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Quantum error correction Single bit flip

correction circuit
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[==| :H: Y LH YD
= e fin A
A general quantum error is a superoperator that is of form:

r® SA T A"

Examples of single-qubit errors:

Bit Flip X: X=0fi= #n X=in= =0ni
Phase Flip Z: Z:0fi= <0 Z+1Ai= -+1i

Complete dephasing: r ® (r + Zr Z")/2 (decoherence)
Depolarizing channel : r ® ((1-p)r +p/3(Xr X+Yr Y+Zr Z)

Rotation: R,:0fi= -0f R =1Ai= eld+1f

chERI SRR AL FRYL



Correcting Continuous Rotation

Let us rewrite continuous rotation
Rq—:Oﬁ: -0A Rq+1r”1: eid+] fi

|q/2 0
( 0 el)_ e'q/Z( eid/2

=cos (g/2) | -isin (g/2) Z

RM=y fi= cos (9/2)=yfi- i sin (9/2) ZM+y i
(R is R, acting on the kth qubit.)

FRERISRAKS (Y From Gottesman



Correcting Continuous Rotations

How does error correction affect a state with a continuous rotation on it?

R®=y fi= cos (0/2)zyfi- i sin (9/2) ZM=y i

— » cos (g/2)=xy - i sin (g/2) 20y i-Z0R
™ Error syndrome

Measuring the error syndrome collapses the state:

Prob. cos? (g/2): <y ii(no correction needed)

Prob. sin? (g/2): Z®-+y fi(corrected with ZI)

FRERISRAKS (Y From Gottesman



Correcting All Single-Qubit Errors

Theorem: If a quantum error-correcting code (QECC) corrects errors A and B, it
also corrects aA + bB.

Any 2x2 matrix can be written as al + bX + gY + dZ.

A general single-qubit error r ® S A r A acts like a mixture of <y A® A=y
and A, is a 2x2 matrix.

Any QECC that corrects the single-qubit errors X, Y, and Z (plus I) corrects every
single-qubit error.

Correcting all t-qubit X, Y, Z on t qubits (plus 1) corrects all t-qubit errors.

FRERISRAKS (Y From Gottesman



Figure 10.5. The packing of Hilbert spaces in quantum coding: (A) bad code, with non-orthogonal, deformed
resultant spaces, and (B) good code, with orthogonal (distinguishable), undeformed spaces.
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Discretization of the errors

Any QECC that corrects the single-qubit errors X,
Y, and Z (plus I) corrects every single-qubit error.

Correcting all t-qubit X, Y, Z on t qubits (plus I)
corrects all t-qubit errors.

This is a fundamental and deep fact about quantum
error-correction, that by correcting just a discrete set
of errors — the bit flip, phase flip, and combined bit—
phase flip, in this example — a quantum error-
correcting code Is able to automatically correct an
apparently much larger (continuous!) class of errors.
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[[n,Kk]] guantum error correcting code

measurement + correction
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FIG. 3. One-way entanglement purification protocol (1-EPP). In
1-EPP there 1s only one stage: after unitary transformation U, and
measurement M, Alice sends her classical result to Bob, who uses
it in combination with his measurement result to control a final
transformation U;. The umdirectionality of communication allows
the final, maximally entangled state (¥) to be separated both in

space and in fume.
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1-EPP

S
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%

Us

FIG. 4. If the 1-EPP of Fig. 3 1s used as a module for creating
time-separated EPR pairs (¥), then by using quantum teleportation
[5]. an arbitrary quantum state |£) may be recovered exactly after
U,. despite the presence of intervening noise. This 1s the desired
effect of a quantum error-correcting code (QECC).
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FIG. 14. A QECC can be transformed into a 1-EPP. Teleporting
(M,.U,) via a mixed state M defines the noisy channel y(M). If a
quantum error-correcting code {U,.U,} can correct the errors in
this channel, the code and channel can be used to share pure en-
tanglement between Alice and Bob (*). This establishes inequality

rEREsRAa p (O2). viz. VD (M)=Q(x(M)).
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FIG. 16. The one-way purification protocol of Fig. 4 may be
transformed into the quantum-error-correcting-code protocol shown
here. In a QECC, an arbitrary quantum state |£), along with some
qubits which are originally set to |0), are encoded in such a way by
Ullr that, after being subjected to errors Ng, decoding U, followed
by measurement M, followed by final rotation U5, permits an exact
reconstruction of the original state |&).
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B )3

28 B2 10
n by k generator matrix G whose entries are all
elements of Z,, that is, zeroes and ones.

The matrix G maps messages to their encoded
equivalent. Thus the k bit message x Is encoded as Gx

a6, 2] code

0
0

| 0
G=|, G(0.0)=(0.0,0.0.0.0): G(0.1)=(0.0.0.1.1,1):

1
i i G(L; ) =L 05 000 GO.1)=1(1;1,1; 1,1, 1)
0 1

1
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@ A code that encodes k bits in n bits (n>k) is called

an [n,Kk] code.

@ A general code encoo
2k codewords of lengt

Ing K bits in n bits requires
N n to specify the encoding.

@ A linear code C encod

es k bits of information into

an n bit code space specified by an n by k
generator matrix G with elements in Z,.

@ A linear code only req
encode.

PEREERAKRE BRIl

uires kn bits to specify the

37



2N g

#®\We encode a k bits codeword x, into a n
bits codeword c using a [n by K]
generator matrix G as follows:

c=Gex

@ Error correction for linear codes is done
using a [(n-k) by n] parity matrix.

38
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Parity Check i #%

® Parity check matrix H is such that:
Hc=0and HG=0

The receiver gets the codeword r, which
Incorporates an error e:

r=c+e
Then, the syndrome s Is given by:
Ss=Hr=He

39
PEREERAKRE BRIl



Error Correction & Recovery

@®Once we detect the syndrome s, we can
find the error that occurred e.

#®Now we can correct the error as:
C=r—e
@ And finally one can recover the original
message

40
PEREERAKRE BRIl



=G
20 L PR

M NTTEEZI: AN ELER gDk L

MRS kn ANECRE 20 AR R AR R

— M. n2k ANERERR  Z0mE AR RS R

RIS AERE: Hx=0 (H) N {EH 56 5 15
HEERE N (n-K) X n

HE G [8) A] 34T 4H B354, 1540

"=loa1]

n
R A O 22 A T S 2 1 0
e G A ] 3R AT AT LA ik



Al 5 FE R BAR s A U7 20
W b iE E.x y=GXx
XFy e & s i 1) R e e

H 58 5 RS y'=y+e (+ 1 0)
Hy=0 Hy’=He

Hy NZEETEIR . S Z4E LR DL T~ 40

Hy'5 He; HIME, #E WA bLRr i

chERI SRR AL FRYL

MR ISR
sz R —N LR 4R )”'JLJiHﬁEBL

R I

j/l\ttfk%” I JyHe,

|

L__a



Hamming#F &5

PSS B 7N AT PHAT 21 21 25 0

W XAy AN b R,
Mdx,YNEFRMEZH  Hammingif &
z6f: d((1,1,0,0),(0,1,0,1))=2
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Gilbert—Varshamov’+

Gilbert—=Varshamovit

T kn, AALES KT IbtE Ry EZEEE I [n K]

2\ T A

o ELE 7

Gllbert—Vars.hamovEQ I
KBS, B UFEAFAE
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:‘ 1 H(x) = —xlog(z) — (1 — z)log(l — x) 7’:] TDShannOn}:lj_j
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@® Quantum Error Correction Codes are
characterized by the triplet [n,k,d], where:

nnist
n KISt
ndist

ne length of the resulting codeword.
ne number of qubits to be encoded.

ne minimum distance.

#® Data redundancy implies n>k

@ A code with minimal distance d=2t+1 is
able to correct errors on up to t bits.
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Basic framework for guantum error correction

After encoding the code is subjected to noise, following which a
syndrome measurement is performed to diagnose the type of
error which occurred, that is, the error syndrome. Once this has
been determined, a recovery operation is performed, to return
the quantum system to the original state of the code. The basic
picture is illustrated in Figure 10.5: different error syndromes
correspond to undeformed and orthogonal subspaces of the total
Hilbert space. The subspaces must be orthogonal, otherwise they
couldn t be reliably distinguished by the syndrome measurement.
Furthermore, the different subspaces must be undeformed
versions of the original code space, in the sense that the errors
mapping to the different subspaces must take the (orthogonal)

codewords to orthogonal states, in order to be able to recover
from the error.
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Through the information from the error syndromes, one
can determine whether there is an error and where it is:

E.g., measurements of Z,Z, and Z,Z, for a<010n+ b+101n
give syndrome 11, which means the second bit is different.
Correct it with a X operation on the second qubit. Note
that the syndrome does not depend on a and b.

We have learned about the error without learning about
the data, so quantum superpositions are still alive!
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Calderbank—Shor—Steane codes

Suppose C; and C, are [n, k;] and [n, k,] classical linear codes such that C2 c C1
and C, and C,+ both correct t errors. We will define an [n, k; — k,] quantum code
CSS(C,, C,) capable of correcting errors on t qubits, the CSS code of C, over C,

Suppose x & C, is any codeword in the code C;. Then we define the
quantum state |x + C,> by

‘;IE + C’rg Z ‘ T

.-‘_C}

The quantum code CSS(C', (%) is defined to be the vector space spanned by
the states |z + () for all x € (‘1 The 11L1mbe1 of cosets of C; in C is |C4|/|C5] so
the dimension of CSS(C}, () —*2 and therefore CSS(C;,(C,) is an

[n, By — k] quantum code.
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Calderbank—-Shor-Steane codes
Bit flip errors detection and correction

Suppose the bit flip errors are described by an n bit vector e; with 1s where
bit flips occurred, and Os elsewhere, and the phase flip errors are described by an
n bit vector e, with 1s where phase flips occurred, and Os elsewhere. If |x+C,>

was the original state then the corrupted state is:

( 1) 1+1,r)€) >
VapD

Introducing an ancilla and taking
|.?.l' Ty + f5’1}‘H1(;}_? Tl EE?1)> = [y {> Hlff"]>

one has

|
WireA ) (=D z + g+ e1)|Hey)
7 yECTE
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Calderbank—Shor—Steane codes
Bit flip errors detection and correction

Error-detection for the bit flip errors is completed by measuring the ancilla to obtain
the result H,e, and discarding the ancilla, giving the state

1

‘(3 ye(Ch

Knowing the error syndrome H,e, we can infer the error el since C, can correct up
to t errors, which completes the error-detection. Recovery is performed simply by
applying gates to the qubits at whichever positions in the error e, a bit flip occurred,
removing all the bit flip errors and giving the state

1

V1G] B i

yeC;

T +y)

7
e
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Calderbank—-Shor-Steane codes
Phase flip errors detection and correction

To detect phase flip errors we apply Hadamard gates to each qubit, taking the

state to

o 2 2 Ve le)

yeC,

where the sum is over all possible values for n bit z. Setting z '=z + e,, this
state may be rewritten:

Z ! + e >

TR

z! yelC

Supposing 2 E C;- it is easy

2" & C5 then Zypc. —1) =" = (). Thus the

!
ey i _ y'z =
to see that ) ye G, 1)
state may be rewritten:

.0 E":'2> y

1 :
— (_IJTZ _:!'
\/ 2”/ C; z”;}l



Calderbank—Shor—Steane codes
Phase flip errors detection and correction

The last formula looks just like a bit flip error described by the vector e,! As for the
error-detection for bit flips we introduce an ancilla and reversibly apply the parity

check matrix H, for C,+ to obtain H,e,, and correct the 'bit flip error’ e,, obtaining
the state

The error-correction is completed by again applying Hadamard gates to each qubit.
Since the Hadamard gate is self-inverse this takes us back to the state

PERIFRAKE Bl



Quantum Gilbert—Varshamov bound

In the limit as n becomes large, an [n, k] qguantum
code protecting against errors on up to t qubits exists
for some k such that

E21—2H<§)

N n

Thus, good guantum error-correcting codes exist,
provided one doesn’t try to pack too many qubits k
Into an n qubit code.
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The Pauli Group

The general Pauli group G, on n qubits is defined to consist of all n-fold
tensor products of up to n operators I, X, Y, or Z with overall phase =1, =*i

For a single quantum bit
Gy = b1, 2l X, 22X, £Y, £iY, 2, +i7Z}

that G, is closed under multiplication, and thus forms a legitimate
group.

Any pair M, N of Pauli operators either commutes (MN = NM) or
anticommutes (MN = -NM).

The Pauli Group G, on n qubits is given by the n-fold tensor product
of Pauli matrices.

The Pauli group spans the set of all n-qubit errors.
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Quantum Error Correction Sonnet

We cannot clone, perforce; instead, we split
Coherence to protect it from that wrong
That would destroy our valued quantum bit
And make our computation take too long.

Correct a flip and phase — that will suffice.
If in our code another errvor’s bred,

We simply measure it, then God plays dice,
Collapsing it to X or Y or zed.

We start with noisy seven, nine, or five

And end with perfect one. To better spot

Those flazs we must avoird, we first must strive
To find which ones commute and which do not.

With group and eigenstate, we've learned to fix
Your quantum errors with our quantum tricks.
— ‘Quantum Error Correction Sonnet’, by Daniel Gottesman



Stablilizer

Suppose S is a subgroup of G, and define
V¢ to be the set of n qubit states which are
fixed by every element of S.

Vs IS the vector space stabilized by S, and
S Is said to be the stabilizer of the space Vq,
since every element of V¢ Is stable under
the action of elements in S.
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Properties of a Stablilizer

The stabilizer is a group:
If M=y n= <y nand N<y n=-=y N then MN<y n=-+yn
The stabilizer is Abelian:
If M+y N= <y nand N<y n= -y n then
(MN-NM)-=y fi= MN=y fi- NM=y fi= 0

(For Pauli matrices) ===> MN =-NM

chERI SRR AL FRYL



Stabilizer 151

The EPR state of two qubits

) = 00) + |11)

It iIs easy to verify that this state satisfies the

identities .
X1.X5 L’,»> = )

We say that the state |p> Is stabilized by the
operators X, X, and Z,Z,

In addition, the state |p> is the unigue quantum
state (up to a global phase) which is stabilized by

these operators X, X, and Z,Z,.
PERZFRARKE Bl




Stabilizer 151+

# Such a state is unigue, as it is the only one (up
to a global phase) to be stabilized by both X, X,
and Z,Z,.

# The basic idea of using the stabilizer group Is to
work with the stabilizer operators as group
generators rather than with the states.

# The group theoretical formalism of the stabilizer
codes offers a more compact description of the
guantum error correction codes.

PEREERAKRE BRIl



Stabilizer {51+

For the classical repetition code, one can see the error
syndromes

first two bits have even parity (an even number of 1's),
and similarly for the 2nd and 3rd bits, with correctly-
encoded state 000 or 111

For state with error on one of the first two bits: odd parity
for the first two bits.

One can rephrase this by observing that a codeword Is a
+1 eigenvector of ZAZAI and that a state with an error on
the 1st or 2nd bit is a -1 eigenvector of ZAZAl.
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For the three-qubit phase error correcting code, a
codeword has eigenvalue +1 for XAXAI, whereas
a state with a phase error on one of the first two
qubits has eigenvalue -1 for XAXAL.

Measuring ZAZ detects bit flip (X) errors, and
measuring XAX detects phase (Z) errors.

Measuring enough operators find locations of
errors.

chERI SRR AL FRYL



Error Correction Conditions

Theorem: Let S be the stabilizer of the
stabilizer code C(S). Suppose {Ej} Is a set of
operators in G, such that:

E'E, ¢ N(S)-S
for all ] and k. Then, {E;} Is a correctable set

of errors for the code C(S).

The normalizer of S, denoted N(S), which is defined to consist

of all elements E of G, such that EQET& S forallg € S.
PERFERAKRSE MRl



Error Detection

® Suppose g,,...,0,. IS the set of generators for the
stabilizer of an [n,k] stabilizer code, and that {E;}
IS the set of correctable errors for the code.

® Error detection is performed by measuring the
generators of the stabilizer in turn, to obtain the
error syndrome, which consists of the results of
the measurements b,,...,b .

# |If the error E occurred then the error syndrome is
given by b, such that:

Eg[ET = 0,8,

PEREERAKRE BRIl



Recovery (1)

#|n the case where E is the unique error
operator having this syndrome, recovery
is done by applying E'.

®In the case where there there are two

distinct errors E and E’ giving rise to the
same error syndrome, it follows that:

EPE' = EPPE" andthen E'EPE'E =P
and therefore E'E’ is part of S.

PEREERAKRE BRIl



Recovery (2)

@ Thus applying E' after the error E’ has
occurred results in a successful recovery.

#®Thus, for each possible error syndrome we
simply pick out a single error E with that
syndrome, and apply E’ to achieve
recovery when that syndrome Is observed.

PEREERAKRE BRIl



How to construct a quantum
error correction code?

An [n,k,d] quantum error correction code C(S) is the
vector space Vg stabilized by a subgroup S of G,
such that - /1 S and S has n-k independent and
commuting generators:

S = <gl ,....,gﬂ_k>

and logical states stabilized by:

(81rves €1 (D Z e (D Z )

which can correct a set of correctable error
operators {E;} in G, such that, for all | and k:

E'E ¢ N(S)-S

PEREERAKRE BRIl



Design Goals for QECCs

Several requiremens:
@  High rate (high value of both k/n and d/n).

@  Efficient decoding (for a general QECC,
determining the exact error can take
exponentially long in n).

@  Efficient encoding (all stabilizer codes can be
encoded using O(n?) operations, but O(n) is
better).

@  Specific error models (we can sometimes be
more efficient if don’t insist on correcting all t-
gubit errors).

@  Many symmetries (useful for fault-tolerance and
sometimes other constructions).

+Ersoes pither application-specific properties From Gottesman



The three qubit bit flip code

Consider the familiar three qubit bit flip code spanned by the states |000) and |111), with
stabilizer generated by Z,2, and Z, /3. By inspection we see that every possible product
of two elements from the error set {I, X1, X», X3} — I, X;, X», X5, X1X5, X X5, XX
— anti-commutes with at least one of the generators of the stabilizer (except for I, which
is in S), and thus by Theorem 10.8 the set {I, X, X, X5} forms a correctable set of
errors for the three qubit bit flip code with stabilizer (£,2,, Z,73).

Error-detection and correction

/14, | £»/5 | Error type Action
1 +1 Nno €rror no action
+1 —1 | bit 3 flipped | flip bit 3
—1 +1 bit 1 flipped | flip bit 1
—1 —1 | bit 2 flipped | flip bit 2

SRERIERAKS BRI



The three qubit bit flip code

/
/
X
/

N < NN

/
/
X
/

N |29 09
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The nine qubit Shor code

Name Operator

g AT PTTTT T
0 ITZZTTTIITI
g3 FPITEZLTL &d T
04 T1ITTZ1 11
95 ITIT TR ZE T
e ITTTITIZZ
97 XXXXXXIII
gs I T ITXXXXXX
VA XXXXXXXXX
X LLLLLLLLZ

(1000Y + [111))(|000) + [111))(|000) + [111))

~(000) — [111))(J000) — [111))((000) — [111))

FERZFRINAF pran



The nine qubit Shor code

Name Operator

9 AT PTTTT T
G TZZLE LT 4 L1
g3 I T aet &4 1
04 Tit 47444
95 ITIT TR ZE T

g | IITTETIEZ
4 | NXXXXXIT]
g | J FTEXERXEE
7 | XXEXEXXXX

X LLLLLLLLZ

g,2,...,.25 generate a group, the stabilizer of the code,
consisting of all Pauli operators M with the property that M=y n
= =y Nfor all encoded states <y i

PERIFRAKE Bl



The five qubit code

Name | Operator
g XZZX1
92 IXZ7ZX
1 g3 XIXAEZ
0L) = 7 [\oooom +[10010) + [01001) + |10100) o | ZXIXZ
+/01010) — [11011) — [00110) — |11000) j? ;?i;;;;?i?

— [11101) — [00011) — [11110) — |01111)

—10001) — [01100) — |10111) + '_00101>]

11L) = % {\11111) +(01101) + [10110) + [01011)
+[10101) — [00100) — [11001) — |00111)
—00010) — [11100) — [00001) — [10000)
— [01110) — [10011) — [01000) + _11010>]

THTEEITTTITIX2INNTT PN



CSS Codes

Define a quantum error-correcting code by choosing two classical linear
codes C, and C,, and replacing the parity check matrix of C, with Z’s
and the parity check matrix of C, with X's.

[[7,1,3]] QECC

Name Operator

g1 I 1 T XXXX
} C,: [7,4,3] Hamming

92 IXXTTXX
93 XIXIXIX
g4 LTI ZZZ7
gs LZZLT 1T 4% } C,: [7,3,4] Hamming
9o LZIZTIZTZ

)= [0000000) +(1010101) + [0110011) + [1100110)

J

=l -

+/0001111) + |1011010) + [0111100) + \1101001@

1) =

S

{ 1111111) + [0101010) + [1001100) + [0011001)

Sl -

+ 000) + |010¢ + (1000 + 100101 1(
RS RS 1110000) + [0100101) + |1000011) \.)1.11}}}



Calderbank-Shor-Steane Codes

#® CSS codes are a subclass of stabilizer codes.

@ They construct quantum error correction codes
from classical linear codes.

#® As a general rule, to detect X errors, CSS take a
classical parity check matrix P, replaces 1 by Z
and I's elsewhere.

@ To detect Z errors, replace X’s instead of Z’s in
the matrix.

PEREERAKRE BRIl



CSS codes

® |If C, and C, are orthogonal then we can
combine these two codes. This means
that the dual code of each code must be
a subset of the other code.

@ Combining a C,[n,k,,d,] with a C,[n,k,,d.]
yields a CSS(C,,C,)[n,|k;-K,|,d5] with d; =
min{d,,d,}.

PEREERAKRE BRIl



CSS codes and the seven qubit code

® The 7-qubit Steane code is the most
popular CSS code.

® |t is created with a classical Hamming
code [7,4,3] which is self dual.

® The matrix C, is taken as the classical
parity check matrix H.

® The matrix C, is taken as the transposed
of its generator G'.

PEREERAKRE BRIl



CSS codes and the seven qubit code

Define a check matrix with the form

CH(Cy) |0
0 | H(Cy)

® The 7-qubit Steane code is the most popular CSS
code.

# |t Is created with a classical Hamming code [7,4,3]
which is self dual.

@ The matrix C, is taken as the classical parity check

matrix H.
FERIZFIAKRE BFRE



More about Stabilizer

The stablilizer is a group:

The stabilizer i1s Abelian:

Given any Abelian group S of Pauli operators,
define a code space T(S) = {zyns.t. My n=-=yn
" M1 S}. Then T(S) encodes k logical qubits in
n physical qubits when S has n-k generators (so
size 2nK),

chERI SRR AL FRYL



Stabilizer Elements Detect Errors

Suppose M 1 S and Pauli error E anticommutes with M.
Then:

M(ExyN=-EMyn=-E¥yn

so Ezynhas eigenvalue -1 for M.

Conversely, if M and E commute forallM 1 S,
M((Ewy)=EMyfA=Eyi " MI S,

so Exy nhas eigenvalue +1 for all M in the stabilizer.

The eigenvalue of an operator M from the stabilizer detects

errors which anticommute with M.

FRERISRAKS (Y From Gottesman



Distance of a Stabilizer Code

Let S be a stabilizer, and let T(S) be the corresponding
QECC. Define

N(S)={NT P,s.t. MN=NM" M1 S}.

Then the distance d of T(S) is the weight of the smallest
Pauli operator N in N(S) \ S.

The code detects any error not in N(S) \' S (i.e., errors which
commute with the stablilizer are not detected).

Why minus S? “Errors” in S leave all codewords fixed, so
are not really errors. (Degenerate QECC.)

FRERISRAKS (Y From Gottesman



Error Syndromes and Stabllizers

To correct errors, we must accumulate enough
Information about the error to figure out which
one occurred.

The error syndrome is the list of eigenvalues of
the generators of S: If the error E commutes
with M T S, then M has eigenvalue +1; if E and
M anticommute, M has eigenvalue -1.

We can then correct a set of possible errors if
they all have distinct error syndromes.

FRERISRAKS (Y From Gottesman



Stabilizer Codes Correct Errors

Theorem: The code corrects errors for which EfF I N(S)\ S
for all possible pairs of errors (E, F).

E and F have same error syndrome <:>

E and F commute with same elements of S

@) EtFT N(S)
EfF] s &) EtFyi=yA ) FyA= Eyi

E and F act the same, so we need not distinguish.

A stabilizer code with distance d corrects §d-1)/20errors

(l.e., to correct t errors, we need d = 2t+1):

FRERISRAKS (Y From Gottesman



Stabilizer Codes Summary

® Choose an Abelian subgroup of the Pauli
group. This will be the stablilizer S of the
QECC.

@ The codewords: {3y fis.t. Msyfi=syfA" M1 S}

@ If S has r generators on n qubits, the QECC
has k = n-r encoded qubits.

@ The codes corrects errors if ETFI N(S)\' S
for all pairs (E, F) of possible errors. The
distance d is the minimum weight of N(S) \ S.

RERESRARAS Y From Gottesman



Summary: Stabilizer Codes

@ We can describe a quantum stabilizer code
by giving its stabilizer, an Abelian subgroup
of the Pauli group.

@ By looking at the stabilizer, we can learn all
of the most interesting properties of a QECC,
Including the set of errors it can correct.

@ One Interesting and useful class of stabilizer
codes is the family of CSS codes, derived
from two classical codes. The 7-qubit code
Is the smallest example.

RERESRARAS Y From Gottesman



Application: 5-Qubit Code

We can generate good codes by picking an appropriate
stabilizer. For instance:

XAZAZAXA I n = 5 physical qubits
|AXAZAZA X - 4 generators of S
XAITAXAZAZ K :Tencoded qubit
ZAXATAXAZ Distance d of this code Is 3.

Notation: [[n,k,d]] for a QECC encoding k logical qubits in n
physical qubits with distance d. The five-qubit code is a
non-degenerate [[5,1,3]] QECC.

FRERISRAKS (Y From Gottesman
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The Gottesman-Knill Theorem

Theorem: Suppose a quantum computation is
performed which involves only the following
elements: state preparations in the computational
basis, Hadamard gates, phase gates, controlled-
NOT gates, Pauli gates, and measurements of
observables in the Pauli group (which includes
measurement in the computational basis as a
special case), together with the possibility of
classical control conditioned on the outcome of
such measurements. Such a computation may be
efficiently simulated on a classical computer.
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Quantum Computing Simulations

® The Gottesman-Knill theorem shows that some
guantum computations involving highly entangled
states may be simulated efficiently (in polynomial
time complexity) on classical computers.

® These computations include guantum teleportation
and superdense coding.

#® However, not all types of entanglement can be
described efficiently with the stabilizer formalism.
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Universal guantum computation?

In order to perform truly universal quantum
computation, even a single gate outside of N(G) can
be sufficient. For instance, the Toffoli gate (a three-
gubit gate which flips the third qubit iff both of the
first two qubits are |1>) along with N(G) suffices for
universal computation.

The set of U such that UAUT &€ G for all A € G is the
normalizer N(G) of G in U(n).

Also for the single-qubit 11/8 rotation gate
PERIFRAKRSE MRl



Summary of QECCs

@ Quantum error-correcting codes exist which can
correct very general types of errors on quantum
systems.

® A systematic theory of QECCs allows us to build
many interesting quantum codes.

@® Quantum error correction can be formalized in terms
of guantum states and projectors, stabilizer
subspaces or the stabilizer group.

® All these formalizations are equivalent.

® The theory of quantum error correction is quite
elegant and simple.

® The implementation is really a nontrivial task.
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#® Quantum computation and quantum
iInformation by M.A. Nielsen and I.L.
Chuang
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