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Classical Computers

@® Alan Turing (1912 — 1954)

n In 1936, Turing
published a paper
referring to an abstract
machine which moved
from one state to
another using a precise
finite set of rules (given
by a finite table)
depending on a single
symbol it read from a
tape
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Moore’s Law - 2005

Transistors
Per Die

101,
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What is guantum information?

“Information is physical.” 1960s by Rolf Landauer
from IBM Research

Quantum information is that kind of
information which is carried by quantum
systems from the preparation device to
the measuring apparatus in a quantum
mechanical experiment. by R.F. Werner

from New Scientist 2011

SHERISE AR YL



“There is plenty of room at the bottom.” (Dec 29, 1959)

“It seems that the laws of physics present no barrier to
reducing the size of computers until bits are the size of
atoms, and quantum behavior holds dominant sway.”

— —Richard P. Feynman (1985)

Nobel prize 1965 from New Scientist 2011

SHERISE AR YL



Quantum Algorithms

#® Deutsch-Jozsa (D-J)
n Proc. R. Soc. London A, 439, 553 (1992)

® Grover's search algorithm
n Phys. Rev. Lett., 79, 325 (1997)

#® Shor's algorithm for factoring large numbers
n SIAM J. Comp., 26, 1484 (1997)




Grover's Search

N =2" unordered items, we're looking for one item

Classically, would have to check B
about N/2 items

Hard task!

N = 2nitems

By using Grover's algorithm,

A/ N repetitions are sufficient!

PEREERAKRE BRIl
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DiVincenzo’s Criteria

DiVincenzo, Fortschr. Phys. 48, 771 (2000)

1. Scalability: A scalable physical system with well characterized
parts, usually qubits.

2. Initialization: The abillity to initialize the system in a simple
fiducial state.

3. Control: The ability to control the state of the computer using
sequences of elementary universal gates.

4. Stability: Decoherence times much longer than gate times,
together with the ability to suppress decoherence through error
correction and fault-tolerant computation.

5. Measurement: The ability to read out the state of the computer
In a convenient product basis.

chERI SRR AL FRYL



DiVincenzo’s Criteria

1.  Well defined extensible gubit array

2. Preparable in the “000...” state

3. Long decoherence time

4. Universal set of gate operations

5. Single guantum measurements
Qubit initialization Execution of an

algorithm--.. .-

00066 — 60088

////ﬁ/ 5
g\?/) Must be done within ﬁz

decoherence time!

Read the result

/( IN—=
EP*J‘%*&A/ o PJ—E}L
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Qubit Representations

Electron: number, spin, energy level
Nucleus: spin

Photon: number, polarization, time,
angular momentum, momentum (energy)

® Flux (current)

® Anything that can be quantized and
follows Schrodinger's equation

® @@

PEREERAKRE BRIl



A Few Physical Experiments

\ 4

IBM, Stanford, Berkeley, MIT, USTC
(solution NMR)

NEC (Josephson junction charge)

Delft (JJ flux)

NTT (JJ, guantum dot)

Tokyo U., USTC (quantum dot, optical lattice, ...)
Keio U. (silicon NMR, quantum dot)

Caltech, Berkeley, Stanford (quantum dot)
Austria, USTC (linear optics)

Australia, NIST (ion trap)

Many others (cavity QED, Kane NMR, ...)

OO OOOSOSS
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Physical Realization

Cavity QED S

- Mirmor surlace teegir

—E€E—0

Mirror substrat

lon trap
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Superconductor
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Quantum computation

Physical realization of a qubit

* lon traps and neutral atoms

m
N

« Superconducting qubit
Cooper pair box SQUID

%

pairs- N+1 1"
EFllﬂ%Jﬁ)’jc—? pairs- 1Y

« Semiconductor charge qubit

SingleQD Double QD
El
\ ,
Eo ‘01‘! 1.-"}
« Spin qubit
Nuclear spin Electron spin
(liquid state NMR,
solid state NMR)
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* Aarhus * Melbourne

* Berkeley * MIT

« Caltech  NEC

« Cambridge * New South Wales
* College Park * NIST

* Delft * NRC

* DERA (U.K.) * Orsay

» Ecole normale supérieure » Oxford

« Geneva  Paris

« HP Labs (Palo Alto and Bristol) * Queensland
 Hitachi « Santa Barbara
* id Quantique » Stanford

- IBM Research (Yorktown Heights and * Toronto

Palo Alto) « USTC

* Innsbruck  Vienna

* Los Alamos National Labs  Waterloo

* McMaster * Yale

* MagiQ - many others...

 Max Planck Institute-Munich
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Demo: IBM Quantum Experience

Watch a demo of how to use the world’s first quantum
computing platform delivered via the IBM Cloud.

® Watch the video

SRERIERAKS BRI
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Quantum Computing on the Cloud

Hear from IBM experts about the new cloud-enabled

quantum computing platform.

® Watch the video

IBM Quantum Computing Lab Tour

Explore a 360 degree look at the IBM Quantum Computing
Lab at the Thomas J Watson Research Center.

® Watch the video
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§EW Ion) breaks records for quantum computing performance »

A true quantum leap.

Introducing the first commercial trapped ion quantum
computer. By manipulating individual atoms, it has the
potential to one day solve problems beyond the capabilities of
even the largest supercomputers.

Request Access

The World's Most Advanced Quantum Computer

Our quantum cores use lasers pointed at individual atoms to perform
longer, more sophisticated calculations with fewer errors than any
quantum computer yet built. In 2019, leading companies will start
investigating real-world problems in chemistry, medicine, finance,
logistics, and more using our systems.

PERIFRAKE Bl



Preliminary benchmark test results on lonQ hardware as of December 10, 2018.

Qubits

Qubits are the basic unit of information storage on a quantum computer. After they’re
initialized, logical operations—called gates—are performed on them.

Maximum loaded 160 qubits

Single-qubit gates performed on up to 79 qubits

Two-qubit gates performed on all pairs of up to 11 qubits

Error Rate

Gate fidelity is a measure of the accuracy of a single gate. Gates that manipulate one qubit
at a time are less complex and less error-prone than gates that operate on two qubits. The
following benchmarks were captured on a fully-connected 11-qubit configuration.
Average fidelities

Single-qubit gates >99%

Two-qubit gates >98%"

Best fidelities

Single-qubit gates 99.97%

Two-qubit gates 99.3%"

Minimum fidelities

Single-qubit gates >99%

Two-qubit gates >96%"

“ not corrected for state preparation and measurement errors.

Benchmark: Bernstein-Vazirani Algorithm

The Bernstein-Vazirani Algorithm is a basic test of the ability of a quantum computer to
simultaneously evaluate possibilities that conventional computers must calculate one at a
time. The complexity of the test is determined by the maximum length in bits of an oracle—
an arbitrary number the computer must determine.

10-qubit oracle success rate 73.0%

Classical computer success rate ~0.2%

PERIFRAKE Bl



Technologies for QC

Liguid NMR

Solid-state NMR

Quantum dots

Superconducting Josephson junctions
lon trap

Optical lattice

All-optical

® P OO Pee
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Qubitology. States
) = cos(6/2)|0) + €*?sin(0/2)|1) = |n)

1

Spin-1/2 particle 1) = |0) Direction of spin

% ATy = 1IN/V2
Ty —il1)/v2
f(ﬂ +il1))/V2
() +11))/v2

[ =11)

From Caves
Bloch sphere

1 o= (§ 5)=x

n)(n| = =4 ozng+ oyny + o.n;) 1 O
2 o (o —z') —v

— l([_l_n,o.) Pauli ’ i 0

2 representation 1 0
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Qubitology. States
) = cos(0/2)]0) + e'?sin(0/2)|1) = |n)

Abstract “direction”

Polarization of a photon
|R) = |0)

(IR) —ilL))/V2 (JR) = |L))/vV2 = i|H)
= (V) = |H)/V2

(IR) +i[L))/ V2
= (V) + )/ V2
(IR) + L) /vV2=|V)

L) = [1)

Poincare sphere

| | From Caves
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Qubitology. States
) = cos(0/2)]0) + e'?sin(0/2)|1) = |n)

Abstract “direction”

—e—|e) = [1)
—o—lg9) =10)  ||g) =|0)

% (Ig) — le))/v/2
(lg) —ile)) /2
ﬁm + ile)) /2
(g) + le))/v/2

&) =11)

Two-level atom

Bloch sphere

| | From Caves
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Qubitology
Single-qubit states are points on the Bloch sphere.

Single-qubit operations (unitary operators) are
rotations of the Bloch sphere.

Single-qubit measurements are rotations followed
by a measurement in the computational basis
(measurement of z spin component).

po =[O =51 +n.)
o= )P =1 -n)

Platform-independent description:

Hallmark of an information theory

| | From Caves
RERISERARAS R



Qubitology. Gates and guantum circuits

z

Single-qubit gates Y QT’
’ (1 0\ _
180° S_(O Z)—T2<—
Z:(é —01)282 T Phase flip |a) S i*|a)
N
ja) — Z— (—-1)%a) 4.
ooy |
/*5800 T_(O 6”/4) ~
1 /1 1
H:E(l _1) Hadamard |a> T eiaw/4’a>
<~
) — H |— (|0) + (=1)*]1))/v2
72 — H2 =7

- From Caves
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Qubitology. Gates and guantum circuits

z

More single-qubit gates Y

€T

Xz((l) é)zHZH — 180 Bit flip

la) — XF— |la®l) = —H Z+—H—
X?=Y2=1
1 180°
@y:(_ol O)zZX /\“ - Phase-bit flip
@) —iY —— (=) e 1)
= Ix}Hz— = HulHz-ul{z—

- From Caves
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Qubitology. Gates and quantum circuits

z

Control-target two-qubit gate Y

x

Control Target
1 0 0 0 |~
. O 1 0 0
C-NOT = 0 0 0 1 10)
O 0 1 0O
180°
= 0)O|RIT+|1){1|®X 46
1) d
Control T B :L
Target X U
|a) a) ,
(C-NOT)* =1

| | From Caves
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Qubitology. Gates and guantum circuits

Universal set of quantum gates

@ T (45-degree rotation about z)
® H (Hadamard)
@® C-NOT

| | From Caves
RERISERARAS R



Qubitology. Gates and guantum circuits

Z

Another two-qubit gate _""

xT

Control Target
1 O O O >
O 1 O O
C-PHASE = 0 0 1 O |0)
0O 0 0 -1 8o
= [0)O|T+[1){1|®Z T
1) /
Control |a) T |a) A I
Target  |b) Z (—1)2°|b) l
o H H H H—

- From Caves
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Qubitology. Gates and guantum circuits

C-NOT as parity check

)

L

\/ L/

)
Y)
x DY)

C-NOT as measurement gate

al0) + 5[1)
0)

chERI SRR AL FRYL

I

«|00) + 3[11)

{2

bo@—{{ a2l

From Caves



Qubitology. Gates and guantum circuits

Making Bell states using C-NOT

1

Bell states

1
L(j00) + [11)) _ L
\% V2 |Boo) \/5(!00>+|11))

1
| Bo) = —=(00) ~ [11)

1
- ([0) +11))|0) |Bo1) = %(01>+|10))

1
|B11) = E(’OD—HO))

0) —{ H|
0}

77 |

— H
a) —|H | l Z5(106) + (=1)7/1,6® 1)) = |Bap)
b) D

| i I
| It
L(10) + (~1)[1))[0)

PERIFRAKE Bl

From Caves



Qubitology. Gates and guantum circuits

Making cat states using C-NOT

0) — H ® GHZ (cat) state
0) an —5(]000) + |111))
0) T 1 D

—5(10) +11))|00) | |-5(]00) +]11))[0)

- From Caves
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"RERISERAAS B

A R E T I
Hadamard __ H % “ —1 1}
Pauli-X —?_ [ [lj (lJ ]
Pauli-Y ? [ (?] _0?'
Pauli-Z —E_ {U —
Phase —EI . [ {1) (: ]
- 10
= )




WA Z R R T 1]

controlled-NOT ‘

e
swap
—k—
——
controlled-Z l =
Z —H3—
controlled-phase T
S

PERIFRAKE Bl

— 2 P

— O O




A2 LA E T 1)

ccococoo —o
e o S v
o Oy O
cooo~oiD S
o D O
oS
o G e Gl o o o e e

= B e ] e (o B o I o I

=
b
S
=)
T

o T e B e S B e S s T s Y

G =y G o o i

- O O

Fredkin (controlled-swap)

%%

RERMERARAS R



measurement

qubit
classical bit

n qubits

PERIFRAKE Bl

ki)
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Projection onto |0) and |1)

wire carrying a single qubit
(time goes left to right)

wire carrying a single classical bit

wire carrying n qubits



Decomposing single qubit operations

Arbitrary 2 X2 unitary matrix may be
decomposed as

< |2

— [ 2 / . 4 —10 2
o [ @i 0 cos T —sin g0/, 0
[7 — eaa 2 - i

63/ 2 : '
0 P/ sint  cos 7

where a, B, y, and 0 are real-valued.

PERIFRAKE Bl



Swap gate

[l -

Figure 1.7. Circuit swapping two qubits, and an equivalent schematic symbol notation for this common and useful

circuit.

a,b) — |a,a ®b)
—s la® (a B b),adb) = |b,a P b)
- ba(a’@b)@b>:‘bva’>a

SHERISE AR YL



Control-U gate

=Ei=

Figure 1.8. Controlled-U gate.

D X

Figure 1.9. Two different representations for the controlled-NOT.
PERZERAR T sl
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Circult for measurement

1M
) — =

Figure 1.10. Quantum circuit symbol for measurement.

This operation converts a single qubit state

|w> = a|0> +B|1> into a probabilistic classical bit
M (distinguished from a qubit by drawing it as a
double-line wire), which is 0 with probability |aj?,
or 1 with probability |B]>.

PERZFRARKE BRIl



Bell&124

In Out

00) | (00) + [11))/v2 = |Bw)

01) | (01 + 10))/v/Z = |5} TH Y

10) | (j00) — 11))/v2 = |Bro) 1 |Bzy)
11) | (|01) — [10))/v2 = |Bn) g ~

Figure 1.12. Quantum circuit to create Bell states, and its input—ouput quantum ‘truth table’.

B,,) = 0,y) + (—1)*|1,9)
Ozy) = 7

SHERISE AR YL




Quantum teleportation

1 My

H

1 Mo

S

Xﬂ«f 2 Zﬂ-f 1

A
|%0)

A
1)

Figure 1.13. Quantum circuit for teleporting a qubit. The two top lines represent Alice’s system, while the bottom

— [¥)

) )
[a)  |93)

A
2y

line 1s Bob’s system. The meters represent measurement, and the double lines coming out of them carry classical

bits (recall that single lines denote qubits).

H

/4 A

AN

L/

I:Fl Iil’l‘f—.f—ffx/ NN PANE)L

Y

Measurement in the basis of

the Bell states



Measuring an operator

|
f

0) H—e—H N

!

‘ Q/) iIl> U ‘ wout >

Suppose we have a single qubit operator U with eigenvalues
+1, so that U is both Hermitian and unitary, so it can be
regarded both as an observable and a quantum gate. Suppose
we wish to measure the observable U. That is, we desire to

obtain a measurement result indicating one of the two
eigenvalues, and leaving a post-measurement state which is the

corresponding eigenvector. How can this be implemented by a
guantum circuit? Show that the following circuit implements a

faeastrement of U.
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Rotation operators

The Pauli matrices give rise to three useful classes of
unitary matrices when they are exponentiated, the
rotation operators about the X, y, and z axes, defined by
the equations:

s o 6 cos? —isinZ

B.(0y=¢ 8= gog I — isin—X = Y. 2
sl 2 2 —isin?  cos?

0Y /. ¢ . B.. [ cos? —sint

R, (0) = e /2 —pos—I —isini—Y = B 0?
2 2 | sing  cosy
- 0 2 [ &=/
— A WAL T T Gt T O i :

R (0)=¢ COS 2[ i sin .?.Z 0 8/

Let X be a real number and A a matrix such that A2 = |. Then

exp(tAx) = cos(x)] + 7 sin(x)A

FERF e NAF prE



Rotation operators

If n = (ng,ny,n;) 1s a real unit vector in three dimensions then we generalize the
previous definitions by defining a rotation by # about the 71 axis by the equation

Ry(0) = exp(—ifn - 7 /2) = cos (g) I —2sin (g) (X FmY +m, ),

where & denotes the three component vector (X, Y, Z) of Pauli matrices.

An arbitrary single qubit unitary operator can be written in the form
U = exp(ia)Rqy(0)

for some real numbers o and #, and a real three-dimensional unit vector 7.

SHERISE AR YL
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Quantum parallelism

Quantum parallelism is a fundamental feature of many
guantum algorithms. Heuristically, and at the risk of
over-simplifying, quantum parallelism allows quantum
computers to evaluate a function f(x) for many different
values of x simultaneously.

Suppose f(x) : {0, 1} — {0, 1} is a function with a one-bit
domain and range.

A convenient way of computing this function on a quantum computer is to
consider a two qubit quantum computer which starts in the state |x, y>.
With an appropriate sequence of logic gates it is possible to transform this
state into |x, y & f(X)>, where ¢ indicates addition modulo 2; the first
register is called the ‘data’ register, and the second register the ‘target’
register. We give the transformation defined by the map |x, y>— |X, ¥
@f(x)> a name, U; , and note that it is easily shown to be unitary.

chERI SRR AL FRYL



A quantum computer

[®)+]1)
V2

Uy V)
0) —y  y@f(x)

Figure 1.17. Quantum circuit for evaluating f(0) and f(1) simultancously. Uy is the quantum circuit which takes

inputs like |z, y) to |z, y & f(x)).

The resulting state Is

0, £(0)) + |1, f(1))
/2

RERMERARAS R



RIS

This procedure can easily be generalized to functions on an arbitrary
number of bits, by using a general operation known as the Hadamard
transform, or sometimes the Walsh—Hadamard transform. This operation
IS Just n Hadamard gates acting in parallel on n qubits.

(\U} + \l}) (|(}} + |1}) _|00) + [01) + [10) + |11)

/
Y: -

V2

1
7 2

Prepare the n + 1 qubit state |0>%®"|0>, then apply the Hadamard
transform to the first n qubits, followed by the quantum circuit
Implementing U; . This produces the state

1
75 > @) f(@)

PERIFRAKE Bl



Quantum algorithms
Deutsch algorithm

0) — H— = r — H1-
%

1) — Yy  ydf(x)

T T T T
Vo) Y1) h2)  |t3)

Figure 1.19. Quantum circuit implementing Deutsch’s algorithm.

RERMERARAS R



Deutsch algorithm

tho) = [01)

A little thought shows that if we apply Uy to the state |2:)(|0) — [1))/v/2 then we obtain
the state (—1)7@[2)(|0) — |1))/v/2. Applying Uy to [1/1) therefore leaves us with one of
two possibilities:

L [0+ T10) = 1) o5 e
o <i V2 { 2 ] PRt
W) =
0 —D][I)-1D] .
~. = = o } [ 7 ] if [ = F(1)

SHERISE AR YL



Deutsch algorithm
The final Hadamard gate on the first qubit thus gives us

i

0) — 1)
/2
0) — 1)
72

+|0) [ ] if £(0) = f(1)

‘ W3 > =5

1) [ ] if £(0) # f(1).

'

Realizing that f(0) ¢ f(1) is O if f(0) = f(1) and 1 otherwise, we can
rewrite this result concisely as

i 0y — |1
) = ££(0) & F(1) [ ) 11 ]

72

PERIFRAKE Bl



Deutsch algorithm

By measuring the first qubit we may determine f(0) & f(1). This is very
Interesting indeed: the quantum circuit has given us the ability to determine
a global property of f(x), namely f(0)&f(1), using only one evaluation of f(x)!
This is faster than is possible with a classical apparatus, which would require
at least two evaluations.

Naively, one might think that the state |0>|f(0)> + |1>]|f(1)> corresponds
rather closely to a probabilistic classical computer that evaluates f(0) with
probability one-half, or f(1) with probability one-half. The difference is that in
a classical computer these two alternatives forever exclude one another; in a
guantum computer it is possible for the two alternatives to interfere with
one another to yield some global property of the function f, by using
something like the Hadamard gate to recombine the different alternatives,
as was done in Deutsch’s algorithm. The essence of the design of many
guantum algorithms is that a clever choice of function and final
transformation allows efficient determination of useful global information
about the function — information which cannot be attained quickly on a
classical computer.

chERI SRR AL FRYL



Deutsch-Jozsa algorithm

Alice, iIn Amsterdam, selects a number x from 0 to 2" — 1,
and mails it in a letter to Bob, in Boston. Bob calculates
some function f(x) and replies with the result, which is
either O or 1. Now, Bob has promised to use a function f
which is of one of two kinds; either f(x) is constant for all
values of x, or else f(x) is balanced, that is, equal to 1 for
exactly half of all the possible x, and O for the other half.
Alice’s goal is to determine with certainty whether Bob has
chosen a constant or a balanced function, corresponding
with him as little as possible. How fast can she succeed?
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Deutsch-Jozsa algorithm
Boolean function f : {0,1} — {0, 1}

Promise: f Is constant or balanced.

Task: Determine which.

Classical: Roughly 2N-1 +1 function calls are required to be certain.

Quantum: Only 1 function call is needed.
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Deutsch-Jozsa algorithm

‘0) 7& Hon | — T H®n | —

T T T i
|%0) 1) |12) |3)

Figure 1.20. Quantum circuit implementing the general Deutsch—Jozsa algorithm. The wire with a */° through it
represents a set of nn qubits, similar to the common engineering notation.

1) = [0)"[1)
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Deutsch-Jozsa algorithm

After the Hadamard transform on the query register and the Hadamard
gate on the answer register we have

z) [10)—|1)
vy = ) _
rc{0,1}" \/ﬁ - \/z .

Next, the function f is evaluated (by Bob) using U; : |X, y> — |X, Y &
f(x)>, giving

(=1)7@z) T10) —|1)°
= 5= V) [10) =11
: Zn, | \/z |
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Deutsch-Jozsa algorithm

A H e
Hlz) = 3 (=1)**|2)/v2
X INEE]
_ _INT IR Ty By
H®n’ﬂ?1; - gél?n> = ZZ]'—'--*%-( 1) - — ’Zlﬂ iR ?Z’n>

T =k Zz(_l)lez>
H"|a) T

where x * z is the bitwise inner product of x and z, modulo 2.
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Deutsch-Jozsa algorithm
A ETER, FAl#H—2F

. < (D)) 110) — 1)
WELL T T

Note that the amplitude for the state |0=>®" s S (—1)/¢)/2" | Let’s look
at the two possible cases — f constant and f balanced — to discern what
happens. In the case where f is constant the amplitude for |0>%" is +1 or
—1, depending on the constant value f(x) takes. Because |@;> is of unit
length it follows that all the other amplitudes must be zero, and an
observation will yield Os for all qubits in the query register. If f is balanced
then the positive and negative contributions to the amplitude for |0>&"
cancel, leaving an amplitude of zero, and a measurement must yield a result
other than 0 on at least one gubit in the query register. Summarizing, if Alice
measures all 0Os then the function is constant; otherwise the function is
halanced..The Deutsch—=Jozsa algorithm is summarized below.




) |y)

— |z)|y & f(a)), for z € {0

Deutsch-Jozsa algorithm

Inputs: (1) A black box Uf which performs the transformation

-----

Outputs: 0 if and only if [ is constant.

2" — 1} and f(x) € {0,1}. It is
promised that f(x) is either constant for all values of x, or else f(x) is balanced,
that 1s, equal to 1 for exactly half of all the possible 2, and 0 for the other half.

Runtime: One evaluation of Uy. Always succeeds.

Procedure:
[ [O)N”H)
2.

\/?_n
3.
-+
5. —

SR ) [ 10)
—*ZZ —1“”“’”\ >[ 0)

’)'Il _1

D I

=0

[\ﬂ —I1>]

= [1)

V2

|

initialize state

create superposition using
Hadamard gates

calculate function f using Uy
perform Hadamard transform

measure to obtain final output 2



Quantum interference in the
Deutsch-Jozsa algorithm

Quantum interference allows one to distinguish
the situation where half the amplitudes are +1
and half -1 from the situation where all the
amplitudes are +1 or -1 (this is the information
one wants) without having to determine all
amplitudes (this iInformation remains
Inaccessible).
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Variational guantum algorithms

Variational quantum algorithms (VQAs) have
emerged as the leading strategy to obtain
guantum advantage on NISQ devices.
Accounting for all of the constraints imposed by
NISQ computers with a single strategy requires
an  optimization-based or learning-based
approach, precisely what VQAs use. VQAs are
arguably the quantum analogue of highly
successful machine-learning methods, such as
neural networks. Moreover, VQAs leverage the
toolbox of classical optimization, since they use
parameterized quantum circuits to be run on the
guantum computer, and then outsource the
parameter optimization to a classical optimizer.
This approach has the added advantage of
keeping the quantum circuit depth shallow and
hence mitigating noise, in contrast to quantum
algorithms developed for the fault-tolerant era

Variational guantum algorithms,

e

,r—m
S
L
Dynamical simulations ey Compilation
Error correction
@
Cuantum = '\: e oy @
chemistry . ¢, L * =z Classifiers
Finding Variational quantum i 2
ground states algorithms Machine issrning
Condensed % e x’{} el » Generative
matter e @ EAELL T models
e e
Mathematical Combinatorial .
applications optimization P frompses
Systems of Eactoring ; OllanTu_rn | Quantum.
equations information metralogy
Frincipal 'Duanrl.tjm
components foundations

Fig. 1| Applications of variational quantum algorithms. Many applications have been
envisaged for variational quantum algorithms. Here we show some of the key
applications that are discussed in this Review.

M. Cerezo, Andrew Arrasmith, Ryan Babbush,

Simon C. Benjamin, Suguru Endo, Keisuke Fuijii, Jarrod R. McClean, Kosuke

Mitarai, Xiao Yuan, Lukasz Cincio & Patrick J. Coles, Nature Reviews Physics



Variational guantum algorithms

Key points

* Variational quantum algorithms (VQAs) are the leading proposal for achieving
quantum advantage using near-term quantum computers.

* VQAs have been developed for a wide range of applications, including finding ground
states of molecules, simulating dynamics of quantum systems and solving linear
systems of equations.

* VOAs share a common structure, where a task is encoded into a parameterized cost
function that is evaluated using a quantum computer, and a classical optimizer trains
the parameters in the VQA.

* The adaptive nature of VQAs is well suited to handle the constraints of near-term
guantum computers.

» Trainability, accuracy and efficiency are three challenges that arise when applying
VQAs to large-scale applications, and strategies are currently being developed to
address these challenges.

Variational quantum algorithms, M. Cerezo, Andrew Arrasmith, Ryan

Babbush, Simon C. Benjamin, Suguru Endo, Keisuke Fujii, Jarrod R.

McClean, Kosuke Mitarai, Xiao Yuan, Lukasz Cincio & Patrick J.
FERFERAXZE K Coles, Nature Reviews Physics 3, 625-644 (2021)



Measurement in quantum CIrcuits

Principle of deferred measurement. Measurements can
always be moved from an intermediate stage of a quantum
circuit to the end of the circuit; if the measurement results
are used at any stage of the circuit then the classically
controlled operations can be replaced by conditional
guantum operations.

Principle of implicit measurement. Without loss of
generality, any unterminated quantum wires (qubits which
are not measured) at the end of a quantum circuit may be
assumed to be measured.
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Measurement in quantum CIrcuits

® Measurement is generally considered to be an
Irreversible operation, destroying quantum information
and replacing it with classical information.

# In certain carefully designed cases, however, this need
not be true.

@ In order for a measurement to be reversible, it must
reveal no information about the quantum state being
measured!

PEREERAKRE BRIl



Summary of the quantum circuit
model of computation

(1) Classical resources: A quantum computer consists of two parts, a classical part
and a quantum part. In principle, there 1s no need for the classical part of the
computer, but in practice certain tasks may be made much easier if parts of the
computation can be done classically. For example, many schemes for quantum
error-correction (Chapter 10) are likely to involve classical computations in order to
maximize efficiency. While classical computations can always be done, in principle,
on a quantum computer, it may be more convenient to perform the calculations on
a classical computer,

(2) A suitable state space: A quantum circuit operates on some number, n, of qubits.
The state space 1s thus a 2"-dimensional complex Hilbert space. Product states of
the form

Llyev.yiy), where x; = 0,1, are known as computational basis stales of
the computer. |r) denotes a computational basis state, where  is the number
whose binary representation is rj ... xI,.
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Summary of the quantum circuit
model of computation

(3) Ability to prepare states in the computational basis: It is assumed that any
computational basis state

Il,...,Iyp) can be prepared in at most n steps.

(4) Ability to perform quantum gates: Gates can be applied to any subset of qubits
as desired, and a universal family of gates can be implemented. For example, 1t
should be possible to apply the CNOT gate to any pair of qubits in the quantum
computer. The Hadamard, phase, CNOT and 7 /8 gates form a family of gates from
which any unitary operation can be approximated, and thus is a universal set of
gates. Other universal families exist.

(5) Ability to perform measurements in the computational basis:
Measurements may be performed in the computational basis of one or more of the
qubits in the computer.
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One way quantum computing

Graph states

4-qubit GHZ graph state
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One way quantum computing
Graph states I:I

2 X 2 cluster state
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One way guantum computing
using cluster- and graph states

A cluster state is a

information flow

collection of qubits that are t
entangled via nearest- —
neighbour CZ gates ' PR

. quantum gate
(rectangular lattice). s o tle =2 o =

2N IR R

. . ; FIG. 1. Quantum computation by measuring two-state parti-
HOI’IZOﬂtal ||nkS dete rmine cles on a lattice. Before the measurements the qubits are in the

cluster state |}~ of (1). Circles @ symbolize measurements of

the information ﬂOW Wh”e .. vertical arrows are measurements of «,. while tilted arrows
b

refer to measurements in the x-y plane.

the vertical links furnish

the two-qubit gates.
Source: Raussendorf & Briegel PRL 86, 5188 (2001)
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One way quantum computing

a D (a.p)=(n,7)
Measure along basis  Readout L0 Tagged database clement 00 I
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[ e ——1 0.0 Il —
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Oracle encoding Inverse Readout With feed-forward  Without feed-forward

Kai Chen et al., Experimental Realization of One-Way Quantum
Computing with Two-Photon Four-Qubit Cluster States.

Phys. Rev. Lett., 99, 120503 (2007).
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One way quantum computing
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Few-qubit cluster states and the quantum
circuits they implement. For each three-qubit and four-qubit cluster,
its quantum state (|®y.3), |[Pypa)s | Poy)s |Poyd, or [Py)) and the
computation carried out in the one-way quantum computer model is

shown. Adapted from Walther, Resch, Rudolph er al., 2005.
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Experimental one-way quantum
computing, P. Walther, K. J. Resch,
T. Rudolph, E. Schenck, H.
Weinfurter, V. Vedral, M
Aspelmeyer & A. Zeilinger

Nature 434, 169-176 (2005)

Jian-Wei Pan et al., Multiphoton
entanglement and interferometry
Rev. Mod. Phys. 84, 777-838 (2012).
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Quantum algorithms: an overview

Table 1. Some computational complexity classes of importance in quantum computation

Class Informal definition

P Can be solved by a deterministic classical computer in polynomial time

BPP Can be solved by a probabilistic classical computer in polynomial time

BOP Can be solved by a quantum computer in polynomial time

NP Solution can be checked by a deterministic classical computer in polynomial time
OMA Solution can be checked by a quantum computer in polynomial time

Ahbreviation: QMA, Quantum Merlin-Arthur.
‘Polynomial time' is short for ‘in time polynomial in the input size!

Table 2. Some problems which can be expressed as hidden subgroup problems

Problern Group Complexity Cryptosystemn
Factorisation il Polynomial ! RSA

Discrete log o1 Zy Polynomial Diffie-Hellman, DSA, ...
Elliptic curve discrete log Ellintic curve Polynomial™ ECDH, ECDSA
Principal ideal IR Polynomial®? Buchmann-Williams
Shortest lattice vector Dihedral group Subexponential™*** NTRU, Ajtai-Dwork, ...
Graph isomorphism Symmetric group Exponential —

The table lists the time complexity of the best quantum algorithms known for the H5Ps and the cryptosystems that are {or would be) broken by polynomial-
time algorithms.

Ashley Montanaro, npj Quantum Information (2016) 2, 15023
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Quantum algorithms: an overview

Table 3. Some proof-of-concept experimental implementations of guantum algorithms

Algorithm Technology Problem solved

Shor's algorithm Bulk optics™ Factorisation of 21

Grover's algorithm NMR™ Unstructured search, N=8

Quanturn annealing D-Wave 2X® Ising model on a ‘Chimera” graph with 1097 vertices
HHL algerithm Bulk optics,?*%* NMR'” 2 % 2 system of linear equations

Abbreviations: HHL, Harrow, Hassidim and Lloyd; NMR, nuclear magnetic resonance.
Table only includes some ‘largest” problem instances solved thus far.

What does it mean to say that a quantum computer solves a problem more quickly
than a classical computer? As is typical in computational complexity theory, we will
generally consider asymptotic scaling of complexity measures such as runtime or
space usage with problem size, rather than individual problems of a fixed size. In
both the classical and quantum settings, we measure runtime by the number of
elementary operations used by an algorithm. In the case of quantum computation,
this can be measured using the quantum circuit model, where a quantum circuit is
a sequence of elementary guantum operations called quantum gates, each
applied to a small number of qubits (quantum bits). To compare the performance
of algorithms, we use computer science style notation O(f(n)), which should be
interpreted as ‘asymptotically upper-bounded by f(n)'.

pERERALE B Ashley Montanaro, npj Quantum Information (2016) 2, 15023




Quantum Algorithm Zoo

Stephen Jordan
Microsoft Quantum

https://quantumalgorithmzoo.org/

Quantum Algorithm Zoo F
https://www.qtumist.com/q

1 3Chi

uantum-algorithm-zoo
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https://quantumalgorithmzoo.org/
https://www.qtumist.com/quantum-algorithm-zoo
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#® Quantum computation and quantum
iInformation by M.A. Nielsen and I.L.
Chuang

Chapters 1,4,5,6
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