple settings，multiple outcomes

Bohr－Einstein debates

Einstein：
I can＇t believe God plays dice with the universe．

Bohr：
Albert，stop telling God what to do．
中国科学技术大学陈凯

A bit of history

From Scarani

参考

Horodecki et al．，Quantum entanglement， Rev．Mod．Phys．81，865－942（2009）．

Brunner et al．，Bell nonlocality， Rev．Mod．Phys．86，419－478（2014）．

中国科学技术大学 陈凯

[^0]: 中国科学技术大学 陈凯

