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Bit Flip X:

Phase Flip Z:

Complete dephasing:

Depolarizing channel :

(decoherence)

Rotation:




Correcting Continuous Rotation




Correcting Continuous Rotations




Correcting All Single-Qubit Errors

If @ quantum error-correcting code (QECC) corrects errors A and B, it
also corrects aA + bB.

al + bX + gy + dz

Any OECC that corrects the single-qubit errors X, Y, and Z (plus I) corrects every
singie-qubit error.

Correcting all t-qubit X, Y, Z on t qubits (plus I) corrects all t-qubit errors.

-'}"F& '.-‘-'F- -

.-:" ﬁ
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(B)

Figure 10.5. The packing of Hilbert spaces in quantum coding: (A) bad code, with non-orthogonal, deformed
resultant spaces, and (B) good code, with orthogonal (distinguishable), undeformed spaces.
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Discretization of the errors

Any QECC that corrects the smgle qublt errors X,

Correcting all t-qubit X, Y, Z on t qubits (plus I)
corrects all t-qubit errors.

This Is a fundamental and deep fact about quantum
error-correction, that by correcting just a discrete set
of errors — the bit flip, phase flip, and combined bit—
D1ASE

Correctlng code Is able to automatlcally corregt an g
apparently much larger (continuous!) class of é’rmr
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[[n.k]] qguantum error correcting code
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M JEAA S M

U,

FIG. 3. One-way entanglement purification protocol (1-EPP). In
1-EPP there 1s only one stage: after unitary transformation U, and
measurement M, Alice sends her classical result to Bob, who uses
it in combination with his measurement result to control a final
transformation U;. The umdirectionality of communication allows
the final, maximally entangled state (¥) to be separated both in
space and in fume.
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1-EPP

=

%

Us

FIG. 4. If the 1-EPP of Fig. 3 1s used as a module for creating
time-separated EPR pairs (¥), then by using quantum teleportation
[5]. an arbitrary quantum state |£) may be recovered exactly after
U,. despite the presence of intervening noise. This 1s the desired
effect of a quantum error-correcting code (QECC).




g2 S 125G

FIG. 14. A QECC can be transformed into a 1-EPP. Teleporting
(M,.U,) via a mixed state M defines the noisy channel y(M). If a
quantum error-correcting code {U,.U,} can correct the errors in
this channel, the code and channel can be used to share pure en-
tanglement between Alice and Bob (*). This establishes inequality
(52), viz., YV, D{(M)=Q(x(M)).
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FIG. 16. The one-way purification protocol of Fig. 4 may be
transformed into the quantum-error-correcting-code protocol shown
here. In a QECC, an arbitrary quantum state |£), along with some
qubits which are originally set to |0), are encoded in such a way by
U f that, after being subjected to errors Ng, decoding U, followed
by measurement M, followed by final rotation U, permits an exact

reconstruction of the original state |&). &
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G(0.0)=(0,0,0.0,0,0): G(0,1)=(0,0,0,1,1, 1);
Gt 0 =l T, 10,0085, €61 =, L1 1,1, nE
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A code that encode

an [n,Kk] code.
A general code encod

Ing K bits in n bits requires

2¥ codewords of length n to specify the encoding.

A linear code C encod
an n bit code space specified by an n by k
generator matrix G with elements in Z,,.

A linear code only req

es k bits of information into

uires kn bits to specify the

encode.
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bits codeword c using a [n by k]
generator matrix G as follows:

rror correction for linear codes is done
using a [(n-K) by n] parity matrix.




Parity Check i £

Parity check matrix H Is such that:
Hc=0 and HG=0

The receiver gets the codeword r, which
Incorporates an error e:

r=c+e
Then, the syndrome s Is given by:
S=Hr=He




Error Correction & Recovery

Once we detect the syndrome s, we can
find the error that occurred e.

Now we can correct the error as:

C=r-—e
And finally one can recover the original
message




R R AR
z}—_uz)%m%
MHNTE ﬂn/\tEfF gk EL AR

V/a=Y) sy I A ? | e i =00

[
=X ILFJe. = )J)Q/‘IL'I

—Mh . N2k /\ttfﬁ% Zﬂut%ﬁﬁi
A EIGIGFEPE: Hx=0 (H) & B 06 45 i
HHEBE N (n-k) X n

H5 G2 8] ] E AT AH B3 #, 42

Hl]] }n-k

N
e i A 6 R o 2 i A U A VR 2 A2 A5
55 G2 [T T HAT T 4




—Jrfﬁ'%h'ﬁ’%ﬁ (NN Lzsﬁfﬁii

VISl = EVEE——

XTyLEBZE/ﬂﬂ E/J”%%F' B O

H 8 a1

Hy=0 — Hy'=He

y'=y+e (+NE )

Hy' N Z= 55 RE IR

\o

=

A AR HILETE O R N0

> LH I )] ——

‘Lﬁé N JIE

CARM RS

/\m&tm%ﬁw NG

HTjoe

g4 U

EfS;




EE %*R/?Tﬁhﬁ?ﬂz @?Ll THAY

)E'Jd(x y)ﬁ?éﬁh%%( H ™ HammingFE &

z81: d((1,1,0,0),(0,1,0,1))=2

Wit(x)=d(x,0) X IEZE AL E 27 HmdbHamming i &
d(X,y)=Wt(x+y)

PEES [ B VAR T, NI AN, TR aE

IS A TR B g iy By A 2 d(y,y ) <tH) Jﬁ RS AVE

HAFRE £ /D N2t+ 11— ME L EEZY (F & 2t HE

R ) ZE ;




Hammingfi%, =] B2 IEAE = 5 LUy
W22 N— N2, HA—MHERE

LIAE e il Al BE X 49r AT R
FTAEPT7YHY IN/ X /JYL J- N ‘:IZ/ZIU/

Hammingfyj — [ 2"-1, 2"-r-1 ]
Hr=3Ff, Hammingfy — [7,4]fY

g 09 4 I d 1
g 1L L9 @ 1 1
1. 0 1L g1 0




Gllbert—VarshamoﬁQ

X
7

2| %ﬂﬁ%

n, M‘{%EX‘

NEs) 77(1) = —zlog(z) —

Gllbert—Varshamovi‘i EI’J E

%/\kl@jl

—_—

A

»

|, AR AFAE




=ML

Ouantun or Correction Codes are

characterized by the triplet [n,k,d], where:

nist

dist

ne length of the resulting codeword.

ne minimum distance.

Data redundancy implies n>k

A Code with minimal distance d=Z1+1 IS

able to correct errors on up to t bits. .7
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After encoding the code | [E subjected to noise, following which a

SYI'IUT OIS 111ieasSul errich | nerformed to diagnose the typ u|
error which occurred, that is, the error syndrome. Once this has
been determined, a recovery operation is performed, to return
the guantum system to the original state of the code. The basic
pictureisillustrated in Figure 10.5: different error syndromes

correspond to undefor med and orthogonal subspaces of the total
Hilbert space. The subspaces must be orthogonal, otherwise they
couldnt be reliably distinguished by the syndrome measurement.
Furthermore, the different subspaces must be undeformed

versions of the original code space, in the sense that the errors
mapping to the different subspaces must take the (orthogonal) y
codewords to orthogonal states, in order to be able to recovel, 7
fromthe error. J.ﬁ\l iz

”“":-c




\WWe have learned about the error without learning about

the data, so quantum superpositions are still alive! """”




Calderbank—Shor—Steane codes

Suppose C, and C, are [n, k;] and [n, k,] classical linear codes such that C2 c C1
K 2 JUd

CSS(C,, C,) capable of correcting errors on t qubits, the CSS code of C, over C,

The quantum code CSS(C, (%) is defined to be the vector space spanned by
the states |x + () for all x € (). The number of cosets of C in C is |C}|/|C}] so }
the dimension of CSS(C, () is |C1]/|Cy| = 28—k and therefore CSS(Cy, C,) is an |
[n, By — k] quantum code.




Calderbank—Shor—Steane codes
Bit flip errors detection and correction

Suppose the bit flip errors are described by an n bit vector e, with 1s where

bit flips occurred, and Os elsewhere, and the phase flip errors are described by an

n bit vector e, with 1s where phase flips occurred, and Os elsewhere. If |[x+C,>

was the original state then the corrupted state is:

one has




Calderbank—Shor—Steane codes
Bit flip errors detection and correction

the result H,e, and discarding the ancilla, giving the state

—1)= e p 4y +e)

Knowing the error syndrome H,e, we can infer the error el since C,; can correct up
to t errors, which completes the error-detection. Recovery is performed simply by
applying gates to the qubits at whichever positions in the error e, a bit flip occurred,
removing all the bit flip errors and giving the state

ik 1 f}




Calderbank—Shor—Steane codes
Phase flip errors detection and correction

To detect phase flip errors we apply Hadamard gates to each qubit, taking the

state to

1 t+y)-(eztz
T 2 2 (DT

z yelh

1 2t
e 2 2, SV e

z! yel

Supposing 2z’ € Cj- it is easy
to see that Eyecz(_l)y-z’ = |C‘2‘, while if >/ 6:" CzL s - Zyec‘,(_l)y'z! — 0. Thus the

state may be rewritten:

1 :
— (A% B0 By
2”/|CZ| zr;f_




Calderbank—Shor—Steane codes
Phase flip errors detection and correction

The last formula looks just like a bit flip error described by the vector e,! As for the

error-detection for bit flips we Iintroduce an ancilla and reversibly apply the parity
check matrix H, for C,+ to obtain H,e,, and correct the 'bit flip error’ e,, obtaining

the state
(—1)
N[l

2 eCsh

The error-correction is completed by again applying Hadamard gates to each qubit.
Since the Hadamard gate is self-inverse this takes us back to the state




Quantum Gilbert—Varshamov bound

In the limit as n becomes Iarge an [n K] quantum

INnto an n qubit code.
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The Pauli Group

For a single quantum bit

Gy = {£I, +il, £ X, +iX, 1Y, +iY, +Z, +iZ}

that G, Is closed under multiplication, and thus forms a legitimate
group.

Any pair M, N of Pauli operators either commutes (MN = NM) or
anticommutes (MN = -NM).




Quantum Error Correction Sonnet

We cannot clone, perforce; instead, we split
Coherence to protect it from that wrong
That would destroy our valued quantum bit
And make our computation take too long.

Correct a flip and phase — that will suffice.
If in our code another errvor’s bred,
We simply measure it, then God plays dice,

Collapsing it to X or Y or zed.

We start with noisy seven, nine, or five

And end with perfect one. 1o better spot

Those flaws we must avoid, we first must strive
To find which ones commute and which do not.

With group and eigenstate, we've learned to fix
Your quantum errors with our quantum tricks.
— ‘Quantum Error Correction Sonnet’, by Daniel Gottesman




Stablilizer

vector space stabilized




Properties of a Stablilizer

The stabilizer Is a group:




Stabilizer 15l-F

The EPR state of two qubits

o _ [00) +]11)
|3*> _ \/E

stabilized
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Stabilizer 15l-F

first two bits have even parity

correctly-
encoded state 000 or 111

odd parity
for the first two bits.

a codeword is a

+1 eigenvector of ZAZAI




T AR

Measuring ZAZ detects bit flip (X) errors, and
measuring XAX detects phase (Z) errors.




Error Correction Conditions

Theorem: Let S be the stabilizer of the
stabilizer code C(S). Suppose {E;} Is a set of
operators in G, such that:

for all | and k. Then, {E;} Is a correctable set

The normalizer of S, denoted N(S), which is defined togc?bﬁs

of all elements E of G, such that EQET& Sforallg € S.£ 2




Error Detection

L]
DpPOSE U] 1€ SCL Ol (Jellc U U (1€
. . J .Y A Ci

stabilizer of an [n,K] stabilizer code, and that {E;}
IS the set of correctable errors for the code.

Error detection Is performed )Y, measuring the

error syndrome, which consists of the results of
the measurements b,,...,b. .

If the error E occurred then the error syndrome is




Recovery (1)

In the case where E Is the unigue error
operator having this syndrome, recovery
IS done by applying E.

distinct errors E and E’ giving rise to the
same error syndrome, it follows that:

EPE!= EPE" andthen EEPE'E =P

and therefore E'E’ Is part of S. - L

i il
= ; i .‘.’;_-_
PR e
4: 1 o
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Recovery (2)

Thus applying E! after the error E’ has
occurred results in a successful recovery.

[hus, for each possible error syndrome we
simply pick out a single error E with that
syndrome, and apply E! to achieve




HOw to construct a quantum
error correction code?

An [n,k,d] guantum error correction code C(S) Is the

vector space Vs stabilized by a subgroup S of G,
such that and S has n-k independent and
commuting generators:

and logical states stabilized by:

which can correct a set of correctable error
operators {E;} iIn G, such that, for all j and k:




Design Goals for QECCs

High rate k/n d/n

Efficient decoding

Efficient encoding

Specific error models

Many symmetries

Other application-specific properties




The three qubit bit flip code

Consider the familiar three qubit bit flip code spanned by the states |000) and |111), with
stabilizer generated by Z,2, and Z, /3. By inspection we see that every possible product
of two elements from the error set {I, X1, X», X3} — I, X;, X», X5, X1X5, X X5, XX
— anti-commutes with at least one of the generators of the stabilizer (except for I, which
is in S), and thus by Theorem 10.8 the set {I, X, X, X5} forms a correctable set of
errors for the three qubit bit flip code with stabilizer (£,2,, Z,73).

getecton ana correctuon

Error type Action

no crror no ElCtiDI]
bit 3 flipped | flip bit 3
bit 1 flipped | flip bit 1
bit 2 flipped | flip bit 2




The three qubit bit flip code




The nine qubit Shor code

Operator

AR P
TZZIT L1111
P IV AALT &L T
IR RE Y EEY
IITT T TIAZ]
ITITTITET LI ZZ
XXXXXXI111
I T T XXXXXX
XXXXXXXXX
LLLLLLLLZ

(1000) + [111))(J000) + [111))(|000) + |111))
2V/2 o
(/000) — [111))(|000) — [111))(|000) — [111)) PReE =
2V/2 =

— ‘0L> —

—% ‘1L> =




The nine qubit Shor code

Operator

AR P
TZZIT L1111
P IV AALT &L T
IR RE Y EEY
IITT T TIAZ]
ITITTITET LI ZZ

VAR

stabilizer




The five qubit code

Operator

0 XZ/ZX1

| 73 XAXAL

00) = 5 [\00000> +110010) + [01001) + [10100) g | ZXIXZ
7 LLLLL

£]01010) — [11011) — |00110) — [11000) % | war

— [11101) — |00011) — |11110) — |01111)
— [10001) — [01100) — [10111) + |00101>]

1
) = 5 [\11111} +101101) + [10110) + [01011)
+]10101) — [00100) — [11001) — |00111)

— [00010) — [11100) — [00001) — |10000)
— [01110) — [10011) — |01000) + |11010>]




CSS Codes

classical linear
codes C, and C,

1,3 CC
S Operator

I 1 T XXXX
I XXI1IXX
XIXIXIX
IBEEA AP
I ZZ1T I 7ZE C,: [7,3,4] Hamming
LZILL Z1 2

C,: [7,4,3] Hamming

{|(m(mn(m; +(1010101) +[0110011) + [1100110)

+10001111) + [1011010) + [0111100) + \1101001}}
= {|1111111) +(0101010) + |1001100) + [0011001)

+/1110000) + [0100101) + |1000011) + \0010110}}




Calderbank-Shor-Steane Codes

CSS codes are a subclass of stabilizer codes.

They construct quantum error correction codes
from classical linear codes.

I\ = ™ g e e o am g . — Gy W W v — pm s g m g — L
Ao d {cllIcic UIC, LU UCLE cClITOlS, AKC C

classical parity check matrix P, replaces 1 by Z
and I's elsewhere.

To detect Z errors, replace X’s instead of Z’s In
the matrix.

2 7

n ‘.“ . p.

- e
e

;;f i




CSS codes

If C, and C, are orthogonal then we can
combine these two codes. This means
that the dual code of each code must be
a subset of the other code.

Combining a C,[n,k,,d,] with a C,[n,k,,d,]
yields a CSS(C,,C,)[n,|k,-k;|,d5] with d; =

minfad A 1
HELL |1U1,u21-




CSS codes and the seven qubit code

The 7-gqubit Steane code Is the most
popular CSS code.

It IS created with a classical Hamming
code [7,4,3] which is self dual.

The matrix C, Is taken as the classical
parity check matrix H.

The matrix C, Is taken as the transpos.eg
of its generator G'. ,,;@




CSS codes and the seven qubit code

Define a check matrix with the form

The 7-gqubit Steane code is the most popular CSS
code.

It IS created with a classical Hamming code [7,4,3]
which is self dual.

The matrix C, Is taken as the classical parlty .C.
matrix H. Sl




More about Stabilizer

The stabilizer is a group:

The stabilizer i1s Abelian:

T(S) = {zyns.t. M=y n==yn
' M1 S} Then T(S) encodes kloglcal gubits In




Stabilizer Elements Detect Errors

=y nhas eigenvalue -1 for vV

E=y nhas eigenvalue +1 for all M In the stabilizer.

The eigenvalue of an operator M from the stabilizer dgﬁgt%f
errors which anticommute with M.

From Goﬁesrr’réﬂ




Distance of a Stabilizer Code

N(S)={NI P,s.t. MN=NM" M1 S}.

distance d

detects any error not in N(S) \' S




Error Syndromes and Stablilizers

____errc ndrome is the i
the generators of S




Stabilizer Codes Correct Errors

Theorem: The code corrects errors for which EfTF 1 N(S)\ S
for all possible pairs of errors (E, F).

ETFT N(S)

A stabilizer code with distance d corrects €d-1)/20 erro»?",}ﬂ~

From Goﬁesmé:ﬂ




Stabilizer Codes Summary

stabilizer

K = n-r encoded qubits
ETFI N(S)\S

distance d

From Goﬁesrr’réﬂ




Summary: Stabilizer Codes




Application: 5-Qubit Code

non-degenerate [[5,1,3]]
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The Gottesman-Knill Theorem

Theorem: Suppose a quantum computation is
performed which involves only the following
elements: state preparations in the computational
pbasis, Hadamard gates, phase gates, controlled-
NOT gates, Pauli gates, and measurements of
observables in the Pauli group (which includes
measurement in the computational basis as a
special case), together with the possibility of
classical control conditioned on the outcome of
such measurements. Such a computation may be

efficiently simulated on a classical computerypm. =7#




Quantum Computing Simulations

The Gottesman-Knill theorem shows that some
guantum computations involving highly entangled
states may be simulated efficiently (in polynomial
time complexity) on classical computers.

These computations include quantum teleportation
and superdense coding.

However, not all types of entanglement can be

described efficiently with the stabilizer formalism.




Universal guantum computation?

alsa AN A an -
\J U/ O N v \/ @, A U U

computation, even a single gate outside of N(G) can
be sufficient. For instance, the Toffoli gate (a three-
qublt gate WhICh fllps the third qublt Iff both of the

- _lll \ - a
O O A w - w U

unlversal computation.

The set of U such that UAUT € G for all A € G is the

normalizer N(G) of G in U(n).

Also for the single-qubit 11/8 rotation gate




Summary of QECCs

Quantum error-correcting codes exist which can

correct very general types of errors on quantum
systems.

A systematic theory of QECCs allows us to build
many interesting quantum codes.

Quantum error correction can be formalized in term
of guantum states and projectors, stabilizer
subspaces or the stabilizer group.

All these formalizations are equivalent.

- The theory of guantum error correction Is qui
elegant and simple.
.

ne implementation is really a nontrivial task.
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